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@ Communicating finite-state machines: a refresher
© Well-formedness of CFMs
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@ Properties of CFMs
® Deterministic CFMs
@ Deadlock-free CFMs
® Synchronisation messages add expressiveness
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Overview

@ Communicating finite-state machines: a refresher
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Communicating finite-state machines

@ A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process

o Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels

@ The underlying system architecture is parametrised by the set P of
processes and the set C of messages

@ Action !(p,q,m) puts message m at the end of the channel (p, q)

@ Action ?(gq,p,m) is enabled only if m is at head of buffer, and its
execution by process ¢ removes m from the channel (p, q)

@ Synchronisation messages are used to avoid deadlocks
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Example communicating finite-state machine

!(p. q.(req,L))

!(p, q, (req,R))

!(p, q.(req,R))

?(q,p, (req,L))

?(q,p,(req,R))

?(q,p. (req,R))
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Formal definition

Definition (What is a CFM?)

A communicating finite-state machine (CFM) over P and C is a tuple

A= (((Spv AP))pEP)]D)’ Sinit, F)

where
o for each p € P:

o S, is a non-empty finite set of local states (the S, are disjoint)
o A, C S, x Act, x D x Sp is a set of local transitions

o D is a nonempty finite set of synchronization messages (or data)
@ Sinit € S4 is the global initial state
o where S4 :=[[ cp Sp is the set of global states of A

@ F C 54 is the set of global final states

In sequel, let A = (((Sp, Ap))per, D, sinit, ) be a CFM over P and C.
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Formal semantics of CFMs

Definition (Configuration)
Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}

Definition (Transitions between configurations)

=4 C Conf 4 x Act x D x Conf 4 is defined as follows:

@ sending a message: ((3,7),!(p,q,a),m, (5',7)) € =>4 if
o (g[pL !(p7Q7a’)7m7§l[p]) € AP
o ' =n[(p,q) = (a,m) -n((p, 2))]
o 5[r] =d[r] for all r € P\ {p}

@ receipt of a message: ((5,7),7(p,q,a),m,(5,1)) € =4 if
© (E[p],?(p, qya),m,gl[p]) € AP
° 7((¢;p)) =w- (a,m) # € and 1" = nl(q,p) := w]
o 5[] =9[r] for all r € P\ {p}

o
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Linearizations of a CFM

Definition ((Accepting) Runs)

A run of Aon gy...0, € Act® is a sequence p = Yo M1V - - - Vn—1 Mn Vn
such that

@ Y0 = (S4nit, me) with . mapping any channel to ¢
04,15

@ yi_j———=4 7 forany i € {1,...,n}

Run p is accepting if v, € F x {n:}.

Definition (Linearizations)
The set of linearizations of CFM A:

Lin(A) := {w € Act” | there is an accepting run of A on w}
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Overview

© Well-formedness of CFMs
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Well-formedness (reminder)

Let Ch:={(p,q) | p# q, p,q € P} be a set of channels over P.

We call w =ay...a, € Act™ proper if

© every receive in w is preceded by a corresponding send, i.e.:
Y(p, q) € Ch and prefix u of w, we have:

Z [ulip,gm) = Z |ul2(qpm)

meC meC

# sends from p to q # receipts by ¢ from p

where |u|, denotes the number of occurrences of action a in u

@ the FIFO policy is respected, i.e.:
V1<i< j <, (p7 Q) € Ch7 and a; = !(p7Q7m1)7 aj = ?(Q7pv m2):

E |a1 000 ai_1|!(p)q)m) = E |0,1 600 aj_1|7(q)p)m) implies mip = ma
meC meC

A proper word w is well-formed if Y . [w]i(p,q.m) = D mec |Wl2(g,p
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Well-formedness and CFMs

For any CFM A and w € Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/32



From linearizations to partial orders (reminder)

Associate to w = aq ...a, € Act™ an Act-labelled poset
M(w) = (E,=<,?)
such that:
o E={1,...,n} are the positions in w labelled with £(i) = q;

*
0 <= <<msg U UpeP <P) where
e i <, jif and only if ¢ < j for any 4,5 € E,
o i <msg j if for some (p,q) € Ch and m € C we have:

((i) =(p,q,m) and £(j) = (g, p,m) and

Z |a1 e ai—1|!(p,q,m) = Z |a’1 e aj—1|?(q,p,m)

meC meC
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CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w € Act*, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = { M (w) | w € Lin(A) }.

Relating well-formed words to CFMs

For any well-formed words w and v with M (u) is isomorphic to M (v):

for any CFM A: we L(A) iff ve L(A).
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© Bounded CFMs
@ Bounded words
@ Bounded MSCs
@ Bounded CFMs
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Emptiness problem is undecidable for CFMs

The following problem:

InPUT: CFM A over processes P and message contents C
QUESTION: Is L(A) empty?

is undecidable (even if C is a singleton set).
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Restrictions on CFMs

So: the emptiness problem is undecidable.
Thus, most elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.

Main cause: presence of channels with unbounded capacity

e © ¢ ¢ ¢

We will therefore consider a restricted version of CFMs:
o Consider bounded channels. This yields:
o universally bounded CFMs: all runs need a finite buffer capacity
o existentially bounded CFMs: some runs need a finite buffer capacity

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then generate bounded MSCs.
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Bounded words
Definition (B-bounded words)

Let Be Nand B > 0. A word w € Act* is called B-bounded if for any
prefix u of w and any channel (p,q) € Ch:
0 < Z‘uh(p,q,a) _Z|u‘7(q,p,a) < B

aeC aeC

o

Word w is B-bounded if for any pair of processes (p, q), the number of
sends from p to ¢ cannot be more than B ahead of the number of

receipts by ¢ from p (for every message a).

1(1,2,a) 1(1,2,0) 7(2,1,a) 7(2,1,b) is 2-bounded but not 1-bounded.
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Bounded MSCs

Definition (Universally bounded MSCs)

Let Be N and B > 0. An MSC M € M is called universally B-bounded
(VB-bounded, for short) if

Lin(M) = Lin®(M)

where Lin®(M) := {w € Lin(M) | w is B-bounded}.

o

MSC M is VB-bounded if all its linearizations are B-bounded. l

So: if M is B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M. J

Joost-Pieter Katoen Theoretical Foundations of the UML 18/32




Bounded MSCs

Definition (Existentially bounded MSCs)

Let BeNand B > 0. An MSC M € M is called existentially
B-bounded (3B-bounded, for short) if Lin(M) N Lin®(M) # @.

MSC M is dB-bounded if at least one linearization is B-bounded. l

Consequence

The MSC M can be “scheduled” in such a way that none of the
channels ever contains more than B messages.
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Bounded MSCs

V4-bounded V3-bounded V5-bounded
342-bounded 31-bounded 31-bounded
not J1-bounded RWIH
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Bounded CFMs

Definition (Universally bounded CFM)

O Let BeNand B > 0. CFM A is uniwersally B-bounded if any
MSC in L(A) is VB-bounded.

@ CFM A is universally bounded if it is VB-bounded for some B € N
and B > 0.

Definition (Existentially bounded CFM)

Let B € Nand B > 0. CFM A is existentially B-bounded if any MSC in
L(A) is 3B-bounded.
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Example (1)

[ D] L9 ]
req
process p: process qg: req
l(p, q,req) ?(q,p, req) =
req
req
|| ||

existentially 1-bounded, but not VB-bounded for any B
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Example (2)

process p: process q:
P
‘ req ack
'(p, q,req) ?(q, p,req)
req ack
req
(p,q,req)| |?(p,q,ack)
. [ ] |

existentially 1-bounded, and V3-bounded
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Example (3)

existentially [%]-bounded, but not VB-bounded for any B
RWTH
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Justification

Phase 1: process p sends n messages to ¢
@ messages of phase 1 are tagged with data req

... and waits for the first acknowledgement of ¢

Phase 2: each ack is directly answered by p by another message
o messages of phase 2 are tagged with data

So, p sends 2n regs to ¢ and ¢ sends n acks
o existentially [ ]-bounded, but not V-bounded

The CFM is also non-deterministic, and may deadlock
RWTH
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Existentially bounded CFMs

For any 3B-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

This decision problem is undecidable for arbitrary CFM, and is
obviously decidable for V-bounded CFMs, as they have finitely many
configurations.
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@ Properties of CFMs
® Deterministic CFMs
@ Deadlock-free CFMs
® Synchronisation messages add expressiveness
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Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p € P, the transition relation A,
satisfies the following two conditions:

0 (8, '(p’q’ (avml))’sl) € AP and (87 '(pv q, (a’mQ))’SQ) € AP 1mphes
mi1 = mo and s; = Sy

Q (s,7(p,q,(m,N)),s1) € Ap and (s, ?(p, g, (m,N)), s2) € A, implies
S1 = S92

Note:

From the same state, process p may have the possibility of sending
messages to more than one process.

Example CFM (1) and (2) are deterministic, while (3) is not.
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Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w € Act* and all runs v of A on w,
there exist w’ € Act* and run 4/ in A such that - is an accepting run

of A on w-w'.

Example CFM (1) and (2) are deadlock-free, while (3) is not.

For any 9dB-bounded CFM A, the decision problem ‘“is A deadlock-free”
is decidable (and is PSPACE-complete).
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Weak CFMs

Definition (Weak CFM)

A CFM is called a weak CFM if |D| = 1.

Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be
generated by CFMs but not by weak CFMs? Yes.
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CFM vs. weak CFM
Weak CFMs are less expressive than CFMs. \

Proof.

For m,n > 1, let M (m,n) € M over {1,2} and {req, ack} be given by:
o MI1=(I(1,2,req))™ (?(1,2,ack) !(1,2,req))™
o M [2=7(2,1,req) (2,1, ack))™ (?(2,1,req))™

Claim: there is no weak CFM over {1,2} and {req, ack} whose language is

L ={M(n,n) | n > 0}. By contraposition. Suppose there is a weak CFM

A= ((A1,A2),D, sinit, F') with L(A) = L. For any n > 0, there is an accepting
run of A on M(n,n). If n is sufficiently large, then

@ A, visits a cycle of length¢ > 0 to read the first n letters of M(n,n)[1
@ A, visits a cycle of length 7 > 0 to read the last n letters of M (n,n)[2

But then, there is an accepting run of A on M(n + (i-j),n) € L. O

o
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