
Theoretical Foundations of the UML
Lecture 7: Languages and Subclasses of CFMs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/uml09100/

16. November 2012

Joost-Pieter Katoen Theoretical Foundations of the UML 1/32

Outline

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

4 Properties of CFMs
Deterministic CFMs
Deadlock-free CFMs
Synchronisation messages add expressiveness

Joost-Pieter Katoen Theoretical Foundations of the UML 2/32

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

4 Properties of CFMs
Deterministic CFMs
Deadlock-free CFMs
Synchronisation messages add expressiveness

Joost-Pieter Katoen Theoretical Foundations of the UML 3/32

Communicating finite-state machines

A communicating finite-state machine (CFM) is a collection of
finite-state machines, one for each process
Communication between these machines takes place via (a priori)
unbounded reliable FIFO channels
The underlying system architecture is parametrised by the set P of
processes and the set C of messages
Action !(p, q,m) puts message m at the end of the channel (p, q)
Action ?(q, p,m) is enabled only if m is at head of buffer, and its
execution by process q removes m from the channel (p, q)
Synchronisation messages are used to avoid deadlocks

Joost-Pieter Katoen Theoretical Foundations of the UML 4/32

Example communicating finite-state machine

Joost-Pieter Katoen Theoretical Foundations of the UML 5/32

Formal definition

Definition (What is a CFM?)
A communicating finite-state machine (CFM) over P and C is a tuple

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

D is a nonempty finite set of synchronization messages (or data)
sinit ∈ SA is the global initial state

where SA :=
∏

p∈P Sp is the set of global states of A
F ⊆ SA is the set of global final states

In sequel, let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/32

Formal semantics of CFMs

Definition (Configuration)
Configurations of A: ConfA := SA × {η | η : Ch → (C × D)∗}

Definition (Transitions between configurations)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η((q, p)) = w · (a,m) �= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 7/32

Linearizations of a CFM

Definition ((Accepting) Runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition (Linearizations)
The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 8/32

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

4 Properties of CFMs
Deterministic CFMs
Deadlock-free CFMs
Synchronisation messages add expressiveness

Joost-Pieter Katoen Theoretical Foundations of the UML 9/32

Well-formedness (reminder)

Let Ch := {(p, q) | p �= q , p, q ∈ P} be a set of channels over P.

We call w = a1 . . . an ∈ Act∗ proper if
1 every receive in w is preceded by a corresponding send, i.e.:

∀(p, q) ∈ Ch and prefix u of w, we have:
∑
m∈C

|u|!(p,q,m)

︸ ︷︷ ︸
sends from p to q

�
∑
m∈C

|u|?(q,p,m)

︸ ︷︷ ︸
receipts by q from p

where |u|a denotes the number of occurrences of action a in u

2 the FIFO policy is respected, i.e.:
∀1 � i < j � n, (p, q) ∈ Ch, and ai = !(p, q,m1), aj = ?(q, p,m2):
∑
m∈C

|a1 . . . ai−1|!(p,q,m) =
∑
m∈C

|a1 . . . aj−1|?(q,p,m) implies m1 = m2

A proper word w is well-formed if
∑

m∈C |w|!(p,q,m) =
∑

m∈C |w|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/32

Well-formedness and CFMs

Lemma
For any CFM A and w ∈ Lin(A), w is well-formed.

Recall that there is a strong correspondence between well-formed
linearizations and MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/32

From linearizations to partial orders (reminder)

Associate to w = a1 . . . an ∈ Act∗ an Act-labelled poset

M(w) = (E,≺, �)

such that:
E = {1, . . . , n} are the positions in w labelled with �(i) = ai

≺=
(
≺msg ∪ ⋃

p∈P ≺p

)∗
where

i ≺p j if and only if i < j for any i, j ∈ Ep

i ≺msg j if for some (p, q) ∈ Ch and m ∈ C we have:

�(i) = !(p, q,m) and �(j) = ?(q, p,m) and∑
m∈C

|a1 . . . ai−1|!(p,q,m) =
∑
m∈C

|a1 . . . aj−1|?(q,p,m)

Joost-Pieter Katoen Theoretical Foundations of the UML 12/32

CFMs and well-formed words

Relating well-formed words to MSCs
For any well-formed word w ∈ Act∗, M(w) is an MSC.

Definition (MSC language of a CFM)
For CFM A, let L(A) = {M(w) | w ∈ Lin(A) }.

Relating well-formed words to CFMs
For any well-formed words u and v with M(u) is isomorphic to M(v):

for any CFM A : u ∈ L(A) iff v ∈ L(A).

Joost-Pieter Katoen Theoretical Foundations of the UML 13/32

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

4 Properties of CFMs
Deterministic CFMs
Deadlock-free CFMs
Synchronisation messages add expressiveness

Joost-Pieter Katoen Theoretical Foundations of the UML 14/32

Emptiness problem is undecidable for CFMs

Theorem: [Brand & Zafiropulo 1983]
The following problem:

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

is undecidable (even if C is a singleton set).

Joost-Pieter Katoen Theoretical Foundations of the UML 15/32

Restrictions on CFMs

So: the emptiness problem is undecidable.
Thus, most elementary problems for CFMs are undecidable.
This is (very) unsatisfactory.
Main cause: presence of channels with unbounded capacity
We will therefore consider a restricted version of CFMs:

Consider bounded channels. This yields:
universally bounded CFMs: all runs need a finite buffer capacity
existentially bounded CFMs: some runs need a finite buffer capacity

We define bounded CFMs, by first considering bounded words and
bounded MSCs. Bounded CFMs will then generate bounded MSCs.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/32

Bounded words

Definition (B-bounded words)
Let B ∈ N and B > 0. A word w ∈ Act∗ is called B-bounded if for any
prefix u of w and any channel (p, q) ∈ Ch:

0 �
∑
a∈C

|u|!(p,q,a) −
∑
a∈C

|u|?(q,p,a) � B

Intuition
Word w is B-bounded if for any pair of processes (p, q), the number of
sends from p to q cannot be more than B ahead of the number of
receipts by q from p (for every message a).

Example
!(1, 2, a) !(1, 2, b) ?(2, 1, a) ?(2, 1, b) is 2-bounded but not 1-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 17/32

Bounded MSCs

Definition (Universally bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called universally B-bounded
(∀B-bounded, for short) if

Lin(M) = LinB(M)

where LinB(M) := {w ∈ Lin(M) | w is B-bounded}.

Intuition
MSC M is ∀B-bounded if all its linearizations are B-bounded.

So: if M is B-bounded, then a buffer capacity B is sufficient for all
possible runs of MSC M .

Joost-Pieter Katoen Theoretical Foundations of the UML 18/32

Bounded MSCs

Definition (Existentially bounded MSCs)
Let B ∈ N and B > 0. An MSC M ∈ M is called existentially
B-bounded (∃B-bounded, for short) if Lin(M) ∩ LinB(M) �= ∅.

Intuition
MSC M is ∃B-bounded if at least one linearization is B-bounded.

Consequence
The MSC M can be “scheduled” in such a way that none of the
channels ever contains more than B messages.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/32

Bounded MSCs

Joost-Pieter Katoen Theoretical Foundations of the UML 20/32

Bounded MSCs

Example
1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

∀4-bounded
∃2-bounded

not ∃1-bounded

1 2

req

req

req

ack

ack

∀3-bounded
∃1-bounded

1 2
req

req

req

req

req

∀5-bounded
∃1-bounded

Joost-Pieter Katoen Theoretical Foundations of the UML 21/32

Bounded CFMs

Definition (Universally bounded CFM)
1 Let B ∈ N and B > 0. CFM A is universally B-bounded if any

MSC in L(A) is ∀B-bounded.
2 CFM A is universally bounded if it is ∀B-bounded for some B ∈ N

and B > 0.

Definition (Existentially bounded CFM)
Let B ∈ N and B > 0. CFM A is existentially B-bounded if any MSC in
L(A) is ∃B-bounded.

Joost-Pieter Katoen Theoretical Foundations of the UML 22/32

Example (1)

!(p, q, req) ?(q, p, req)

process p: process q:

p q
req

req

req

req

req

existentially 1-bounded, but not ∀B-bounded for any B

Joost-Pieter Katoen Theoretical Foundations of the UML 23/32

Example (2)

!(p, q, req)

?(p, q, req)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

process p: process q:

p q

req

req

req

ack

ack

existentially 1-bounded, and ∀3-bounded

Joost-Pieter Katoen Theoretical Foundations of the UML 24/32

Example (3)

!(p, q, req)

?(q, p, req)

?(p, q, ack)

!(q, p, ack)!(p, q, req) ?(p, q, ack)

?(q, p, req) !(q, p, ack)

existentially �n2 �-bounded, but not ∀B-bounded for any B

Joost-Pieter Katoen Theoretical Foundations of the UML 25/32

Justification

Phase 1: process p sends n messages to q

messages of phase 1 are tagged with data req

. . . and waits for the first acknowledgement of q

Phase 2: each ack is directly answered by p by another message
messages of phase 2 are tagged with data req

So, p sends 2n reqs to q and q sends n acks
existentially �n

2 �-bounded, but not ∀-bounded

The CFM is also non-deterministic, and may deadlock

Joost-Pieter Katoen Theoretical Foundations of the UML 26/32

Existentially bounded CFMs

Theorem: [Genest et. al, 2006]
For any ∃B-bounded CFM, the emptiness problem is decidable (and is
PSPACE-complete).

Note:
This decision problem is undecidable for arbitrary CFM, and is
obviously decidable for ∀-bounded CFMs, as they have finitely many
configurations.

Joost-Pieter Katoen Theoretical Foundations of the UML 27/32

Overview

1 Communicating finite-state machines: a refresher

2 Well-formedness of CFMs

3 Bounded CFMs
Bounded words
Bounded MSCs
Bounded CFMs

4 Properties of CFMs
Deterministic CFMs
Deadlock-free CFMs
Synchronisation messages add expressiveness

Joost-Pieter Katoen Theoretical Foundations of the UML 28/32

Determinism

Definition (Deterministic CFM)
A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:
1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies

m1 = m2 and s1 = s2
2 (s, ?(p, q, (m,λ)), s1) ∈ ∆p and (s, ?(p, q, (m,λ)), s2) ∈ ∆p implies

s1 = s2

Note:
From the same state, process p may have the possibility of sending
messages to more than one process.

Example:
Example CFM (1) and (2) are deterministic, while (3) is not.

Joost-Pieter Katoen Theoretical Foundations of the UML 29/32

Deadlock-freeness

Definition (Deadlock-free CFM)
A CFM A is deadlock-free if, for all w ∈ Act∗ and all runs γ of A on w,
there exist w′ ∈ Act∗ and run γ′ in A such that γ·γ′ is an accepting run
of A on w·w′.

Example:
Example CFM (1) and (2) are deadlock-free, while (3) is not.

Theorem: [Genest et. al, 2006]
For any ∃B-bounded CFM A, the decision problem “is A deadlock-free”
is decidable (and is PSPACE-complete).

Joost-Pieter Katoen Theoretical Foundations of the UML 30/32

Weak CFMs

Definition (Weak CFM)
A CFM is called a weak CFM if |D| = 1.

Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be

generated by CFMs but not by weak CFMs? Yes.

Joost-Pieter Katoen Theoretical Foundations of the UML 31/32

CFM vs. weak CFM

Theorem:
Weak CFMs are less expressive than CFMs.

Proof.
For m,n � 1, let M(m,n) ∈ M over {1, 2} and {req, ack} be given by:

M �1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M �2 = ?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m

Claim: there is no weak CFM over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n > 0}. By contraposition. Suppose there is a weak CFM
A = ((A1,A2),D, sinit , F) with L(A) = L. For any n > 0, there is an accepting
run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i > 0 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j > 0 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n+ (i · j), n) �∈ L.

Joost-Pieter Katoen Theoretical Foundations of the UML 32/32

