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© A non-decomposable MSC

© Compositional Message Sequence Charts

© Compositional Message Sequence Graphs

@ Safe Compositional Message Sequence Graphs
© Existence of Safe Paths

© Universality of Safe Paths
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Overview

© A non-decomposable MSC
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An MSC that cannot be decomposed

This MSC cannot be decomposed as

[P ] [Pz ]
el MieMoye...e M, forn>1
(Z
es ez This can be seen as follows:
Z er @ ¢; and ey = m(ey) must both belong to M;
es :161 ® e3 < ey and e < e4 thus
o es,ea € My, forj<lorj>1
2 — e3, e4 must belong to M;

@ by similar reasoning: es, eq € M etc.

Problem:

Compulsory matching between send and receive in same MSG vertex
(i.e., send e and receive m(e) must belong to the same MSC).

Joost-Pieter Katoen Theoretical Foundations of the UML



Overview

© Compositional Message Sequence Charts
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Compositional MSCs

Solution: drop restriction that e and m(e) belong to the same MSC
(= allow for incomplete message transfer)

Definition (Compositional MSC)

M = (P,E,C,l,m,<) is a compositional MSC (CMSC, for short) where
P, E,C and [ are defined as before, and

@ m : Ey — E» is a partial, injective function such that (as before):

m(e) =€ Al(e) = (p,q,a) = () = ?(q,p,a)

0 < = (Upe’P <p U {(e,m(e)) | e € dom(m) })"

domain of m

“m(e) is defined”

V.

An MSC is a CMSC where m is total and bijective.
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CMSC example

h b2

message
content - « P2 |- — intended
recipient m(e2) —e3
b
“ e e1 ¢ dom(m)
c eq & rng(m)
pl O—> ¢4

I |
AN

—

—intended sender

Joost-Pieter Katoen Theoretical Foundations of the



Concatenation of CMSCs (1)

Let M; = (Pi,E,-,Ci,l,-,mi, <7;) e CM 1€ {1,2}
be CMSCs with 1 N Ey = @

The concatenation of CMSCs M; and My is the CMSC
M; e My = (Pl UPy, E, C1UCo I, m, <) with:
o F=F UE,
o l(e) =l1(e) if e € Ey , l3(e) otherwise
o m(e) = Ey — E» satisfies:
© m extends m; and ma, i.e., e € dom(m;) implies m(e) = m;(e)
@ m matches unmatched send events in M; with unmatched
receive events in My according to order on process
(matching from top to bottom)
the k-th unmatched send in M; is matched with

the k-th unmatched receive in My (of the same “type”)

© M, e M, is FIFO (when restricted to matched events)
RWTH
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Concatenation of CMSCs (2)

Let Mz = (Pi,E,-,Ci,li,mi, <7;) e CM 1€ {1,2}
be CMSCs with 1 N Ey = @

The concatenation of CMSCs M7 and My is the CMSC
M; e My = (Pl U Py, E1 U FEy,C1UCy, I, m, <) with:

@ < is the reflexive and transitive closure of:

(UpE'P <p1 U <p,2) U {(e,€)|e€ E1NE,, ¢ € ExNE,}
U {(e,m(e) | e € dom(m)}
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Examples

P1 P2 P1 P2 P1 P2

a pl o—| €3

e e plo— e
[ ) = e a &
o c a
€2 | ep2 plo—] €4 c
€y [—e p2

I I I

P b2 P b2 P b2
a

el [Sep2 @ €1 \@
plo—] e5 o b c
b [ =] 2 3

€ €3 a c
c pl o—| €6 @3 €
€4 —>op2 e
— — — — — —

My Moy non-FIFO!




Associativity

L] [P L] [P
M M’
(M e M) e M 7] [
M e (M e M'): (7] [P
< . this is non-FIFO
>< (and thus undefined)

Concatenation of CMSCs is not associative.
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Overview

© Compositional Message Sequence Graphs
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Compositional MSG

Let CM be the set of all CMSCs.

Definition (Compositional MSG)

A compositional MSG (CMSG) G = (V,—, v, F,A) with A : V — CM,
where V, —,v9, and F' as before.

The difference with an MSG is that the vertices in a CMSG are labeled
with compositional MSCs (rather than “real” MSCs). J
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Let G = (V,—,vg, F, \) be a CMSG.
Definition (Path in a CMSG)

A path 7w of G is a finite sequence

T=ug U ... Uy withu; €V (0<i<n)and u; = uj41 (0<i<n)

Definition (Accepting path of a CMSG)

Path m = ug ... u, is accepting if: ug = vy and u,, € F.

Definition (CMSC of a path)

The CMSC of a path m = ug ... u, is:

M(m) = (... (Mug) @ AM(uy)) @ A(ug)...) @ AM(uy,)
where CMSC concatenation is left associative.
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The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

L(G)={ M(m)eM | is an accepting path of G}.
—_——

only “real” MSCs
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Yannakakis' example as compositional MSG

(7] (7]
o This MSC cannot be modeled for n > 1 by:
. . M =M eMye.. oM, with M eM

[
€8

But it can be modeled as compositional MSG:
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Overview

@ Safe Compositional Message Sequence Graphs
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Safe paths and CMSGs

Definition (Safe path)
Path 7 of CMSG G is safe whenever M () € M.

Definition (Safe CMSG)

CMSG G is safe if for every accepting path 7w of G, M (7) is an MSC.

CMSG @ is safe if on any of its accepting paths there are no unmatched
sends and receipts, i.e., if any of its accepting runs is indeed an MSC.
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Overview

© Existence of Safe Paths
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Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Proof: Reduction from Post’s Correspondence Problem (PCP)

... black board ...
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Overview

© Universality of Safe Paths
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Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem “does CMSG G have at least one safe, accepting
path?” is undecidable.

Theorem: decidability of universality of safe paths

The decision problem “are all accepting paths of CMSG G safe?” is
decidable in PTIME.

Proof: Polynomial reduction to reachability problem in pushdown
automata

... see details on the next slides ...

RWTHAACHEN
UNIVERSITY
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Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) K = (@, qo,I', X, A) with
Q, a finite set of control states

qo € Q, the initial state

I, a finite stack alphabet

Y., a finite input alphabet

ACQxXxT x@Q xT™*, the transition relation.

(¢,a,7,¢,pop) € A means: in state ¢, on reading input symbol a and

©

¢ © ¢ ¢

top of stack is symbol ~, change to ¢’ and pop 7.
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Reachability in pushdown automata

Definition

A configuration c¢ is a triple (state g, stack content Z, rest input w).

Definition

Given a transition in A, a (direct) successor configuration ¢’ of ¢ is
obtained: ¢ ¢.

Reachability problem

For configuration ¢, and initial configuration cg: ¢ * ¢?

The reachability problem for PDA is decidable in PTIME.
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Checking whether a CMSG is safe is decidable

o Consider any ordered pair (p;,p;) of processes in CMSG G

@ Proof idea: construct a PDA K ; = (Q, qo,I', 3, A) such that

CMSG G is not safe wrt. (p;,p;) iff PDA K;; accepts

@ For accepting path ug...u; in G, feed K; ; with

po--.pr where p; € Lin(A(u;))

@ Possible violations that K; ; may encounter:

©Q ur. of unmatched !(p;,pj,-) > nr. of unmatched ?(p;, p;,-)
Q@ type of k-th unmatched send # type of k-th unmatched receive
© non-FIFO communication R
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The nondeterministic PDA K

Let {ai,...,ax} be the message contents in CMSG G for (p;, p;).
Nondeterministic PDA K ; = (@, qo,T', £, A) where:

° COIltI'Ol states Q = {QO7 Qays-- > qak7q67"r‘7 qF}

@ Stack alphabet I = {1, 1}

1 counts nr. of unmatched !(p;, p;, am), and L is stack bottom

unmatched action !(p;, p;, am)
@ Input alphabet ¥ = ¢ unmatched action ?(p;, p;, am)

matched actions 1?(p;, pj, am), ! ?(pj, Pi, am)
@ Transition function A is described on next slide
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Safeness of CMSGs (2)

o Initial configuration is (qo, L, w)
e w is linearization of actions at p; and p; on an accepting path of G

@ On reading !(p;, pj, am) in qo, push 1 on stack
o nondeterministically move to state q,,, or stay in qo

@ On reading ?(pj, pi, am) in qo, proceed as follows:
o if 1 is on stack, pop it
o otherwise, i.e., if stack is empty, accept (i.e., move to qr)

@ On reading matched send !?(p;, pj, ax) in qo
@ stack empty? ignore input; otherwise, accept

@ Ignore the input in state qq,
o on reading matched send events !?(p;, p;, ax), or
@ on reading unmatched sends or receipts not related to p; and p;

o Input empty? Accept, if stack non-empty; otherwise reject
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Safeness of CMSGs (3)

The behaviour in state g, for 0 < m < k:
@ Ignore all actions except ?(pj,p;,ar) for all 0 < £ < k

@ On reading ?(pj, pi, ae) (for some 0 < £ < k) in state gq,, do:
o if 1 is on top of stack, pop it

o If stack is empty:

o if last receive differs from a.,, accept
@ otherwise reject, while ignoring the rest (if any) of the input
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Safeness of CMSGs (4)

It follows: PDA Kj ; accepts iff CMSG G is not safe wrt. (p;,p;)

— CMSG G is not safe wrt. (p;, p;) iff configuration (gr,-,-) is
reachable.

— reachability of a configuration in a PDA is in PTIME, hence
checking safeness wrt. (p;,p;) is in PTIME.

Time complexity

The time complexity of checking whether CMSG G is safe is in
O(k?-N%.M-|E|?) where k = |P|, N = |V|, and M = |C|.

Checking reachability in PDA K; ; is in O(M-|E|?). The number of
PDAs is k2, as we consider ordered pairs. The number of paths that
need to be considered in the CMSG is in O(N?), as it suffices to
consider a single traversal for each loop in the CMSG. O
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