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Sets of MSCs

MSC specifies a single scenario

Typically: a set of scenarios

+ an ordering relation between them:
after scenario 1, scenario 2 occurs
after scenario 1, scenario 2 or 3 occurs
scenario 1 occurs repeatedly

Need for: sequential composition (= concatenation),
alternative composition, and
iteration of MSCs

⇒ This yields Message Sequence Graphs

Alternatives: ensembles of MSCs, high-level MSCs (MSC’96)
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Message Sequence Graphs
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u0 u2 u0 u1︸ ︷︷ ︸
path in graph

yields λ(u0) • λ(u2) • λ(u0) • λ(u1)︸ ︷︷ ︸
MSC of the path
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Definition

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

A Message Sequence Graph (MSG) G = (V,→, v0, F, λ) with:
(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges
v0 ∈ V is the starting (or: initial) vertex
F ⊆ V is a set of final vertices
λ : V → M associates to each vertex v ∈ V , an MSC λ(v)

Note:
1 an MSG is an NFA without input alphabet where states are MSCs
2 every MSC is an MSG
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Concatenation of MSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi, <i) i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,<) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2
(with E? = E1,? ∪ E2,? etc.)

l(e) =

{
l1(e) if e ∈ E1

l2(e) if e ∈ E2
m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

< =
(
<1 ∪ <2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩Ep , e

′ ∈ E2 ∩Ep}
)∗
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Concatenation of MSCs (2)

Note
events are ordered process-wise:

events at p in MSC M1 precede events at p in MSC M2

thus: some processes may proceed to M2 before others!

�=: first complete M1 then execute M2
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Example (1)
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Example (2)

e1 e2

e′1e′2

e′3e′4
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e′1<:

<1:

<2:

Note:
Events e1 and e′1 are not ordered in M1 •M2

Example:
e1 e2 e′1 e′2 . . . ∈ Lin(M1 •M2)
e′1 e1 e2 e′2 . . . ∈ Lin(M1 •M2)
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Properties

1 Concatenation is associative:

(M1 •M2) •M3 = M1 • (M2 •M3)

2 Concatenation preserves the FIFO property:

M1 is FIFO ∧M2 is FIFO implies M1 •M2 is FIFO

3 Race-freeness, however, is not preserved

M1 is race-free ∧M2 is race-free �⇒ M1 •M2 is race-free
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Preliminaries

Let G = (V,→, v0, F, λ) be an MSG.

Definition
A path π of G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Definition
Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition
The MSC of a path π = u0 . . . un is:

M(π) = λ(u0)︸ ︷︷ ︸
MSC of u0

• λ(u1)︸ ︷︷ ︸
MSC of u1

• . . . • λ(un)︸ ︷︷ ︸
MSC of un
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Language of an MSG

Definition
The (MSC) language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.

Definition
The word language of MSG G is Lin(L(G)) where

Lin({M1, . . . ,Mk}) =
k⋃

i=1

Lin(Mi).
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Example
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u0 u2 u0 u1 is accepting;u0 u2 u0 u2 is not accepting
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Races in MSGs

Recall: MSC M has a race if < �⊆ �∗

or, equivalently Lin(E,<) �⊆ Lin(E,�∗)
or, equivalently Lin(E,<) ⊂ Lin(E,�∗)

Definition
MSG G has a race if Lin(G,<) ⊂ Lin(E,�∗)

Theorem ([Muscholl & Peled ’99])
The decision problem “MSG G has a race” is undecidable.

Proof.
by a reduction from Post’s Correspondence Problem (PCP). Not easy.
We will see a similar—though simpler—proof later on.
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Example
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G:

MSG G has a race.
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Expressiveness of MSGs (1)

Fact 1:
The state space of an MSG G may be infinite.

The state of an MSC with event set E is E′ ⊆ E such that
e ∈ E′ ∧ e′ < e =⇒ e′ ∈ E′ (i.e., E′ is downward-closed wrt. <)

The set of states of MSC M is M ’s state space

The state space of MSG G is the union of the state spaces of Mi for all
Mi ∈ L(G).
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Example

p1 p2

e e′

G:

MSG G is infinite state

A possible state is {e(1), e(2), e(3), . . .}
(where e(i) is the occurrence of e in the i-th iteration)

=⇒ system that realizes G requires unbounded communication channel
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Expressiveness of MSGs (2)

Fact 2:
The state space of an MSG may not be context-free.

p1 p2 p3
a

b

e1 e2

e3 e4

G:

States of G are of the form {ek1 el2 e
m
3 en4 | k ≥ l ≥ m ≥ n}

This language is not context-free
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Expressiveness of MSGs (3)

Fact 3:
The state space of an MSG is context-sensitive.

Let w,w′ ∈ E∗, and M an MSC with event set E. Then it holds:
(1) w e e′ w′ ∈ Lin(M) , l(e) = ?(q, p, b)

l(e′) = !(p, q, a)
implies w e′ e w′ ∈ Lin(M). not the reverse!

(2) w e e′ w′ ∈ Lin(M) , l(e) = !(p, q, a)
l(e′) = ?(q, p, b)

and

∑
m∈C

|w|!(p,q,m)

︸ ︷︷ ︸
number of sends
from p to q in w

>
∑
m∈C

|w|?(q,p,m)

︸ ︷︷ ︸
number of receipts
of q from p in w

implies w e′ e w′ ∈ Lin(M).
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Expressiveness of MSGs (4)

(3) w e e′ w′ ∈ Lin(M) , e ∈ Ep , e
′ ∈ Eq , p �= q

and e, e′ do not match like in (1) or (2) (cf. previous slide)

implies w e′ e w′ ∈ Lin(M).

Note:
Rule (2) is a context-sensitive rule of form X a b Y −→ X b a Y as its
applicability depends on the number of sends and receipts in the
context X.

Note:
The results so far do not imply that any context-sensitive language is
MSG-definable.
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Context sensitivity (informal argument)

Take MSG G and use vertex identities as vertex labels.

K(G) = set of “accepting” vertex sequences (this is regular)

Replace each vertex v by Lin(λ(v))
(interpret sequencing element wise)

Let the resulting set be K̃(G) (this is regular)

Close K̃(G) under the permutation rules (1), (2), (3)
(cf. previous two slides)

The resulting word language is context-sensitive.
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