

Theoretical Foundations of the UML

Lecture 4: Properties of Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

29. Oktober 2012

Outline

- 1 Message sequence graphs (MSGs)
- 2 Expressiveness and races
- 3 Intersection of MSGs
- 4 Non-local choice
- 5 A non-decomposable MSC

Overview

1 Message sequence graphs (MSGs)

2 Expressiveness and races

3 Intersection of MSGs

4 Non-local choice

5 A non-decomposable MSC

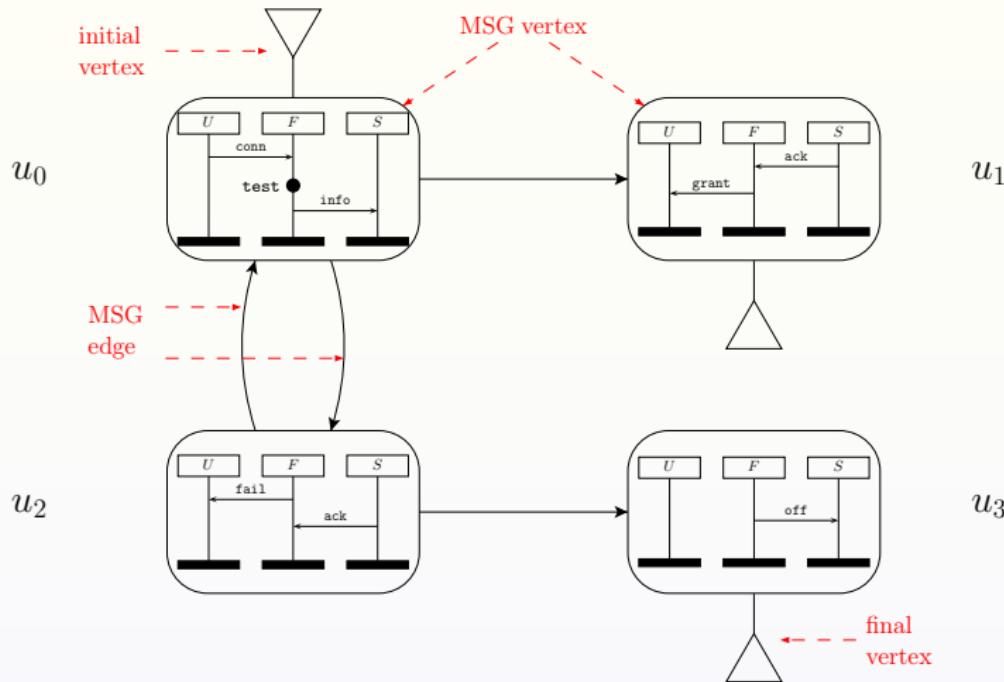
Message sequence graphs

Let \mathbb{M} be the set of MSCs (up to isomorphism, i.e., event identities).

A **Message Sequence Graph** (MSG) G is a tuple $G = (V, \rightarrow, v_0, F, \lambda)$ with:

- (V, \rightarrow) is a digraph with finite set V of vertices and $\rightarrow \subseteq V \times V$ a set of edges
- $v_0 \in V$ is the starting (or: initial) vertex
- $F \subseteq V$ is a set of final vertices
- $\lambda : V \rightarrow \mathbb{M}$ associates to each vertex $v \in V$, an MSC $\lambda(v)$

Message sequence graphs



$$u_0 \ u_2 \ u_0 \ u_1 = \lambda(u_0) \bullet \lambda(u_2) \bullet \lambda(u_0) \bullet \lambda(u_1)$$

Concatenation of MSCs (1)

Let $M_i = (\mathcal{P}_i, E_i, \mathcal{C}_i, l_i, m_i, <_i)$ $i \in \{1, 2\}$
be two MSCs with $E_1 \cap E_2 = \emptyset$

The **concatenation** of M_1 and M_2 is the MSC
 $M_1 \bullet M_2 = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ with:

$$\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \quad E = E_1 \cup E_2 \quad \mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$$

(with $E_? = E_{1,?} \cup E_{2,?}$ etc.)

$$l(e) = \begin{cases} l_1(e) & \text{if } e \in E_1 \\ l_2(e) & \text{if } e \in E_2 \end{cases} \quad m(e) = \begin{cases} m_1(e) & \text{if } e \in E_1 \\ m_2(e) & \text{if } e \in E_2 \end{cases}$$

$$< = (<_1 \cup <_2 \cup \{(e, e') \mid \exists p \in \mathcal{P}. e \in E_1 \cap E_p, e' \in E_2 \cap E_p\})^*$$

MSC language of an MSG

Let $G = (V, \rightarrow, v_0, F, \lambda)$ be an MSG.

Definition

Path $\pi = u_0 \dots u_n$ is **accepting** if: $u_0 = v_0$ and $u_n \in F$.

Definition

The **MSC of a path** $\pi = u_0 \dots u_n$ is:

$$M(\pi) = \underbrace{\lambda(u_0)}_{\text{MSC of } u_0} \bullet \underbrace{\lambda(u_1)}_{\text{MSC of } u_1} \bullet \dots \bullet \underbrace{\lambda(u_n)}_{\text{MSC of } u_n} = \prod_{i=0}^n \lambda(u_i)$$

Definition

The **(MSC) language** of MSG G is defined by:

$$L(G) = \{M(\pi) \mid \pi \text{ is an accepting path of } G\}.$$

Overview

1 Message sequence graphs (MSGs)

2 Expressiveness and races

3 Intersection of MSGs

4 Non-local choice

5 A non-decomposable MSC

Expressiveness

The state space of an MSG is context-sensitive.

Proof: a proof sketch has been provided in the previous lecture.

Races

The decision problem “*does an MSG have a race*” is undecidable.

Proof: reduction from Post’s Correspondence Problem (PCP).

Overview

1 Message sequence graphs (MSGs)

2 Expressiveness and races

3 Intersection of MSGs

4 Non-local choice

5 A non-decomposable MSC

Theorem: undecidability of empty intersection

The decision problem:

for MSGs G_1 and G_2 , do we have $L(G_1) \cap L(G_2) = \emptyset$?

is **undecidable**.

Proof: Reduction from Post's Correspondence Problem (PCP)

... black board ...

Overview

1 Message sequence graphs (MSGs)

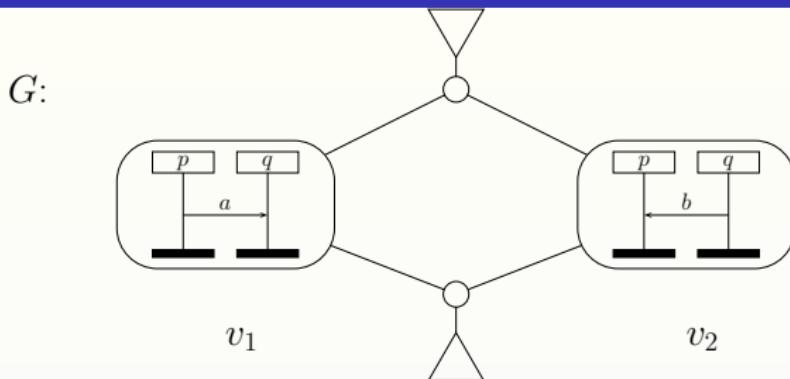
2 Expressiveness and races

3 Intersection of MSGs

4 Non-local choice

5 A non-decomposable MSC

Non-local choice



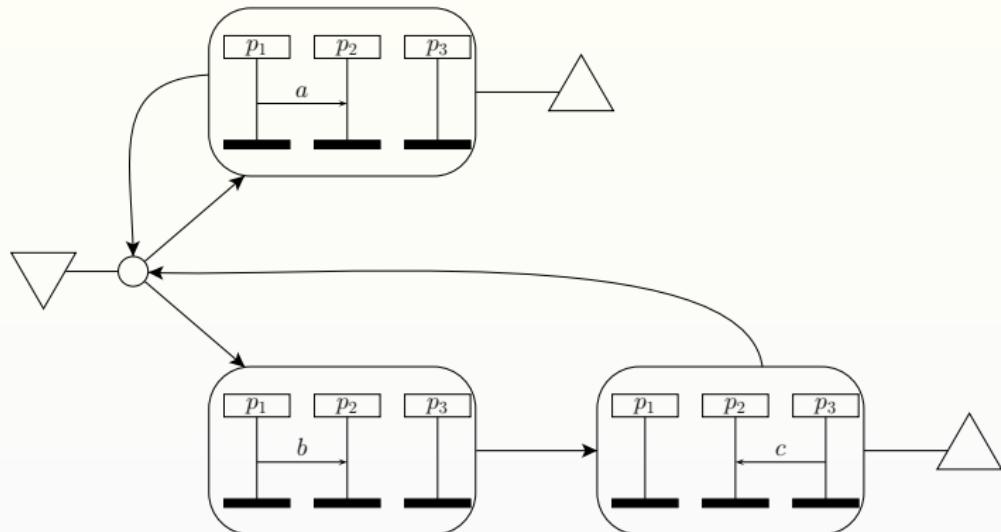
Inconsistency if process p behaves according to vertex v_1
and process q behaves according to vertex v_2

⇒ possible distributed realization may yield a deadlock

Problem:

Subsequent behavior is determined by distinct processes. When several processes independently decide to initiate behavior, they might start executing different successor MSCs (= vertices). This is called a **non-local choice**.

A (hidden) non local-choice MSG



Problem:

Inconsistency if p_1 decides to send a and p_3 decides to send c .
Which branch to take in the initial vertex?

Definition (Minimal event)

Let (E, \preceq) be a poset. Event $e \in E$ is a **minimal** event wrt. \preceq if $\neg(\exists e' \neq e. e' \preceq e)$.

Intuition: there is no event that has to happen before e happens.
Or: the occurrence of e does not depend on any other event.

Definition (Partial order of a path)

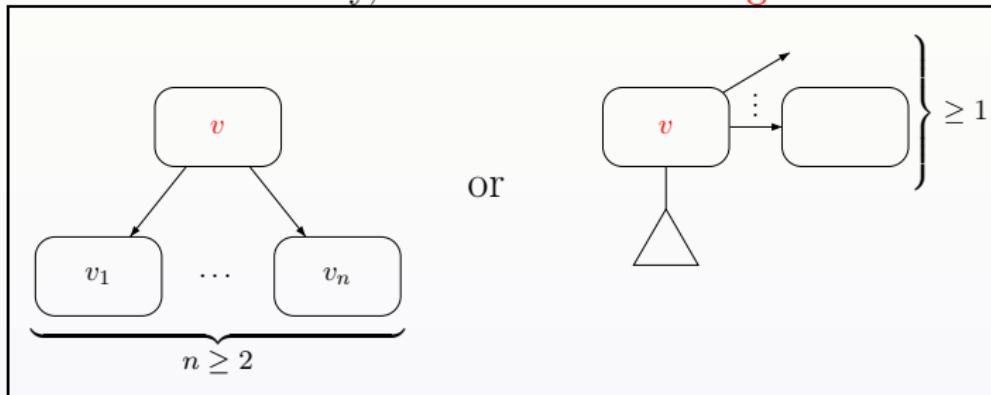
For path $\pi = v_1 \dots v_n$ in MSG G , let $<_{M(\pi)}$ be the partial order of the MSC $M(\pi) = \lambda(v_1) \bullet \dots \bullet \lambda(v_n)$.

For path π let $\min(\pi)$ be the **set of minimal events** along π wrt. $<_{M(\pi)}$.

Branching vertices

A branching vertex either has at least two successors, or is an initial vertex with at least one successor.

Pictorially, vertex v is **branching** if:



Definition (Local choice)

Let MSG $G = (V, \rightarrow, v_0, F, \lambda)$. MSG G is called **local choice** if for every branching vertex $v \in V$ it holds:

$$\exists \text{process } p. (\forall \pi \in \text{Paths}(v). |\min(\pi)| = 1 \wedge \min(\pi) \subseteq E_p)$$

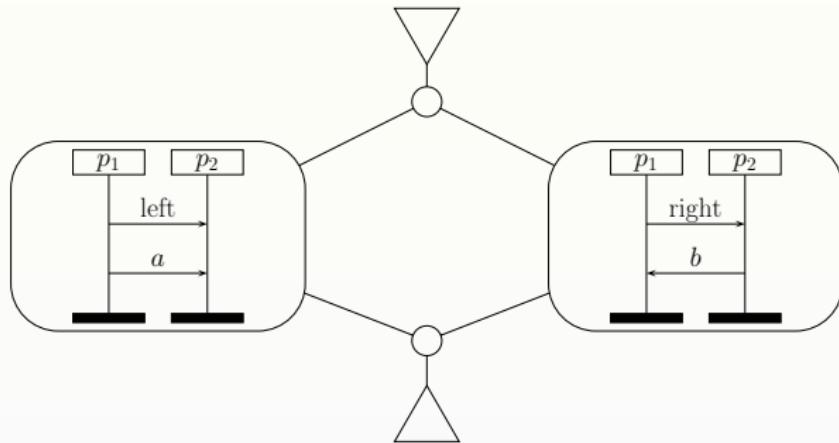
Intuition:

Along every path from a branching vertex in the MSG, there is a single process that initiates behavior. This process decides how to proceed. In a (distributed) implementation, it can inform the other processes how to proceed.

Local choice or not?

Checking whether MSG G is local choice can be done with a worst-case time complexity which is polynomial in the size of G . (Exercise.)

G:



How to resolve a non-local choice?

Amend your MSG and add control messages (cf. above example)

Overview

1 Message sequence graphs (MSGs)

2 Expressiveness and races

3 Intersection of MSGs

4 Non-local choice

5 A non-decomposable MSC

This MSC **cannot** be decomposed as

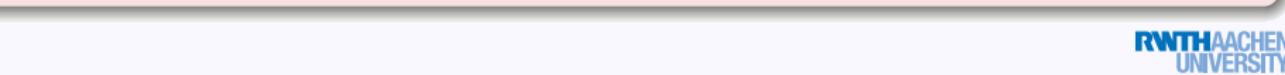
$$M_1 \bullet M_2 \bullet \dots \bullet M_n \quad \text{for } n > 1$$

This can be seen as follows:

- e_1 and $e_2 = m(e_1)$ must **both** belong to M_1
- $e_3 < e_2$ and $e_1 < e_4$ thus
 $e_3, e_4 \notin M_j$, for $j < 1$ or $j > 1$
 $\implies e_3, e_4$ must belong to M_1
- by similar reasoning: $e_5, e_6 \in M_1$ etc.

Problem:

Compulsory matching between send and receive in **same** MSG vertex
(i.e., send e and receive $m(e)$ must belong to the same MSC).



Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and $m(e)$ belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

$M = (\mathcal{P}, E, \mathcal{C}, l, m, <)$ is a **compositional MSC** (CMSC, for short) where $\mathcal{P}, E, \mathcal{C}$ and l are defined as before, and

- $m : E_! \rightarrow E_?$ is a **partial, injective** function such that (as before):

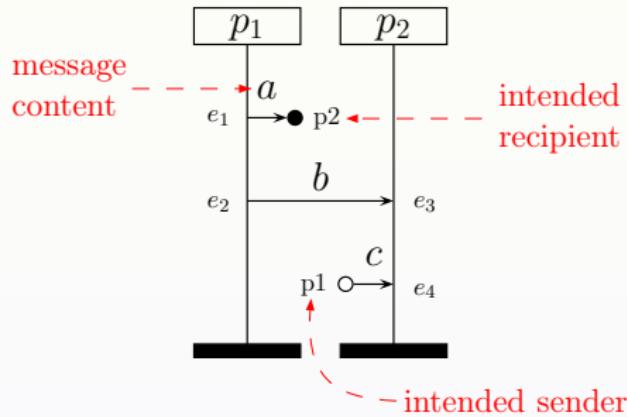
$$m(e) = e' \wedge l(e) = !(p, q, a) \implies l(e') = ?(q, p, a)$$

- $< = (\bigcup_{p \in \mathcal{P}} <_p \quad \cup \quad \{(e, m(e)) \mid e \in \underbrace{\text{dom}(m)}_{\substack{\text{domain of } m \\ \text{"}m(e)\text{ is defined"}}}\})^*$

Note:

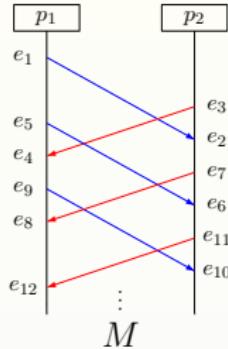
An MSC is a CMSC where m is total and bijective.

CMSC example



$$\begin{aligned}m(e_2) &= e_3 \\e_1 &\notin \text{dom}(m) \\e_4 &\notin \text{rng}(m)\end{aligned}$$

Yannakakis' example as compositional MSG



This MSC cannot be modeled for $n > 1$ by:

$$M = M_1 \bullet M_2 \bullet \dots \bullet M_n \quad \text{with} \quad M_i \in \mathbb{M}$$

But it can be modeled as compositional MSG:

