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Message sequence graphs

Let M be the set of MSCs (up to isomorphism, i.e., event identities).

A Message Sequence Graph (MSG) G is a tuple G = (V,→, v0, F, λ)
with:

(V,→) is a digraph with finite set V of vertices and →⊆ V × V a
set of edges
v0 ∈ V is the starting (or: initial) vertex
F ⊆ V is a set of final vertices
λ : V → M associates to each vertex v ∈ V , an MSC λ(v)
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Message sequence graphs

U F S

conn

info

U F S

fail

ack

U F S

ack

grant

U F S

off

test

initial
vertex

MSG
edge

final
vertex

MSG vertex

u0 u1

u2 u3

u0 u2 u0 u1 = λ(u0) • λ(u2) • λ(u0) • λ(u1)

Joost-Pieter Katoen Theoretical Foundations of the UML 5/23



Concatenation of MSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi, <i) i ∈ {1, 2}
be two MSCs with E1 ∩E2 = ∅

The concatenation of M1 and M2 is the MSC
M1 •M2 = (P, E, C, l,m,<) with:

P = P1 ∪ P2 E = E1 ∪ E2 C = C1 ∪ C2
(with E? = E1,? ∪ E2,? etc.)

l(e) =

{
l1(e) if e ∈ E1

l2(e) if e ∈ E2
m(e) =

{
m1(e) if e ∈ E1

m2(e) if e ∈ E2

< =
(
<1 ∪ <2 ∪ {(e, e′) | ∃p ∈ P. e ∈ E1 ∩Ep , e

′ ∈ E2 ∩Ep}
)∗
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MSC language of an MSG

Let G = (V,→, v0, F, λ) be an MSG.

Definition
Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition
The MSC of a path π = u0 . . . un is:

M(π) = λ(u0)︸ ︷︷ ︸
MSC of u0

• λ(u1)︸ ︷︷ ︸
MSC of u1

• . . . • λ(un)︸ ︷︷ ︸
MSC of un

=

n∏
i=0

λ(ui)

Definition
The (MSC) language of MSG G is defined by:

L(G) = {M(π) | π is an accepting path of G}.
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Expressiveness and races

Expressiveness
The state space of an MSG is context-sensitive.

Proof: a proof sketch has been provided in the previous lecture.

Races
The decision problem “does an MSG have a race” is undecidable.

Proof: reduction from Post’s Correspondence Problem (PCP).
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Intersection of MSGs

Theorem: undecidability of empty intersection
The decision problem:

for MSGs G1 and G2, do we have L(G1) ∩ L(G2) = ∅?

is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .
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Non-local choice

p q

a

p q

b

G:

v1 v2

Inconsistency if process p behaves according to vertex v1
and process q behaves according to vertex v2

=⇒ possible distributed realization may yield a deadlock

Problem:
Subsequent behavior is determined by distinct processes. When several
processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.
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A (hidden) non local-choice MSG

p1 p2 p3

a

p1 p2 p3

b
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Problem:
Inconsistency if p1 decides to send a and p3 decides to send c.
Which branch to take in the initial vertex?
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Preliminaries

Definition (Minimal event)
Let (E,�) be a poset. Event e ∈ E is a minimal event wrt. � if
¬(∃e′ 	= e. e′ � e).

Intuition: there is no event that has to happen before e happens.
Or: the occurrence of e does not depend on any other event.

Definition (Partial order of a path)
For path π = v1 . . . vn in MSG G, let <M(π) be the partial order of the
MSC M(π) = λ(v1) • . . . • λ(vn).
For path π let min(π) be the set of minimal events along π wrt. <M(π).
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Branching vertices

A branching vertex either has at least two successors, or is an initial
vertex with at least one successor.

Pictorially, vertex v is branching if:

v

v1 vn

v

. . .

...

or

︸ ︷︷ ︸
n ≥ 2




≥ 1
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Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F, λ). MSG G is called local choice if for every
branching vertex v ∈ V it holds:

∃process p. (∀π ∈ Paths(v). |min(π)| = 1 ∧ min(π) ⊆ Ep)

Intuition:
Along every path from a branching vertex in the MSG, there is a single process
that initiates behavior. This process decides how to proceed. In a (distributed)
implementation, it can inform the other processes how to proceed.

Local choice or not?
Checking whether MSG G is local choice can be done with a worst-case time
complexity which is polynomial in the size of G. (Exercise.)
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Local choice

p1 p2
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G:

How to resolve a non-local choice?
Amend your MSG and add control messages (cf. above example)
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An MSC that cannot be decomposed [Yannakakis 1999]

p1 p2

e1

e5

e4

e9

e8

e12

e3

e2

e7

e6

e11

e10
...

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:
e1 and e2 = m(e1) must both belong to M1

e3 < e2 and e1 < e4 thus
e3, e4 /∈ Mj , for j < 1 or j > 1
=⇒ e3, e4 must belong to M1

by similar reasoning: e5, e6 ∈ M1 etc.

Problem:
Compulsory matching between send and receive in same MSG vertex
(i.e., send e and receive m(e) must belong to the same MSC).
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Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,<) is a compositional MSC (CMSC, for short) where
P, E, C and l are defined as before, and

m : E! → E? is a partial, injective function such that (as before):

m(e) = e′ ∧ l(e) = !(p, q, a) =⇒ l(e′) = ?(q, p, a)

< =
(⋃

p∈P <p ∪ {(e,m(e)) | e ∈ dom(m)︸ ︷︷ ︸
domain of m︸ ︷︷ ︸

“m(e) is defined”

})∗

Note:
An MSC is a CMSC where m is total and bijective.
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CMSC example
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m(e2) = e3
e1 /∈ dom(m)
e4 /∈ rng(m)
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Yannakakis’ example as compositional MSG
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This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi ∈ M

But it can be modeled as compositional MSG:
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