
Theoretical Foundations of the UML
Lecture 5: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/uml09100/

16. November 2012

Joost-Pieter Katoen Theoretical Foundations of the UML 1/29

Outline

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 2/29

Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 3/29

An MSC that cannot be decomposed [Yannakakis 1999]

p1 p2

e1

e5

e4

e9

e8

e12

e3

e2

e7

e6

e11

e10
...

This MSC cannot be decomposed as

M1 •M2 • . . . •Mn for n > 1

This can be seen as follows:
e1 and e2 = m(e1) must both belong to M1

e3 < e2 and e1 < e4 thus
e3, e4 /∈ Mj , for j < 1 or j > 1
=⇒ e3, e4 must belong to M1

by similar reasoning: e5, e6 ∈ M1 etc.

Problem:
Compulsory matching between send and receive in same MSG vertex
(i.e., send e and receive m(e) must belong to the same MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML 4/29

Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 5/29

Compositional MSCs [Gunter, Muscholl, Peled 2001]

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)
M = (P, E, C, l,m,<) is a compositional MSC (CMSC, for short) where
P, E, C and l are defined as before, and

m : E! → E? is a partial, injective function such that (as before):

m(e) = e′ ∧ l(e) = !(p, q, a) =⇒ l(e′) = ?(q, p, a)

< =
(⋃

p∈P <p ∪ {(e,m(e)) | e ∈ dom(m)︸ ︷︷ ︸
domain of m︸ ︷︷ ︸

“m(e) is defined”

})∗

Note:
An MSC is a CMSC where m is total and bijective.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/29

CMSC example

p1 p2

a
p2

b

c
p1

e1

e2 e3

e4

message
content intended

recipient

intended sender

m(e2) = e3
e1 /∈ dom(m)
e4 /∈ rng(m)

Joost-Pieter Katoen Theoretical Foundations of the UML 7/29

Concatenation of CMSCs (1)

Let Mi = (Pi, Ei, Ci, li,mi, <i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 •M2 = (P1 ∪ P2, E, C1 ∪ C2, l,m,<) with:

E = E1 ∪ E2

l(e) = l1(e) if e ∈ E1 , l2(e) otherwise
m(e) = E! → E? satisfies:

1 m extends m1 and m2, i.e., e ∈ dom(mi) implies m(e) = mi(e)
2 m matches unmatched send events in M1 with unmatched

receive events in M2 according to order on process
(matching from top to bottom)
the k-th unmatched send in M1 is matched with
the k-th unmatched receive in M2 (of the same “type”)

3 M1 •M2 is FIFO (when restricted to matched events)

Joost-Pieter Katoen Theoretical Foundations of the UML 8/29

Concatenation of CMSCs (2)

Let Mi = (Pi, Ei, Ci, li,mi, <i) ∈ CM i ∈ {1, 2}
be CMSCs with E1 ∩ E2 = ∅

The concatenation of CMSCs M1 and M2 is the CMSC
M1 •M2 = (P1 ∪ P2, E1 ∪ E2, C1 ∪ C2, l,m,<) with:

< is the reflexive and transitive closure of:(⋃
p∈P <p,1 ∪ <p,2

)
∪ {(e, e′) | e ∈ E1 ∩ Ep , e

′ ∈ E2 ∩ Ep}
∪ {(e,m(e) | e ∈ dom(m)}

Joost-Pieter Katoen Theoretical Foundations of the UML 9/29

Examples
p1 p2

a
p2

c
p2

e1

e2

•

p1 p2

b
p1

a
p1

e3

e4

=

p1 p2

b
p1

a

c
p2

e1

e2

e3

e4

p1 p2

a
p2

b

c
p2

e1

e2 e3

e4

•

p1 p2

c
p1

a
p1

e5

e6

=

p1 p2

a
b

c

e1

e2

e4

e3

e5

e6

p1 p2

a
p2

b
p2

e1

e2
•

p1 p2

b
p1

a
p1

e3

e4

=

p1 p2

b a

e1

e2

e3

e4

M1 M2

M1 M2 non-FIFO!

M1 M2 cyclic!

Joost-Pieter Katoen Theoretical Foundations of the UML 10/29

Associativity
p1 p2

a
p2

p1 p2

a
p1

a
p1

M M ′

(M •M) •M ′: p1 p2

a

a

M • (M •M ′): p1 p2

a

a =⇒ this is non-FIFO
(and thus undefined)

Note:
Concatenation of CMSCs is not associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/29

Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 12/29

Compositional MSG

Let CM be the set of all CMSCs.

Definition (Compositional MSG)
A compositional MSG (CMSG) G = (V,→, v0, F, λ) with λ : V → CM,
where V,→, v0, and F as before.

The difference with an MSG is that the vertices in a CMSG are labeled
with compositional MSCs (rather than “real” MSCs).

Joost-Pieter Katoen Theoretical Foundations of the UML 13/29

Paths

Let G = (V,→, v0, F, λ) be a CMSG.

Definition (Path in a CMSG)
A path π of G is a finite sequence

π = u0 u1 . . . un with ui ∈ V (0 ≤ i ≤ n) and ui → ui+1 (0 ≤ i < n)

Definition (Accepting path of a CMSG)
Path π = u0 . . . un is accepting if: u0 = v0 and un ∈ F .

Definition (CMSC of a path)
The CMSC of a path π = u0 . . . un is:

M(π) = (. . . (λ(u0) • λ(u1)) • λ(u2) . . .) • λ(un)

where CMSC concatenation is left associative.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/29

The MSC language of a CMSG

Definition (Language of a CMSG)
The (MSC) language of CMSG G is defined by:

L(G) = { M(π) ∈ M︸ ︷︷ ︸
only “real” MSCs

| π is an accepting path of G}.

Joost-Pieter Katoen Theoretical Foundations of the UML 15/29

Yannakakis’ example as compositional MSG

p1 p2

e1

e5

e4

e9

e8

e12

e3

e2

e7

e6

e11

e10
...

M

This MSC cannot be modeled for n > 1 by:

M = M1 •M2 • . . . •Mn with Mi ∈ M

But it can be modeled as compositional MSG:

p1 p2

a
p2

p1 p2
a

p2

b a
p1

p1 p2

a
p1

v0 v1 v2

Joost-Pieter Katoen Theoretical Foundations of the UML 16/29

Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 17/29

Safe paths and CMSGs

Definition (Safe path)
Path π of CMSG G is safe whenever M(π) ∈ M.

Definition (Safe CMSG)
CMSG G is safe if for every accepting path π of G, M(π) is an MSC.

So:
CMSG G is safe if on any of its accepting paths there are no unmatched
sends and receipts, i.e., if any of its accepting runs is indeed an MSC.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/29

Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 19/29

Existence of a safe accepting path

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

. . . black board . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 20/29

Overview

1 A non-decomposable MSC

2 Compositional Message Sequence Charts

3 Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs

5 Existence of Safe Paths

6 Universality of Safe Paths

Joost-Pieter Katoen Theoretical Foundations of the UML 21/29

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path
The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths
The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

Proof: Polynomial reduction to reachability problem in pushdown
automata

. . . see details on the next slides . . .

Joost-Pieter Katoen Theoretical Foundations of the UML 22/29

Pushdown automata

Definition (Pushdown automaton)
A pushdown automaton (PDA, for short) K = (Q, q0,Γ,Σ,∆) with

Q, a finite set of control states
q0 ∈ Q, the initial state
Γ, a finite stack alphabet
Σ, a finite input alphabet
∆ ⊆ Q× Σ× Γ×Q× Γ∗, the transition relation.

Example
(q, a, γ, q′, pop) ∈ ∆ means: in state q, on reading input symbol a and
top of stack is symbol γ, change to q′ and pop γ.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/29

Reachability in pushdown automata

Definition
A configuration c is a triple (state q, stack content Z, rest input w).

Definition
Given a transition in ∆, a (direct) successor configuration c′ of c is
obtained: c 	 c′.

Reachability problem
For configuration c, and initial configuration c0: c0 	∗ c?

Theorem: [Esparza et al. 2000]
The reachability problem for PDA is decidable in PTIME.

Joost-Pieter Katoen Theoretical Foundations of the UML 24/29

Checking whether a CMSG is safe is decidable

Consider any ordered pair (pi, pj) of processes in CMSG G

Proof idea: construct a PDA Ki,j = (Q, q0,Γ,Σ,∆) such that

CMSG G is not safe wrt. (pi, pj) iff PDA Ki,j accepts

For accepting path u0 . . . uk in G, feed Ki,j with

ρ0 . . . ρk where ρi ∈ Lin(λ(ui))

Possible violations that Ki,j may encounter:
1 nr. of unmatched !(pi, pj, ·) > nr. of unmatched ?(pj , pi, ·)
2 type of k-th unmatched send
= type of k-th unmatched receive
3 non-FIFO communication

Joost-Pieter Katoen Theoretical Foundations of the UML 25/29

The nondeterministic PDA Ki,j

Let {a1, . . . , ak} be the message contents in CMSG G for (pi, pj).

Nondeterministic PDA Ki,j = (Q, q0,Γ,Σ,∆) where:

Control states Q = {q0, qa1 , . . . , qak , qerr , qF }

Stack alphabet Γ = {1,⊥}
1 counts nr. of unmatched !(pi, pj , am), and ⊥ is stack bottom

Input alphabet Σ =




unmatched action !(pi, pj , am)
unmatched action ?(pj , pi, am)
matched actions !?(pi, pj , am), !?(pj , pi, am)

Transition function ∆ is described on next slide

Joost-Pieter Katoen Theoretical Foundations of the UML 26/29

Safeness of CMSGs (2)

Initial configuration is (q0,⊥, w)
w is linearization of actions at pi and pj on an accepting path of G

On reading !(pi, pj , am) in q0, push 1 on stack
nondeterministically move to state qam or stay in q0

On reading ?(pj, pi, am) in q0, proceed as follows:
if 1 is on stack, pop it
otherwise, i.e., if stack is empty, accept (i.e., move to qF)

On reading matched send !?(pi, pj, ak) in q0
stack empty? ignore input; otherwise, accept

Ignore the input in state q0,
on reading matched send events !?(pj , pi, ak), or
on reading unmatched sends or receipts not related to pi and pj

Input empty? Accept, if stack non-empty; otherwise reject
Joost-Pieter Katoen Theoretical Foundations of the UML 27/29

Safeness of CMSGs (3)

The behaviour in state qam for 0 < m � k:

Ignore all actions except ?(pj, pi, a�) for all 0 < � � k

On reading ?(pj, pi, a�) (for some 0 < � � k) in state qam do:
if 1 is on top of stack, pop it

If stack is empty:
if last receive differs from am, accept
otherwise reject, while ignoring the rest (if any) of the input

Joost-Pieter Katoen Theoretical Foundations of the UML 28/29

Safeness of CMSGs (4)

It follows: PDA Ki,j accepts iff CMSG G is not safe wrt. (pi, pj)
=⇒ CMSG G is not safe wrt. (pi, pj) iff configuration (qF , ·, ·) is

reachable.
=⇒ reachability of a configuration in a PDA is in PTIME, hence

checking safeness wrt. (pi, pj) is in PTIME.

Time complexity
The time complexity of checking whether CMSG G is safe is in
O(k2·N2·M ·|E|2) where k = |P|, N = |V |, and M = |C|.

Proof.
Checking reachability in PDA Ki,j is in O(M ·|E|2). The number of
PDAs is k2, as we consider ordered pairs. The number of paths that
need to be considered in the CMSG is in O(N2), as it suffices to
consider a single traversal for each loop in the CMSG.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/29

