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Overview

@ Introduction
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Motivation

Practical use of MSCs and CFMs

@ MSCs and MSGs are used by software engineers to capture
requirements.

@ These are the expected behaviours of the distributed system under
design.

@ Distributed systems can be viewed as a collection of
communicating automata.

Central problem

Can we synthesize, preferably in an automated manner, a CFM whose
behaviours are precisely the behaviours of the MSCs (or MSG)?

This is known as the realisability problem.

KWL
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From requirements to implementation

Realisability problem
INPUT: a set of MSCs

OutpuT: a CFM A such that L(A) equals the set of input MSCs.

Questions:
© Is this possible? (That is, is this decidable?)
@ If so, how complex is it to obtain such CFM?
© If so, how do such algorithms work?
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Problem variants (1)

Realisability problem
INPUT: a set of MSCs

OutpuT: a CFM A such that L(A) equals the set of input MSCs.

Different forms of requirements

@ Consider finite sets of MSCs, given as an enumerated set.
@ Consider MSGs, that may describe an infinite set of MSCs.
@ Consider MSCs whose set of linearisations is a regular word language.

@ Consider MSGs that are non-local choice.

Joost-Pieter Katoen Theoretical Foundations of the UML 6/31



Problem variants (2)

Realisability problem

INPUT: a set of MSCs
OutpuT: a CFM A such that L(A) equals the set of input MSCs.

Different system models

@ Consider CFMs without synchronisation messages.

©

Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
Forbid CFMs that deadlock. No realisation will ever deadlock.
Consider CFMs that are deterministic.

Consider CFMs that are bounded.

©

©

©
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Today's lecture

Today's setting

Realisation of a finite set of MSCs by a CFM without synchronisation
messages and that may possibly deadlock.

Realisation of a finite set of well-formed words (= language) by a CFM
without synchronisation messages and that may possibly deadlock.

@ CFMs without synchronisation messages are weaker than CFMs.
© Conditions for realisability of a finite set of MSCs by a weak CFM.
© Checking realisability for such sets is co-NP complete.
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© Properties of CFMs
@ Deterministic CFMs
@ Deadlock-free CFMs
@ Synchronisation messages add expressiveness
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Determinism

Definition (Deterministic CFM)

A CFM A is deterministic if for all p € P, the transition relation A,
satisfies the following two conditions:

Q (s,!(p,q, (a,m1)),s1) € Ap and (s,!(p, ¢, (a,m2)),s2) € A, implies
mi1 = mo and s; = Sy

Q (s,?(p,q,(a,m)),s1) € A, and (s,?(p, q, (a,m)), s2) € A, implies
S1 = S92

Note:

From the same state, process p may have the possibility of sending
messages to more than one process.

Example CFM (1) and (2) are deterministic, while (3) is not.
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Deadlock-freeness

Definition (Deadlock-free CFM)

A CFM A is deadlock-free if, for all w € Act* and all runs v of A on w,
there exist w’ € Act* and run 4/ in A such that - is an accepting run

of A on w-w'.

Example CFM (1) is deadlock-free, while (2) and (3) are not.

For any 9dB-bounded CFM A, the decision problem ‘“is A deadlock-free”
is decidable (and is PSPACE-complete).
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Weak CFMs

Definition (Weak CFM)

A CFM is called a weak CFM if |D| = 1.

Are CFMs more expressive than weak CFMs? That is, do there exist
languages (over linearizations or, equivalently, MSCs) that can be
generated by CFMs but not by weak CFMs? Yes.
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CFM vs. weak CFM
Weak CFMs are less expressive than CFMs. \

Proof.

For m,n > 1, let M (m,n) € M over {1,2} and {req, ack} be given by:
o MI1=(I(1,2,req))™ (?(1,2,ack) !(1,2,req))™
o M [2=7(2,1,req) (2,1, ack))™ (?(2,1,req))™

Claim: there is no weak CFM over {1,2} and {req, ack} whose language is
L ={M(n,n) | n > 0}. By contraposition. Suppose there is a weak CFM
A= ((A1, A2), Sinit, F') with L(A) = L. For any n > 0, there is an accepting
run of A on M(n,n). If n is sufficiently large, then

@ A, visits a cycle of length¢ > 0 to read the first n letters of M(n,n)[1
@ A, visits a cycle of length 7 > 0 to read the last n letters of M (n,n)[2

But then, there is an accepting run of A on M(n + (i-j),n) € L. O

o
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Overview

© Realisability
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What is realisability?

Definition (Realisability)
© MSC M is realisable whenever {M} = L(A) for some CFM A.

Q A finite set {M,..., My} of MSCs is realisable whenever
{M,...,M,} = L(A) for some CFM A.

© MSG G is realisable whenever L(G) = L(A) for some CFM A.

Alternatively

© MSC M is realisable whenever Lin(M) = Lin(A) for some CFM A.
Q Set {M;,..., M,} of MSCs is realisable whenever

Ui, Lin(M;) = Lin(A) for some CFM A.
© MSG G is realisable whenever Lin(G) = Lin(A) for some CFM A. )

We will consider realisability using its characterisation by 1incarisationS.J
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Overview

@ Inference of MSCs
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Two example MSCs

Consider the MSCs My, (top) and My, (bottom):

inc

P1||

double

double

In My, the volume of U (uranium) and N (nitric acid) is increased by one

unit; in Mg, both volumes are doubled. For safety reasons, it is essential that

both ingredients are increased by the same amount!
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A third, unavoidable fatal scenario

Lo | LU | [N ]| [r |
double

inc

The set { Myp., Mgy } is not realisable, as any CFM that realises this set
also realises the inferred MSC My,q above.

Either of the MSCs M, or Mg, alone does not imply Mpy,q. l
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Definition (Inference)
The set L of MSCs is said to infer MSC M ¢ L if and only if:

for any CFM A. L C L(A) implies M € L(A).

What we will show later on
The set L of MSCs is realisable iff L contains all MSCs that it infers.

A realisable set of MSCs contains all its implied scenarios.

For computational purposes, an alternative characterisation is regiged.
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Projection (1)

Definition (MSC projection)

For MSC M and process p let M [p, the projection of M on process p,
be the ordered sequence of actions occurring at process p in M.

An MSC M over the set P = {p1,...,pn } of processes is uniquely
determined by the projections M [p; for 0 < i < n.
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Projection (2)

Definition (Word projection)

For word w € Act™ and process p, the projection of w on process p,
denoted w [p, is defined by:

€lp = ¢

: : 1o
(!(T7Q7a)"ll)) rp = { (T‘, 4, CL) (’LU fp) i r p
wlp otherwise

and similarly for receive actions.

w =!(1,2,req)!(1, 2,1eq)?(2, 1,req)!(2, 1, ack)?(2, 1, req)!(2, 1, ack)?(1, 2, ack)!(1, 2, req)
wll=1(1,2,req)!(1,2,req)?(1,2,ack)!(1,2,req)
w2 ="7(2,1,req)!(2,1,ack)?(2,1,req)!(2, 1, ack)
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Projection (3)

Definition (Word projection)
For word w € Act™ and process p, the projection of w on process p, denoted
w [ p, is defined by:

elp =

i(r,q,a)-(w if r =
(I(r,q,a)w)p = { (r,q,a)-(wp) P

wp otherwise

and similarly for receive actions.

A well-formed word w over Act* which is given by the projections
w [ p1,...,w|p, uniquely characterises an MSC M (w) over

P={p1,...,pn}.
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Definition (Inference relation)
For well-formed® L C Act*, and well-formed word w € Act*, let:

LEw if (WeP.veLwlp=vlp)

¢L is called well-formed if all its elements are well-formed.

Definition (Closure under =)

Language L is closed under = whenever L = w implies w € L.

The closure condition says that the set of MSCs (or, equivalently, well-formed

words) can be obtained from the projections of the MSCs in L onto individual
processes.
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Closure: example

L = Lin({Muyp, Map}) is not closed under =. This is shown as follows:

w = !(p1,U, double)?(U, p1, double)!(ps, N, inc)?(N, ps, inc) ¢ L

But: L = w since
@ for process p1, there is u € L with w [ p; =!(p1, U, double) = u [p;y, and
@ for process pa, there is v € L with w [ py =!(p2, N, inc) = v [ps, and
U =?(U, p1,double) = u [ U, and
N =?(N,ps,inc) = w|N.

©

[
|
for process U, there is u € L with w |
[

@ for process IV, there is v € L with w
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Weak CFMs

Definition (Weak CFM)

CFM A = (((Sp, Ap))peP, D, Sinit, F') is weak if D is a singleton set.

A weak CFM can be considered as CFM without synchronisation messages.
(Therefore, the component I may be omitted.) For simplicity, today we
address realisability with the aim of using weak CFMs as implementation.
Recall: weak CFMs are less expressive than CFMs.

Realisability revisited

A finite set {Mj, ..., My} of MSCs is realisable whenever
{My,...,M,} = L(A) for some weak CFM A
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Weak CFMs are closed under =

For any weak CFM A, Lin(A) is closed under |=.

Proof

Let A be a weak CFM. Since A is a CFM, any w € Lin(A) is well-formed.
Let w € Act™ be well-formed and assume Lin(A) E w.

To show that Lin(.A) is closed under |=, we prove that w € Lin(.A).

By definition of |=, for any process p there is v? € Lin(A) with v? [p = w [ p.
Let 7 be an accepting run of A on v” and let run = [p visit only states of A,
while taking only transitions in A,. Then, 7 [p is an accepting run of “local”
automaton A, on the word v? [p = w [ p.

The “local* accepting runs 7 [ p for all processes p together can be combined to
obtain an accepting run of A on w.

Thus, w € Lin(A). O
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Overview

© Characterisation and complexity of realisability
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Characterisation of realisability

L C Act* is realisable (by a weak CFM) iff L is closed under k.

On the black board. l

The finite set of MSCs {Mi, ..., M,} is realisable (by a weak CFM) iff
Ui, Lin(M;) is closed under |=.
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Characterisation of realisability

For any well-formed L C Act*:

L is regular and closed under =
if and only if
L = Lin(A) for some V-bounded weak CFM A.
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Complexity of realisability

Let co-NP be the class of all decision problems C with C, the
complement of C, is in NP.

A problem C'is co-NP complete if it is in co-NP, and it is co-NP hard,
i.e., each for any co-NP problem there is a polynomial reduction to C.

PSPACE
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Complexity of realisability

The decision problem “is a given set of MSCs realisable by a weak
CFM?” is co-NP complete.

© Membership in co-NP is proven by showing that its complement is
in NP. This is rather standard.

© The co-NP hardness proof is based on a polynomial reduction of
the join dependency problem to the above realisability problem.
(Details on the black board.)
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