Theoretical Foundations of the UML

Lecture 3: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/um109100/

16. Oktober 2012

Joost-Pieter Katoen Theoretical Foundations of the UML 1/20

Sets of MSCs

@ MSC specifies a single scenario

@ Typically: a set of scenarios

@ + an ordering relation between them:

@ after scenario 1, scenario 2 occurs
o after scenario 1, scenario 2 or 3 occurs
@ scenario 1 occurs repeatedly

@ Need for: sequential composition (= concatenation),
alternative composition, and
iteration of MSCs

= This yields Message Sequence Graphs
@ Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Theoretical Foundations of the UML 2/20

Message Sequence Graphs

Up

U2

initial
vertex

~ final
vertex

Uy

us

up ug ug uy yields A(ug) o A(uz) o A(ug) o A(uy)

path in graph MSC of the path

Joost-Pieter Katoen Theoretical Foundations of the

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

A Message Sequence Graph (MSG) G = (V, —, v, F, \) with:
o (V,—) is a digraph with finite set V' of vertices and - C V x V a
set of edges
@ vy € V is the starting (or: initial) vertex
@ I C V is a set of final vertices

@)\ : V — M associates to each vertex v € V, an MSC \(v)

@ an MSG is an NFA without input alphabet where states are MSCs
@ every MSC is an MSG

Joost-Pieter Katoen Theoretical Foundations of the UML 4/20

Concatenation of MSCs (1)

Let M; = (Pi,E,-,Ci,l,-,mi, <7;) 1€ {1,2}
be two MSCs with E1 N Ey = &

The concatenation of M7 and Ms is the MSC
M, e My = (P,E,C,l,m,<) with:

P =PLUPy E =F{UE, C=C1UCy
(With Ey = EL? @] Eg’f] etc.)

[lL(e) if eeFE [mi(e) if eeFE
l(e)—{ l;(e) if eEE; m(e)—{ m;(e) if eEE;

<=(<1U<aU{(e,¢) | IpEP.e € EiNE,, € € BsNE,})"
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 5/20

Concatenation of MSCs (2)

@ events are ordered process-wise:
events at p in MSC My precede events at p in MSC My

@ thus: some processes may proceed to Ms before others!

@ #: first complete M, then execute Mo

Joost-Pieter Katoen Theoretical Foundations of the UML 6/20

Example (1)

(o] e] []
M 1: G = €2
S — Lo) e] o]
€1 g €2
. = el 2 ¢
€ £ el
L | [] [] ! N
Mg: e : &
A c e M 1@ M2
S ——
<i: €1 (5} €1 €2
€ e < € e
<2t} & A & RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML

Example (2)

<i:e1 €9 €1 €2
/ 5 /

€) el < €) =
Ll / ’ /
<2! €y e3 €4 €3

ep ey € e€y...€ Lin(M; e My)
el e ey ey...€ Lin(M; e My)

Joost-Pieter Katoen Theoretical Foundations of the UML

© Concatenation is associative:
(M; e Ms) @ M3 = My e (M e Ms)
© Concatenation preserves the FIFO property:
M is FIFO A Ms is FIFO implies M; e My is FIFO
© Race-freeness, however, is not preserved

M is race-free A My is race-free % My e My is race-free

Joost-Pieter Katoen Theoretical Foundations of the UML 9/20

Preliminaries

Let G = (V,—,vg, F, \) be an MSG.

Definition
A path 7 of G is a finite sequence

T=uy Uy ... Uy Withw; €V (0<7<n)and u; = uj+1 (0<i<n)

Definition
Path m = ug ... u, is accepting if: ug = vy and u,, € F.

Definition
The MSC of a path m = ug ... u, is:

M(m) = XMug) o MNuy) e...e A(uy)
MSC of ug MSC of u; MSC of un,

Joost-Pieter Katoen Theoretical Foundations of the UML 10/20

Language of an MSG

The (MSC) language of MSG G is defined by:

L(G) = {M(n) | w is an accepting path of G}.

The word language of MSG G is Lin(L(G)) where

k
Lin({M, ..., My}) = |] Lin(M;).
=1

Joost-Pieter Katoen Theoretical Foundations of the UML 11/20

Example

initial
vertex

Ug Uy

MSG

edge

U9 us

~ final
vertex

Uug Uz Ug U1 18 accepting; ug us ug uz is not accepting

Joost-Pieter Katoen Theoretical Foundations of the UML

Races in MSGs

Recall: MSC M has a race if < € <*
or, equivalently Lin(F,<) € Lin(E,<*)
or, equivalently Lin(FE, <) C Lin(E, <*)

Definition
MSG G has a race if Lin(G, <) C Lin(E,<*)

The decision problem “MSG G has a race” is undecidable. l

by a reduction from Post’s Correspondence Problem (PCP). Not easy.
We will see a similar—though simpler—proof later on.]

Joost-Pieter Katoen Theoretical Foundations of the UML 13/20

Example

b] [p2] [P3] [Pt) [p2] [P3]

MSG G has a race. J

Joost-Pieter Katoen Theoretical Foundations of the

Expressiveness of MSGs (1)

The state space of an MSG G may be infinite.

The state of an MSC with event set E is £ C E such that
ec E'Ne <e= ¢ € F (ie., E'is downward-closed wrt. <)

The set of states of MSC M is M’s state space

The state space of MSG G is the union of the state spaces of M; for all

Joost-Pieter Katoen Theoretical Foundations of the UML 15/20

MSG G is infinite state

A possible state is {e(M), e e®) 1
(where e is the occurrence of e in the i-th iteration)

— system that realizes G requires unbounded communication channel

Joost-Pieter Katoen Theoretical Foundations of the UML 16/20

Expressiveness of MSGs (2)

The state space of an MSG may not be context-free. l
° Y

[P] [P] [P]
a

€1 €9

b

es ey

A

States of G are of the form {e¥ €} e e | k> 1>m > n}

This language is not context-free RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 17/20

Expressiveness of MSGs (3)

The state space of an MSG is context-sensitive. l

Let w,w’ € E*, and M an MSC with event set E. Then it holds:

(1) wee w € Lin(M), lle) = ?(q,p,b)
i(e) = Up,q0a)
implies w e ew € Lin(M). not the reverse!
(2) wee w € Lin(M), lle) = !p,qa) and

i(e) = ?(q,p;b)

D [whpgm > D [whgpm)

meC meC
number of sends number of receipts
from p to ¢ in w of ¢ from p in w

implies w € e w' € Lin(M).

Joost-Pieter Katoen Theoretical Foundations of the UML 18/20

Expressiveness of MSGs (4)

B) wee w eLin(M),ecEy,, e €cE;,p#q
and e, ¢’ do not match like in (1) or (2) (cf. previous slide)

implies w e ew € Lin(M).

Rule (2) is a context-sensitive rule of form X abY — X ba Y as its
applicability depends on the number of sends and receipts in the
context X.

The results so far do not imply that any context-sensitive language is
MSG-definable.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/20

Context sensitivity (informal argument)

@ Take MSG G and use vertex identities as vertex labels.
o K(G) = set of “accepting” vertex sequences (this is regular)

@ Replace each vertex v by Lin(A(v))
(interpret sequencing element wise)

o Let the resulting set be K(G) (this is regular)
o Close K(G) under the permutation rules (1), (2), (3)
(cf. previous two slides)

The resulting word language is context-sensitive.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/20

