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Motivation

Practical use of MSCs and CFMs
MSCs and MSGs are used by software engineers to capture
requirements.
These are the expected behaviours of the distributed system under
design.
Distributed systems can be viewed as a collection of
communicating automata.

Central problem
Can we synthesize, preferably in an automated manner, a CFM whose
behaviours are precisely the behaviours of the MSCs (or MSG)?

This is known as the realisability problem.
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From requirements to implementation

Realisability problem
Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Questions:
1 Is this possible? (That is, is this decidable?)
2 If so, how complex is it to obtain such CFM?
3 If so, how do such algorithms work?
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Problem variants (1)

Realisability problem
Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Different forms of requirements

Consider finite sets of MSCs, given as an enumerated set.

Consider MSGs, that may describe an infinite set of MSCs.

Consider MSCs whose set of linearisations is a regular word language.

Consider MSGs that are non-local choice.
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Problem variants (2)

Realisability problem
Input: a set of MSCs

Output: a CFM A such that L(A) equals the set of input MSCs.

Different system models

Consider CFMs without synchronisation messages.

Allow CFMs that may deadlock. Possibly, a realisation deadlocks.

Forbid CFMs that deadlock. No realisation will ever deadlock.

Consider CFMs that are deterministic.

Consider CFMs that are bounded.

. . . . . .
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Today’s lecture

Today’s setting
Realisation of a finite set of MSCs by a CFM without synchronisation
messages and that may possibly deadlock.

Realisation of a finite set of well-formed words (= language) by a CFM
without synchronisation messages and that may possibly deadlock.

Results:
1 CFMs without synchronisation messages are weaker than CFMs.
2 Conditions for realisability of a finite set of MSCs by a weak CFM.
3 Checking realisability for such sets is co-NP complete.
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Determinism

Definition (Deterministic CFM)
A CFM A is deterministic if for all p ∈ P, the transition relation ∆p

satisfies the following two conditions:
1 (s, !(p, q, (a,m1)), s1) ∈ ∆p and (s, !(p, q, (a,m2)), s2) ∈ ∆p implies

m1 = m2 and s1 = s2
2 (s, ?(p, q, (a,m)), s1) ∈ ∆p and (s, ?(p, q, (a,m)), s2) ∈ ∆p implies

s1 = s2

Note:
From the same state, process p may have the possibility of sending
messages to more than one process.

Example:
Example CFM (1) and (2) are deterministic, while (3) is not.
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Deadlock-freeness

Definition (Deadlock-free CFM)
A CFM A is deadlock-free if, for all w ∈ Act∗ and all runs γ of A on w,
there exist w′ ∈ Act∗ and run γ′ in A such that γ·γ′ is an accepting run
of A on w·w′.

Example:
Example CFM (1) is deadlock-free, while (2) and (3) are not.

Theorem: [Genest et. al, 2006]
For any ∃B-bounded CFM A, the decision problem “is A deadlock-free”
is decidable (and is PSPACE-complete).
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Weak CFMs

Definition (Weak CFM)
A CFM is called a weak CFM if |D| = 1.

Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be

generated by CFMs but not by weak CFMs? Yes.
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CFM vs. weak CFM

Theorem:
Weak CFMs are less expressive than CFMs.

Proof.
For m,n � 1, let M(m,n) ∈ M over {1, 2} and {req, ack} be given by:

M �1 = (!(1, 2, req))m (?(1, 2, ack) !(1, 2, req))n

M �2 = ?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))m

Claim: there is no weak CFM over {1, 2} and {req, ack} whose language is
L = {M(n, n) | n > 0}. By contraposition. Suppose there is a weak CFM
A = ((A1,A2), sinit , F ) with L(A) = L. For any n > 0, there is an accepting
run of A on M(n, n). If n is sufficiently large, then

A1 visits a cycle of length i > 0 to read the first n letters of M(n, n)�1
A2 visits a cycle of length j > 0 to read the last n letters of M(n, n)�2

But then, there is an accepting run of A on M(n+ (i · j), n) �∈ L.
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What is realisability?

Definition (Realisability)
1 MSC M is realisable whenever {M} = L(A) for some CFM A.
2 A finite set {M1, . . . ,Mn} of MSCs is realisable whenever

{M1, . . . ,Mn} = L(A) for some CFM A.
3 MSG G is realisable whenever L(G) = L(A) for some CFM A.

Alternatively
1 MSC M is realisable whenever Lin(M) = Lin(A) for some CFM A.
2 Set {M1, . . . ,Mn} of MSCs is realisable whenever⋃n

i=1 Lin(Mi) = Lin(A) for some CFM A.
3 MSG G is realisable whenever Lin(G) = Lin(A) for some CFM A.

We will consider realisability using its characterisation by linearisations.
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Two example MSCs

Consider the MSCs Minc (top) and Mdb (bottom):

p1 U N p2

inc
inc

p1 U N p2

double
double

Intuition
In Minc , the volume of U (uranium) and N (nitric acid) is increased by one
unit; in Mdb both volumes are doubled. For safety reasons, it is essential that
both ingredients are increased by the same amount!
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A third, unavoidable fatal scenario

p1 U N p2

double
inc

So:
The set {Minc ,Mdb } is not realisable, as any CFM that realises this set
also realises the inferred MSC Mbad above.

Note that:
Either of the MSCs Minc or Mdb alone does not imply Mbad .
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Inference

Definition (Inference)
The set L of MSCs is said to infer MSC M �∈ L if and only if:

for any CFM A. L ⊆ L(A) implies M ∈ L(A).

What we will show later on
The set L of MSCs is realisable iff L contains all MSCs that it infers.

Intuition
A realisable set of MSCs contains all its implied scenarios.

For computational purposes, an alternative characterisation is required.
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Projection (1)

Definition (MSC projection)
For MSC M and process p let M �p, the projection of M on process p,
be the ordered sequence of actions occurring at process p in M .

Lemma
An MSC M over the set P = { p1, . . . , pn } of processes is uniquely
determined by the projections M �pi for 0 < i � n.
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Projection (2)

Definition (Word projection)
For word w ∈ Act∗ and process p, the projection of w on process p,
denoted w �p, is defined by:

ε�p = ε

(!(r, q, a)·w)�p =

{
!(r, q, a)·(w �p) if r = p

w �p otherwise

and similarly for receive actions.

Example
w =!(1, 2, req)!(1, 2, req)?(2, 1, req)!(2, 1, ack)?(2, 1, req)!(2, 1, ack)?(1, 2, ack)!(1, 2, req)
w �1 = !(1, 2, req)!(1, 2, req)?(1, 2, ack)!(1, 2, req)
w �2 = ?(2, 1, req)!(2, 1, ack)?(2, 1, req)!(2, 1, ack)
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Projection (3)

Definition (Word projection)
For word w ∈ Act∗ and process p, the projection of w on process p, denoted
w �p, is defined by:

ε�p = ε

(!(r, q, a)·w)�p =

{
!(r, q, a)·(w �p) if r = p

w �p otherwise

and similarly for receive actions.

Lemma
A well-formed word w over Act∗ which is given by the projections
w �p1, . . . , w �pn uniquely characterises an MSC M(w) over
P = { p1, . . . , pn }.
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Closure

Definition (Inference relation)
For well-formeda L ⊆ Act∗, and well-formed word w ∈ Act∗, let:

L |= w iff (∀p ∈ P.∃v ∈ L.w �p = v �p)
aL is called well-formed if all its elements are well-formed.

Definition (Closure under |=)
Language L is closed under |= whenever L |= w implies w ∈ L.

Intuition
The closure condition says that the set of MSCs (or, equivalently, well-formed
words) can be obtained from the projections of the MSCs in L onto individual
processes.
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Closure: example

Example
L = Lin({Mup ,Mdb}) is not closed under |=. This is shown as follows:

w = !(p1, U, double)?(U, p1, double)!(p2, N, inc)?(N, p2, inc) �∈ L

But: L |= w since

for process p1, there is u ∈ L with w �p1 = !(p1, U, double) = u�p1, and

for process p2, there is v ∈ L with w �p2 = !(p2, N, inc) = v �p2, and

for process U , there is u ∈ L with w �U =?(U, p1, double) = u�U , and

for process N , there is v ∈ L with w �N =?(N, p2, inc) = w �N .
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Weak CFMs

Definition (Weak CFM)
CFM A = (((Sp,∆p))p∈P ,D, sinit , F ) is weak if D is a singleton set.

Intuition
A weak CFM can be considered as CFM without synchronisation messages.
(Therefore, the component D may be omitted.) For simplicity, today we
address realisability with the aim of using weak CFMs as implementation.
Recall: weak CFMs are less expressive than CFMs.

Realisability revisited
A finite set {M1, . . . ,Mn} of MSCs is realisable whenever
{M1, . . . ,Mn} = L(A) for some weak CFM A
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Weak CFMs are closed under |=

Lemma:
For any weak CFM A, Lin(A) is closed under |=.

Proof
Let A be a weak CFM. Since A is a CFM, any w ∈ Lin(A) is well-formed.
Let w ∈ Act∗ be well-formed and assume Lin(A) |= w.
To show that Lin(A) is closed under |=, we prove that w ∈ Lin(A).
By definition of |=, for any process p there is vp ∈ Lin(A) with vp �p = w �p.
Let π be an accepting run of A on vp and let run π �p visit only states of Ap

while taking only transitions in ∆p. Then, π �p is an accepting run of “local“
automaton Ap on the word vp �p = w �p.
The “local“ accepting runs π �p for all processes p together can be combined to
obtain an accepting run of A on w.
Thus, w ∈ Lin(A). �
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Characterisation of realisability

Theorem: [Alur et al., 2001]
L ⊆ Act∗ is realisable (by a weak CFM) iff L is closed under |=.

Proof
On the black board.

Corollary
The finite set of MSCs {M1, . . . ,Mn} is realisable (by a weak CFM) iff⋃n

i=1 Lin(Mi) is closed under |=.
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Characterisation of realisability

Theorem
For any well-formed L ⊆ Act∗:

L is regular and closed under |=
if and only if

L = Lin(A) for some ∀-bounded weak CFM A.
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Complexity of realisability

Let co-NP be the class of all decision problems C with C, the
complement of C, is in NP.

A problem C is co-NP complete if it is in co-NP, and it is co-NP hard,
i.e., each for any co-NP problem there is a polynomial reduction to C.
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Complexity of realisability

Theorem: [Alur et al., 2001]
The decision problem “is a given set of MSCs realisable by a weak
CFM?” is co-NP complete.

Proof
1 Membership in co-NP is proven by showing that its complement is

in NP. This is rather standard.
2 The co-NP hardness proof is based on a polynomial reduction of

the join dependency problem to the above realisability problem.
(Details on the black board.)
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