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Communicating finite-state machines

A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process
Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels
The underlying system architecture is parametrised by the set P of
processes and the set C of messages
Action !(p, q,m) puts message m at the end of the channel (p, q)
Action ?(q, p,m) is enabled only if m is at head of buffer, and its
execution by process q removes m from the channel (p, q)
Synchronisation messages are used to avoid deadlocks
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Example communicating finite-state machine
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Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F )

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)
sinit ∈ SA is the global initial state

where SA :=
∏

p∈P Sp is the set of global states of A
F ⊆ SA is the set of global final states

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) �= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
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Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition (Linearizations)
The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}
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Well-formedness (reminder)

Let Ch := {(p, q) | p �= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑
m∈C

|u|!(p,q,m)

︸ ︷︷ ︸
# sends from p to q

�
∑
m∈C

|u|?(q,p,m)

︸ ︷︷ ︸
# receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 � i < j � n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
∑
m∈C

|a1 . . . ai−1|!(p,q,m) =
∑
m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C |w|!(p,q,m) =
∑

m∈C |w|?(q,p,m)
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Well-formedness and CFMs

Lemma
For any CFM A and w ∈ Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.
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From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,≺, �)

such that:
E = {1, . . . , n} are the positions in w labelled with �(i) = ai

≺=
(
≺msg ∪ ⋃

p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

�(i) = !(p, q,m) and �(j) = ?(q, p,m) and∑
m∈C

|a1 . . . ai−1|!(p,q,m) =
∑
m∈C

|a1 . . . aj−1|?(q,p,m)
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Relating well-formed words to CFMs
For any well-formed words u and v with M(u) is isomorphic to M(v):

for any CFM A : u ∈ L(A) iff v ∈ L(A).
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Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]
The following problem:

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable (even if C is a singleton set).
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Restrictions on CFMs

So: the emptiness problem is undecidable.
Thus, most elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.
Main cause: presence of channels with unbounded capacity
We will therefore consider a restricted version of CFMs:

Consider bounded channels. This yields:
universally bounded CFMs: all runs need a finite buffer capacity
existentially bounded CFMs: some runs need a finite buffer capacity

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then generate bounded MSCs.
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Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 �
∑
a∈C

|u|!(p,q,a) −
∑
a∈C

|u|?(q,p,a) � B

Intuition
Word w is B-bounded if for any pair of processes (p, q), the number of
sends from p to q cannot be more than B ahead of the number of
receipts by q from p (for every message a).

Example
!(1, 2, a) !(1, 2, b) ?(2, 1, a) ?(2, 1, b) is 2-bounded but not 1-bounded.
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Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition
MSC M is ∀B-bounded if all its linearizations are B-bounded.

So: if M is B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M .
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Bounded MSCs

Definition (Existentially bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) �= ∅.

Intuition
MSC M is ∃B-bounded if at least one linearization is B-bounded.

Consequence
The MSC M can be “scheduled” in such a way that none of the
channels ever contains more than B messages.
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Bounded MSCs
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Bounded MSCs

Example
1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded
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Bounded CFMs

Definition (Universally bounded CFM)
1 Let B ∈ N and B > 0. CFM A is universally B-bounded if any

MSC in L(A) is ∀B-bounded.
2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Definition (Existentially bounded CFM)
Let B ∈ N and B > 0. CFM A is existentially B-bounded if any MSC in
L(A) is ∃B-bounded.
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Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q
req

req

req

req

req

existentially 1-bounded, but not ∀B-bounded for any B
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Example (2)

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack

existentially 1-bounded, and ∀3-bounded
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Example (3)

!(p, q, req )

?(q, p, req )

?(p, q, ack)

!(q, p, ack)!(p, q, req ) ?(p, q, ack)

?(q, p, req ) !(q, p, ack)

existentially �n2 �-bounded, but not ∀B-bounded for any B
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Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially �n

2 �-bounded, but not ∀-bounded

The CFM is also non-deterministic, and may deadlock
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Existentially bounded CFMs

Theorem: [Genest et. al, 2006]
For any ∃B-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

Note:
This decision problem is undecidable for arbitrary CFM, and is
obviously decidable for ∀-bounded CFMs, as they have finitely many
configurations.
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Determinism

Definition (Deterministic CFM)
A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:
1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies

m1 = m2 and s1 = s2
2 (s, ?(p, q, (m,λ)), s1) ∈ ∆p and (s, ?(p, q, (m,λ)), s2) ∈ ∆p implies

s1 = s2

Note:
From the same state, process p may have the possibility of sending
messages to more than one process.

Example:
Example CFM (1) and (2) are deterministic, while (3) is not.
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Deadlock-freeness

Definition (Deadlock-free CFM)
A CFM A is deadlock-free if, for all w ∈ Act∗ and all runs γ of A on w,
there exist w′ ∈ Act∗ and run γ′ in A such that γ·γ′ is an accepting run
of A on w·w′.

Example:
Example CFM (1) and (2) are deadlock-free, while (3) is not.

Theorem: [Genest et. al, 2006]
For any ∃B-bounded CFM A, the decision problem “is A deadlock-free”
is decidable (and is PSPACE-complete).
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Weak CFMs

Definition (Weak CFM)
A CFM is called a weak CFM if |D| = 1.

Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be

generated by CFMs but not by weak CFMs? Yes.
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CFM vs. weak CFM

Theorem:
Weak CFMs are less expressive than CFMs.

Proof.
For m,n � 1, let M(m,n) ∈ M over {1, 2} and {req, ack} be given by:

M �1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M �2 = ?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m

Claim: there is no weak CFM over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n > 0}. By contraposition. Suppose there is a weak CFM
A = ((A1,A2),D, sinit , F ) with L(A) = L. For any n > 0, there is an accepting
run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i > 0 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j > 0 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n+ (i · j), n) �∈ L.
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