
Theoretical Foundations of the UML
Lecture 3: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/uml09100/

16. Oktober 2012

Joost-Pieter Katoen Theoretical Foundations of the UML 1/20

Sets of MSCs

MSC specifies a single scenario

Typically: a set of scenarios

+ an ordering relation between them:
after scenario 1, scenario 2 occurs
after scenario 1, scenario 2 or 3 occurs
scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),
alternative composition, and
iteration of MSCs

⇒ This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)

Joost-Pieter Katoen Theoretical Foundations of the UML 2/20

Message Sequence Graphs

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

test

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1︸ ︷︷ ︸
path in graph

yields λ(u0) • λ(u2) • λ(u0) • λ(u1)︸ ︷︷ ︸
MSC of the path

Joost-Pieter Katoen Theoretical Foundations of the UML 3/20

Definition

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

A Message Sequence Graph (MSG) G = (V,→, v0, F, λ) with:
(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges
v0 ∈ V is the starting (or: initial) vertex
F ⊆ V is a set of final vertices
λ : V → M associates to each vertex v ∈ V , an MSC λ(v)

Note:
1 an MSG is an NFA without input alphabet where states are MSCs
2 every MSC is an MSG

Joost-Pieter Katoen Theoretical Foundations of the UML 4/20

Concatenation of MSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi, <i) i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,<) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2
(with E? = E1,? ∪ E2,? etc.)

l(e) =

{
l1(e) if e ∈ E1

l2(e) if e ∈ E2
m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

< =
(
<1 ∪ <2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩Ep , e

′ ∈ E2 ∩Ep}
)∗

Joost-Pieter Katoen Theoretical Foundations of the UML 5/20

Concatenation of MSCs (2)

Note
events are ordered process-wise:

events at p in MSC M1 precede events at p in MSC M2

thus: some processes may proceed to M2 before others!

�=: first complete M1 then execute M2

Joost-Pieter Katoen Theoretical Foundations of the UML 6/20

Example (1)

p1 p2 p3

a
e1 e2

•
p1 p2 p3

b

c

e′1e′2

e′3e′4

=

p1 p2 p3

a

b

c

e1 e2

e′1e′2

e′3e′4

M1:

M2:
M1 •M2

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1<:

<1:

<2:

Joost-Pieter Katoen Theoretical Foundations of the UML 7/20

Example (2)

e1 e2

e′1e′2

e′3e′4

e1 e2

e′2

e′3e′4

e′1<:

<1:

<2:

Note:
Events e1 and e′1 are not ordered in M1 •M2

Example:
e1 e2 e′1 e′2 . . . ∈ Lin(M1 •M2)
e′1 e1 e2 e′2 . . . ∈ Lin(M1 •M2)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/20

Properties

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

2 Concatenation preserves the FIFO property:

M1 is FIFO ∧M2 is FIFO implies M1 •M2 is FIFO

3 Race-freeness, however, is not preserved

M1 is race-free ∧M2 is race-free �⇒ M1 •M2 is race-free

Joost-Pieter Katoen Theoretical Foundations of the UML 9/20

Preliminaries

Let G = (V,→, v0, F, λ) be an MSG.

Definition
A path π of G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Definition
Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition
The MSC of a path π = u0 . . . un is:

M(π) = λ(u0)︸ ︷︷ ︸
MSC of u0

• λ(u1)︸ ︷︷ ︸
MSC of u1

• . . . • λ(un)︸ ︷︷ ︸
MSC of un

Joost-Pieter Katoen Theoretical Foundations of the UML 10/20

Language of an MSG

Definition
The (MSC) language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.

Definition
The word language of MSG G is Lin(L(G)) where

Lin({M1, . . . ,Mk}) =
k⋃

i=1

Lin(Mi).

Joost-Pieter Katoen Theoretical Foundations of the UML 11/20

Example

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

test

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1 is accepting;u0 u2 u0 u2 is not accepting

Joost-Pieter Katoen Theoretical Foundations of the UML 12/20

Races in MSGs

Recall: MSC M has a race if < �⊆ �∗

or, equivalently Lin(E,<) �⊆ Lin(E,�∗)
or, equivalently Lin(E,<) ⊂ Lin(E,�∗)

Definition
MSG G has a race if Lin(G,<) ⊂ Lin(E,�∗)

Theorem ([Muscholl & Peled ’99])
The decision problem “MSG G has a race” is undecidable.

Proof.
by a reduction from Post’s Correspondence Problem (PCP). Not easy.
We will see a similar—though simpler—proof later on.

Joost-Pieter Katoen Theoretical Foundations of the UML 13/20

Example

p1 p2 p3
a

b

p1 p2 p3

c

G:

MSG G has a race.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/20

Expressiveness of MSGs (1)

Fact 1:
The state space of an MSG G may be infinite.

The state of an MSC with event set E is E′ ⊆ E such that
e ∈ E′ ∧ e′ < e =⇒ e′ ∈ E′ (i.e., E′ is downward-closed wrt. <)

The set of states of MSC M is M ’s state space

The state space of MSG G is the union of the state spaces of Mi for all
Mi ∈ L(G).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/20

Example

p1 p2

e e′

G:

MSG G is infinite state

A possible state is {e(1), e(2), e(3), . . .}
(where e(i) is the occurrence of e in the i-th iteration)

=⇒ system that realizes G requires unbounded communication channel

Joost-Pieter Katoen Theoretical Foundations of the UML 16/20

Expressiveness of MSGs (2)

Fact 2:
The state space of an MSG may not be context-free.

p1 p2 p3
a

b

e1 e2

e3 e4

G:

States of G are of the form {ek1 el2 e
m
3 en4 | k ≥ l ≥ m ≥ n}

This language is not context-free

Joost-Pieter Katoen Theoretical Foundations of the UML 17/20

Expressiveness of MSGs (3)

Fact 3:
The state space of an MSG is context-sensitive.

Let w,w′ ∈ E∗, and M an MSC with event set E. Then it holds:
(1) w e e′ w′ ∈ Lin(M) , l(e) = ?(q, p, b)

l(e′) = !(p, q, a)
implies w e′ e w′ ∈ Lin(M). not the reverse!

(2) w e e′ w′ ∈ Lin(M) , l(e) = !(p, q, a)
l(e′) = ?(q, p, b)

and

∑
m∈C

|w|!(p,q,m)

︸ ︷︷ ︸
number of sends
from p to q in w

>
∑
m∈C

|w|?(q,p,m)

︸ ︷︷ ︸
number of receipts
of q from p in w

implies w e′ e w′ ∈ Lin(M).
Joost-Pieter Katoen Theoretical Foundations of the UML 18/20

Expressiveness of MSGs (4)

(3) w e e′ w′ ∈ Lin(M) , e ∈ Ep , e
′ ∈ Eq , p �= q

and e, e′ do not match like in (1) or (2) (cf. previous slide)

implies w e′ e w′ ∈ Lin(M).

Note:
Rule (2) is a context-sensitive rule of form X a b Y −→ X b a Y as its
applicability depends on the number of sends and receipts in the
context X.

Note:
The results so far do not imply that any context-sensitive language is
MSG-definable.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/20

Context sensitivity (informal argument)

Take MSG G and use vertex identities as vertex labels.

K(G) = set of “accepting” vertex sequences (this is regular)

Replace each vertex v by Lin(λ(v))
(interpret sequencing element wise)

Let the resulting set be K̃(G) (this is regular)

Close K̃(G) under the permutation rules (1), (2), (3)
(cf. previous two slides)

The resulting word language is context-sensitive.

Joost-Pieter Katoen Theoretical Foundations of the UML 20/20

