

Theoretical Foundations of the UML

Lecture 8: Realisability

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

<http://moves.rwth-aachen.de/i2/uml09100/>

26. November 2012

Outline

- 1 Introduction
- 2 Properties of CFMs
 - Deterministic CFMs
 - Deadlock-free CFMs
 - Synchronisation messages add expressiveness
- 3 Realisability
- 4 Inference of MSCs
- 5 Characterisation and complexity of realisability

Overview

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness

3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability

Practical use of MSCs and CFMs

- MSCs and MSGs are used by software engineers to capture requirements.
- These are the expected behaviours of the distributed system under design.
- Distributed systems can be viewed as a collection of communicating automata.

Central problem

Can we synthesize, preferably in an automated manner, a CFM whose behaviours are precisely the behaviours of the MSCs (or MSG)?

This is known as the **realisability** problem.

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Questions:

- ➊ Is this possible? (That is, is this decidable?)
- ➋ If so, how complex is it to obtain such CFM?
- ➌ If so, how do such algorithms work?

Problem variants (1)

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.
- Consider MSGs that are non-local choice.

Problem variants (2)

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $L(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.
- Consider CFMs that are bounded.
-

Today's setting

Realisation of a finite set of MSCs by a CFM without synchronisation messages and that may possibly deadlock.

Realisation of a finite set of well-formed words (= language) by a CFM without synchronisation messages and that may possibly deadlock.

Results:

- ❶ CFMs without synchronisation messages are weaker than CFMs.
- ❷ Conditions for realisability of a finite set of MSCs by a weak CFM.
- ❸ Checking realisability for such sets is co-NP complete.

Overview

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness

3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability

Definition (Deterministic CFM)

A CFM \mathcal{A} is *deterministic* if for all $p \in \mathcal{P}$, the transition relation Δ_p satisfies the following two conditions:

- ❶ $(s, !(p, q, (a, m_1)), s_1) \in \Delta_p$ and $(s, !(p, q, (a, m_2)), s_2) \in \Delta_p$ implies $m_1 = m_2$ and $s_1 = s_2$
- ❷ $(s, ?(p, q, (a, m)), s_1) \in \Delta_p$ and $(s, ?(p, q, (a, m)), s_2) \in \Delta_p$ implies $s_1 = s_2$

Note:

From the same state, process p may have the possibility of sending messages to more than one process.

Example:

Example CFM (1) and (2) are deterministic, while (3) is not.

Definition (Deadlock-free CFM)

A CFM \mathcal{A} is *deadlock-free* if, for all $w \in Act^*$ and all runs γ of \mathcal{A} on w , there exist $w' \in Act^*$ and run γ' in \mathcal{A} such that $\gamma \cdot \gamma'$ is an accepting run of \mathcal{A} on $w \cdot w'$.

Example:

Example CFM (1) is deadlock-free, while (2) and (3) are not.

Theorem:

[Genest et. al, 2006]

For any $\exists B$ -bounded CFM \mathcal{A} , the decision problem “is \mathcal{A} deadlock-free” is decidable (and is PSPACE-complete).

Definition (Weak CFM)

A CFM is called a *weak* CFM if $|\mathbb{D}| = 1$.

Are CFMs more expressive than weak CFMs? That is, do there exist languages (over linearizations or, equivalently, MSCs) that can be generated by CFMs but not by weak CFMs? Yes.

CFM vs. weak CFM

Theorem:

Weak CFMs are less expressive than CFMs.

Proof.

For $m, n \geq 1$, let $M(m, n) \in \mathbb{M}$ over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ be given by:

- $M \upharpoonright 1 = (!\!(1, 2, \text{req}))^m \ (\?!(1, 2, \text{ack}) \ !\!(1, 2, \text{req}))^n$
- $M \upharpoonright 2 = \?!(2, 1, \text{req}) \ !\!(2, 1, \text{ack}))^n \ (\?!(2, 1, \text{req}))^m$

Claim: there is no weak CFM over $\{1, 2\}$ and $\{\text{req}, \text{ack}\}$ whose language is $L = \{M(n, n) \mid n > 0\}$. By contraposition. Suppose there is a weak CFM $\mathcal{A} = ((\mathcal{A}_1, \mathcal{A}_2), s_{init}, F)$ with $L(\mathcal{A}) = L$. For any $n > 0$, there is an accepting run of \mathcal{A} on $M(n, n)$. If n is sufficiently large, then

- \mathcal{A}_1 visits a cycle of length $i > 0$ to read the first n letters of $M(n, n) \upharpoonright 1$
- \mathcal{A}_2 visits a cycle of length $j > 0$ to read the last n letters of $M(n, n) \upharpoonright 2$

But then, there is an accepting run of \mathcal{A} on $M(n + (i \cdot j), n) \notin L$. □

Overview

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness

3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability

What is realisability?

Definition (Realisability)

- ① MSC M is **realisable** whenever $\{M\} = L(\mathcal{A})$ for some CFM \mathcal{A} .
- ② A finite set $\{M_1, \dots, M_n\}$ of MSCs is **realisable** whenever $\{M_1, \dots, M_n\} = L(\mathcal{A})$ for some CFM \mathcal{A} .
- ③ MSG G is **realisable** whenever $L(G) = L(\mathcal{A})$ for some CFM \mathcal{A} .

Alternatively

- ① MSC M is **realisable** whenever $Lin(M) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- ② Set $\{M_1, \dots, M_n\}$ of MSCs is **realisable** whenever $\bigcup_{i=1}^n Lin(M_i) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .
- ③ MSG G is **realisable** whenever $Lin(G) = Lin(\mathcal{A})$ for some CFM \mathcal{A} .

We will consider realisability using its characterisation by **linearisations**.

Overview

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness

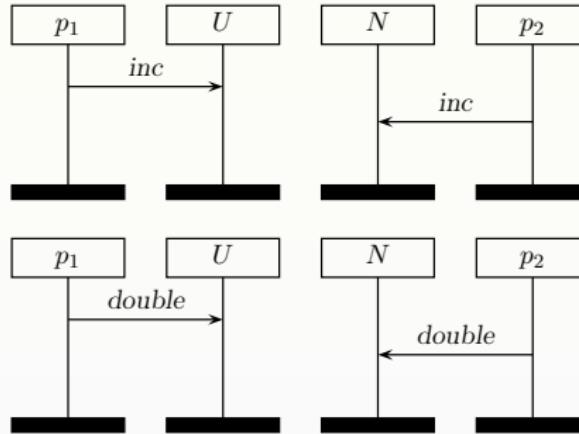
3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability

Two example MSCs

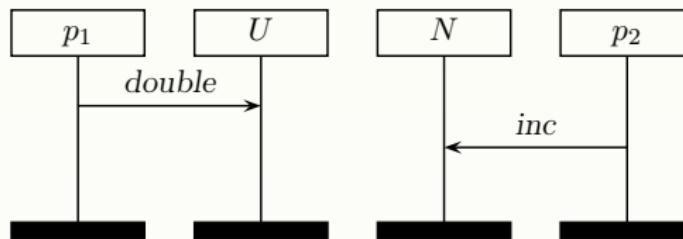
Consider the MSCs M_{inc} (top) and M_{db} (bottom):



Intuition

In M_{inc} , the volume of U (uranium) and N (nitric acid) is increased by one unit; in M_{db} both volumes are doubled. For safety reasons, it is essential that both ingredients are increased by the same amount!

A third, unavoidable fatal scenario



So:

The set $\{ M_{inc}, M_{db} \}$ is not realisable, as any CFM that realises this set also realises the inferred MSC M_{bad} above.

Note that:

Either of the MSCs M_{inc} or M_{db} alone does not imply M_{bad} .

Definition (Inference)

The set L of MSCs is said to **infer** MSC $M \notin L$ if and only if:

for any CFM \mathcal{A} . $L \subseteq L(\mathcal{A})$ implies $M \in L(\mathcal{A})$.

What we will show later on

The set L of MSCs is **realisable** iff L contains all MSCs that it infers.

Intuition

A realisable set of MSCs contains all its implied scenarios.

For computational purposes, an alternative characterisation is required.

Projection (1)

Definition (MSC projection)

For MSC M and process p let $M \upharpoonright p$, the **projection** of M on process p , be the ordered sequence of actions occurring at process p in M .

Lemma

An MSC M over the set $\mathcal{P} = \{p_1, \dots, p_n\}$ of processes is uniquely determined by the projections $M \upharpoonright p_i$ for $0 < i \leq n$.

Projection (2)

Definition (Word projection)

For word $w \in Act^*$ and process p , the **projection** of w on process p , denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned}\epsilon \upharpoonright p &= \epsilon \\ (!r, q, a) \cdot w \upharpoonright p &= \begin{cases} !(r, q, a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases}\end{aligned}$$

and similarly for receive actions.

Example

$$w = !(1, 2, \text{req})!(1, 2, \text{req})?(2, 1, \text{req})!(2, 1, \text{ack})?(2, 1, \text{req})!(2, 1, \text{ack})?(1, 2, \text{ack})!(1, 2, \text{req})$$

$$w \upharpoonright 1 = !(1, 2, \text{req})!(1, 2, \text{req})?(1, 2, \text{ack})!(1, 2, \text{req})$$

$$w \upharpoonright 2 = ?(2, 1, \text{req})!(2, 1, \text{ack})?(2, 1, \text{req})!(2, 1, \text{ack})$$

Projection (3)

Definition (Word projection)

For word $w \in Act^*$ and process p , the **projection** of w on process p , denoted $w \upharpoonright p$, is defined by:

$$\begin{aligned}\epsilon \upharpoonright p &= \epsilon \\ (!r, q, a) \cdot w \upharpoonright p &= \begin{cases} !(r, q, a) \cdot (w \upharpoonright p) & \text{if } r = p \\ w \upharpoonright p & \text{otherwise} \end{cases}\end{aligned}$$

and similarly for receive actions.

Lemma

A well-formed word w over Act^* which is given by the projections $w \upharpoonright p_1, \dots, w \upharpoonright p_n$ uniquely characterises an MSC $M(w)$ over $\mathcal{P} = \{p_1, \dots, p_n\}$.

Definition (Inference relation)

For well-formed^a $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \upharpoonright p = v \upharpoonright p)$$

^a L is called well-formed if all its elements are well-formed.

Definition (Closure under \models)

Language L is **closed** under \models whenever $L \models w$ implies $w \in L$.

Intuition

The closure condition says that the set of MSCs (or, equivalently, well-formed words) can be obtained from the projections of the MSCs in L onto individual processes.

Example

$L = Lin(\{M_{up}, M_{db}\})$ is not closed under \models . This is shown as follows:

$$w = !(p_1, U, double)?(U, p_1, double)!(p_2, N, inc)?(N, p_2, inc) \notin L$$

But: $L \models w$ since

- for process p_1 , there is $u \in L$ with $w \upharpoonright p_1 = !(p_1, U, double) = u \upharpoonright p_1$, and
- for process p_2 , there is $v \in L$ with $w \upharpoonright p_2 = !(p_2, N, inc) = v \upharpoonright p_2$, and
- for process U , there is $u \in L$ with $w \upharpoonright U = ?(U, p_1, double) = u \upharpoonright U$, and
- for process N , there is $v \in L$ with $w \upharpoonright N = ?(N, p_2, inc) = w \upharpoonright N$.

Definition (Weak CFM)

CFM $\mathcal{A} = (((S_p, \Delta_p))_{p \in \mathcal{P}}, \mathbb{D}, s_{init}, F)$ is **weak** if \mathbb{D} is a singleton set.

Intuition

A weak CFM can be considered as CFM without synchronisation messages. (Therefore, the component \mathbb{D} may be omitted.) For simplicity, today we address realisability with the aim of using weak CFMs as implementation. Recall: weak CFMs are less expressive than CFMs.

Realisability revisited

A finite set $\{M_1, \dots, M_n\}$ of MSCs is **realisable** whenever $\{M_1, \dots, M_n\} = L(\mathcal{A})$ for some **weak** CFM \mathcal{A}

Weak CFMs are closed under \models

Lemma:

For any weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models .

Proof

Let \mathcal{A} be a weak CFM. Since \mathcal{A} is a CFM, any $w \in Lin(\mathcal{A})$ is well-formed.

Let $w \in Act^*$ be well-formed and assume $Lin(\mathcal{A}) \models w$.

To show that $Lin(\mathcal{A})$ is closed under \models , we prove that $w \in Lin(\mathcal{A})$.

By definition of \models , for any process p there is $v^p \in Lin(\mathcal{A})$ with $v^p \upharpoonright p = w \upharpoonright p$.

Let π be an accepting run of \mathcal{A} on v^p and let run $\pi \upharpoonright p$ visit only states of \mathcal{A}_p while taking only transitions in Δ_p . Then, $\pi \upharpoonright p$ is an accepting run of “local” automaton \mathcal{A}_p on the word $v^p \upharpoonright p = w \upharpoonright p$.

The “local” accepting runs $\pi \upharpoonright p$ for all processes p together can be combined to obtain an accepting run of \mathcal{A} on w .

Thus, $w \in Lin(\mathcal{A})$. □

Overview

1 Introduction

2 Properties of CFMs

- Deterministic CFMs
- Deadlock-free CFMs
- Synchronisation messages add expressiveness

3 Realisability

4 Inference of MSCs

5 Characterisation and complexity of realisability

Theorem: [Alur et al., 2001]

$L \subseteq Act^*$ is realisable (by a weak CFM) iff L is closed under \models .

Proof

On the black board.

Corollary

The finite set of MSCs $\{M_1, \dots, M_n\}$ is realisable (by a weak CFM) iff $\bigcup_{i=1}^n Lin(M_i)$ is closed under \models .

Theorem

For any well-formed $L \subseteq Act^*$:

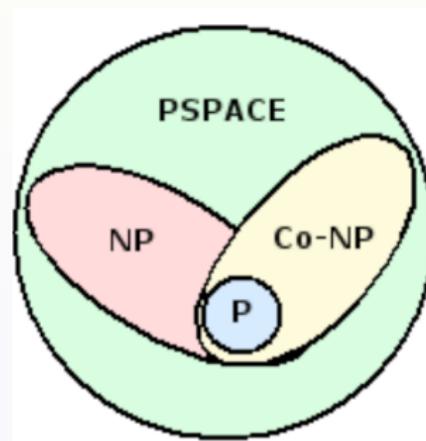
L is regular and closed under \models
if and only if

$L = Lin(\mathcal{A})$ for some \forall -bounded weak CFM \mathcal{A} .

Complexity of realisability

Let **co-NP** be the class of all decision problems C with \overline{C} , the complement of C , is in NP.

A problem C is **co-NP complete** if it is in co-NP, and it is co-NP hard, i.e., each for any co-NP problem there is a polynomial reduction to C .



Theorem: [Alur et al., 2001]

The decision problem “is a given set of MSCs realisable by a weak CFM?” is co-NP complete.

Proof

- ① Membership in co-NP is proven by showing that its complement is in NP. This is rather standard.
- ② The co-NP hardness proof is based on a polynomial reduction of the **join dependency problem** to the above realisability problem. (Details on the black board.)