

Theoretical Foundations of the UML

Lecture 3: Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

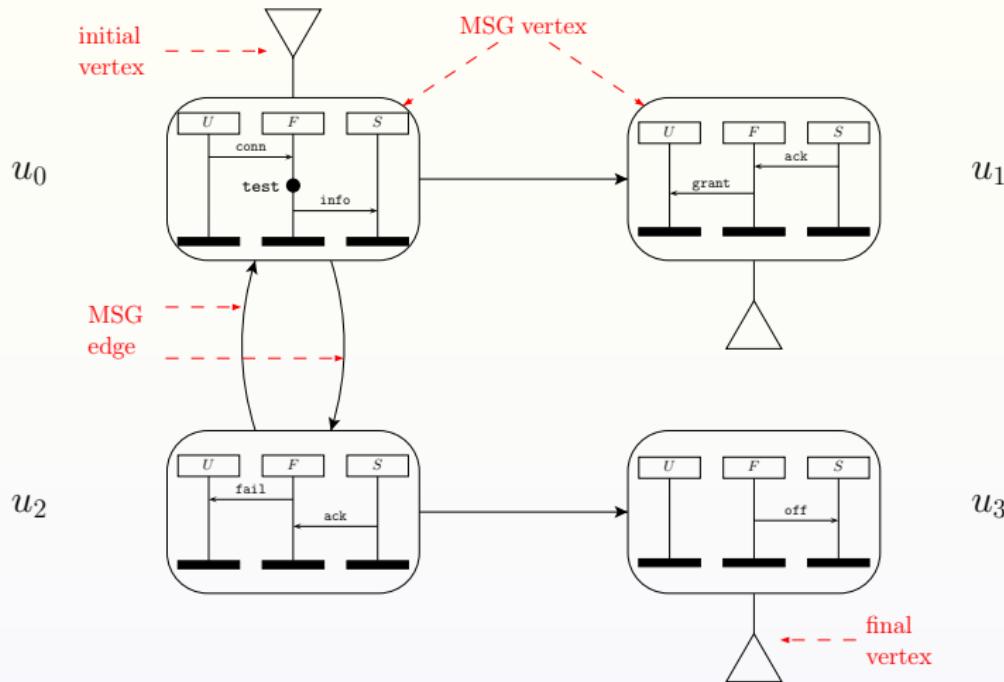
16. Oktober 2012

- MSC specifies a single scenario
- Typically: a set of scenarios
- + an ordering relation between them:
 - after scenario 1, scenario 2 occurs
 - after scenario 1, scenario 2 or 3 occurs
 - scenario 1 occurs repeatedly
- Need for: **sequential composition** (= concatenation),
alternative composition, and
iteration of MSCs

⇒ This yields **Message Sequence Graphs**

- Alternatives: ensembles of MSCs, high-level MSCs (**MSC'96**)

Message Sequence Graphs



$\underbrace{u_0 \ u_2 \ u_0 \ u_1}_{\text{path in graph}} \text{ yields } \underbrace{\lambda(u_0) \bullet \lambda(u_2) \bullet \lambda(u_0) \bullet \lambda(u_1)}_{\text{MSC of the path}}$

Let \mathbb{M} be the set of MSCs (up to isomorphism, i.e., event identities).

A **Message Sequence Graph** (MSG) $G = (V, \rightarrow, v_0, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with finite set V of vertices and $\rightarrow \subseteq V \times V$ a set of edges
- $v_0 \in V$ is the starting (or: initial) vertex
- $F \subseteq V$ is a set of final vertices
- $\lambda : V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$, an MSC $\lambda(v)$

Note:

- ❶ an MSG is an NFA without input alphabet where states are MSCs
- ❷ every MSC is an MSG

Concatenation of MSCs (1)

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i)$ $i \in \{1, 2\}$
be two MSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of M_1 and M_2 is the MSC
 $M_1 \bullet M_2 = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ with:

$$\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \quad E = E_1 \cup E_2 \quad \mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$$

(with $E_? = E_{1,?} \cup E_{2,?}$ etc.)

$$l(e) = \begin{cases} l_1(e) & \text{if } e \in E_1 \\ l_2(e) & \text{if } e \in E_2 \end{cases} \quad m(e) = \begin{cases} m_1(e) & \text{if } e \in E_1 \\ m_2(e) & \text{if } e \in E_2 \end{cases}$$

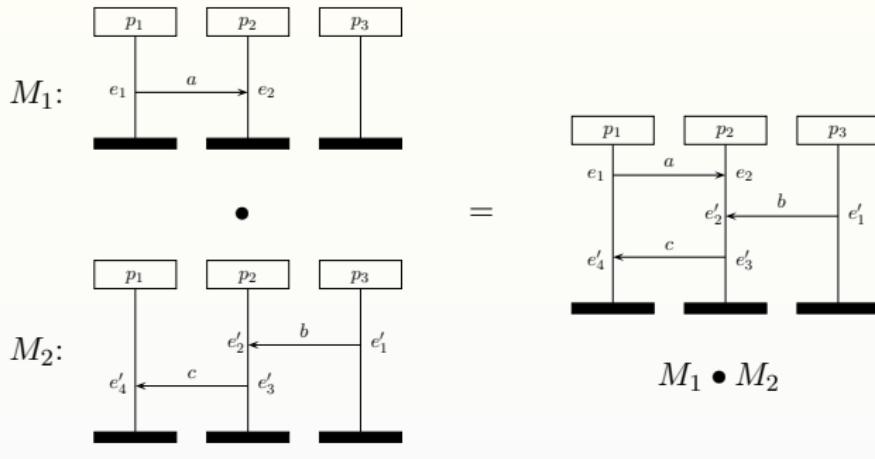
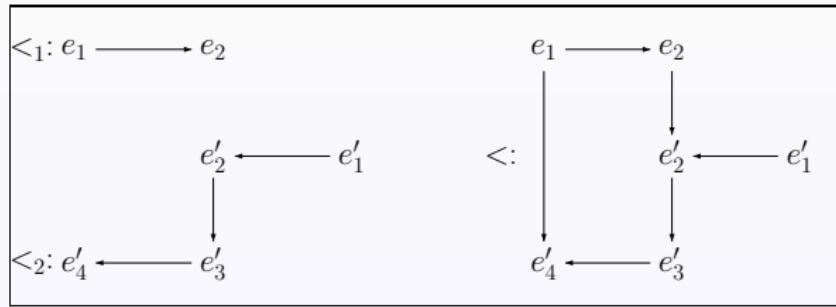
$$< = (<_1 \cup <_2 \cup \{(e, e') \mid \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\})^*$$

Concatenation of MSCs (2)

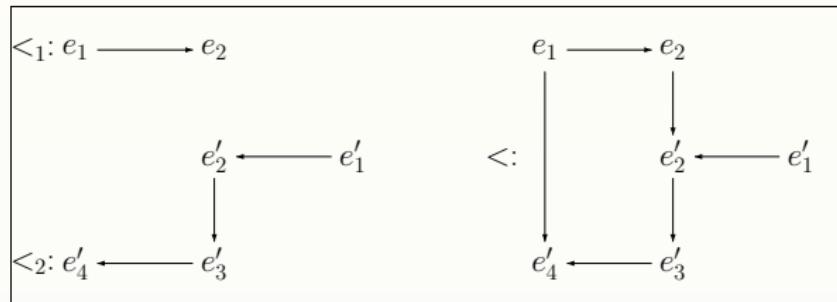
Note

- events are ordered process-wise:
events at p in MSC M_1 precede events at p in MSC M_2
- thus: some processes may proceed to M_2 before others!
- \neq : first complete M_1 then execute M_2

Example (1)



Example (2)



Note:

Events e_1 and e_1' are not ordered in $M_1 \bullet M_2$

Example:

$e_1 \quad e_2 \quad e_1' \quad e_2' \dots \in Lin(M_1 \bullet M_2)$

$e_1' \quad e_1 \quad e_2 \quad e_2' \dots \in Lin(M_1 \bullet M_2)$

- ① Concatenation is **associative**:

$$(M_1 \bullet M_2) \bullet M_3 = M_1 \bullet (M_2 \bullet M_3)$$

- ② Concatenation preserves the **FIFO** property:

M_1 is FIFO $\wedge M_2$ is FIFO implies $M_1 \bullet M_2$ is FIFO

- ③ Race-freeness, however, is not preserved

M_1 is race-free $\wedge M_2$ is race-free $\not\Rightarrow M_1 \bullet M_2$ is race-free

Preliminaries

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

Definition

A **path** π of G is a finite sequence

$\pi = u_0 \ u_1 \ \dots \ u_n$ with $u_i \in V$ ($0 \leq i \leq n$) and $u_i \rightarrow u_{i+1}$ ($0 \leq i < n$)

Definition

Path $\pi = u_0 \ \dots \ u_n$ is **accepting** if: $u_0 = v_0$ and $u_n \in F$.

Definition

The **MSC** of a path $\pi = u_0 \ \dots \ u_n$ is:

$$M(\pi) = \underbrace{\lambda(u_0)}_{\text{MSC of } u_0} \bullet \underbrace{\lambda(u_1)}_{\text{MSC of } u_1} \bullet \dots \bullet \underbrace{\lambda(u_n)}_{\text{MSC of } u_n}$$

Language of an MSG

Definition

The **(MSC) language** of MSG G is defined by:

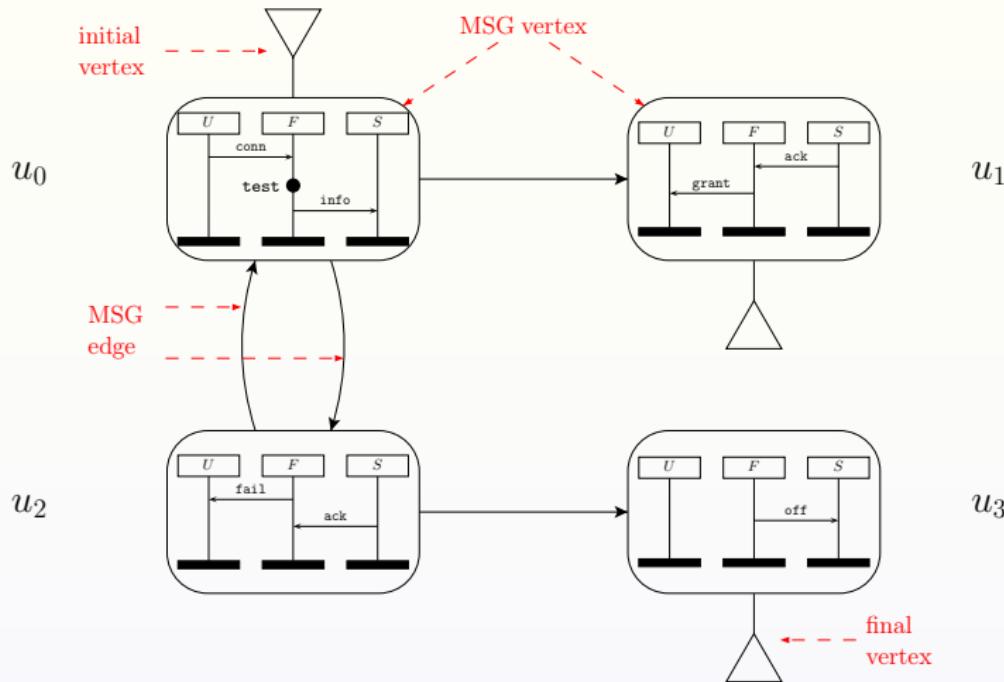
$$L(G) = \{M(\pi) \mid \pi \text{ is an accepting path of } G\}.$$

Definition

The **word language** of MSG G is $Lin(L(G))$ where

$$Lin(\{M_1, \dots, M_k\}) = \bigcup_{i=1}^k Lin(M_i).$$

Example



$u_0 \ u_2 \ u_0 \ u_1$ is accepting; $u_0 \ u_2 \ u_0 \ u_2$ is not accepting

Races in MSGs

Recall: MSC M has a race if $< \not\subseteq \ll^*$

or, equivalently $\text{Lin}(E, <) \not\subseteq \text{Lin}(E, \ll^*)$

or, equivalently $\text{Lin}(E, <) \subset \text{Lin}(E, \ll^*)$

Definition

MSG G has a **race** if $\text{Lin}(G, <) \subset \text{Lin}(E, \ll^*)$

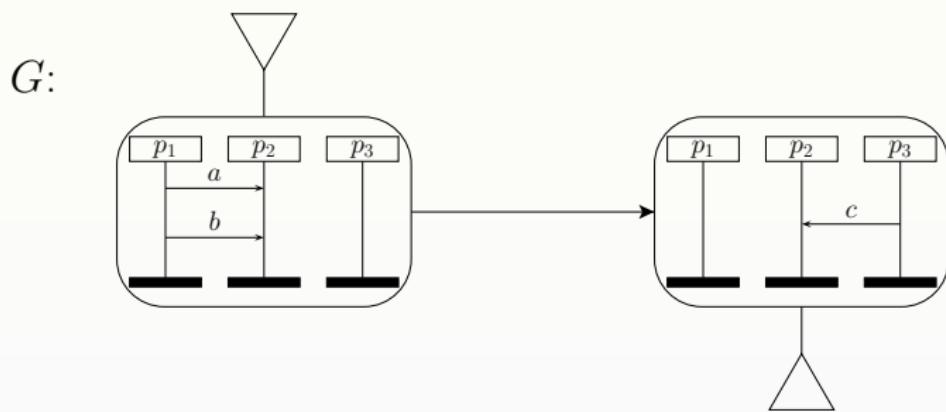
Theorem ([Muscholl & Peled '99])

*The decision problem “MSG G has a race” is **undecidable**.*

Proof.

by a reduction from Post’s Correspondence Problem (PCP). Not easy.
We will see a similar—though simpler—proof later on. □

Example



MSG G has a race.

Expressiveness of MSGs (1)

Fact 1:

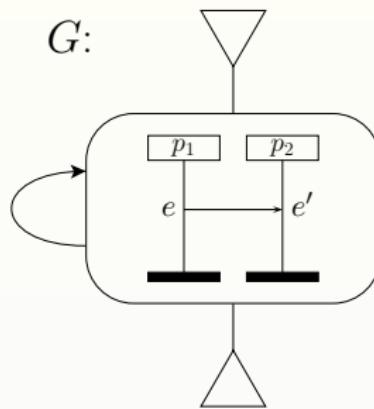
The state space of an MSG G may be infinite.

The **state** of an MSC with event set E is $E' \subseteq E$ such that $e \in E' \wedge e' < e \implies e' \in E'$ (i.e., E' is downward-closed wrt. $<$)

The set of states of MSC M is M 's **state space**

The state space of MSG G is the union of the state spaces of M_i for all $M_i \in L(G)$.

Example



MSG G is infinite state

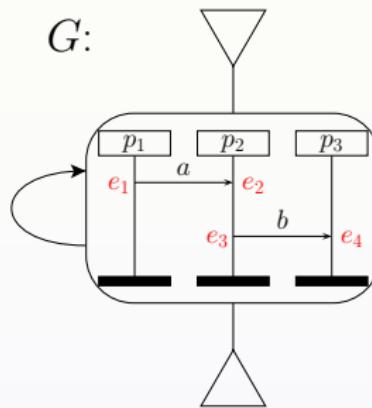
A possible state is $\{e^{(1)}, e^{(2)}, e^{(3)}, \dots\}$
(where $e^{(i)}$ is the occurrence of e in the i -th iteration)

⇒ system that realizes G requires **unbounded** communication channel

Expressiveness of MSGs (2)

Fact 2:

The state space of an MSG may not be context-free.



States of G are of the form $\{e_1^k e_2^l e_3^m e_4^n \mid k \geq l \geq m \geq n\}$

This language is not context-free

Expressiveness of MSGs (3)

Fact 3:

The state space of an MSG is context-sensitive.

Let $w, w' \in E^*$, and M an MSC with event set E . Then it holds:

$$(1) \quad w \textcolor{red}{e} \textcolor{blue}{e}' w' \in \text{Lin}(M), \quad l(\textcolor{red}{e}) = ?(q, p, b) \\ l(\textcolor{blue}{e}') = !(p, q, a)$$

implies $w \textcolor{blue}{e}' \textcolor{red}{e} w' \in \text{Lin}(M)$.

not the reverse!

$$(2) \quad w \textcolor{red}{e} \textcolor{blue}{e}' w' \in \text{Lin}(M), \quad l(\textcolor{red}{e}) = !(p, q, a) \quad \text{and} \\ l(\textcolor{blue}{e}') = ?(q, p, b)$$

$$\underbrace{\sum_{m \in \mathcal{C}} |w|_{!(p, q, m)}}_{\substack{\text{number of sends} \\ \text{from } p \text{ to } q \text{ in } w}} > \underbrace{\sum_{m \in \mathcal{C}} |w|_{?(q, p, m)}}_{\substack{\text{number of receipts} \\ \text{of } q \text{ from } p \text{ in } w}}$$

implies $w \textcolor{blue}{e}' \textcolor{red}{e} w' \in \text{Lin}(M)$.

Expressiveness of MSGs (4)

(3) $w \ e \ e' \ w' \in \text{Lin}(M)$, $e \in E_p$, $e' \in E_q$, $p \neq q$
and e, e' do not match like in (1) or (2) (cf. previous slide)

implies $w \ e' \ e \ w' \in \text{Lin}(M)$.

Note:

Rule (2) is a **context-sensitive** rule of form $X \ a \ b \ Y \longrightarrow X \ b \ a \ Y$ as its applicability depends on the number of sends and receipts in the context X .

Note:

The results so far do not imply that any context-sensitive language is MSG-definable.

Context sensitivity (informal argument)

- Take MSG G and use vertex identities as vertex labels.
- $K(G) =$ set of “accepting” vertex sequences (this is regular)
- Replace each vertex v by $Lin(\lambda(v))$
(interpret sequencing element wise)
- Let the resulting set be $\tilde{K}(G)$ (this is regular)
- Close $\tilde{K}(G)$ under the permutation rules (1), (2), (3)
(cf. previous two slides)

The resulting word language is **context-sensitive**.