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Specification to implementation

@ Consider an MSGs as complete system specifications
o they describe a full set of possible system scenarios

@ Can we obtain “realisations” that exhibit precisely these scenarios?

@ Map MSGs, i.e., scenarios onto an executable model

@ model each process by a finite-state automaton
o that communicate via unbounded FIFO channels

= Communicating finite-state machines
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The need for synchronisation messages
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Overview

© Communicating Finite-State Machines
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Preliminaries

Definition

We fix the following parameters:

o P a finite set of at least two (sequential) processes

o C a finite set of message contents
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Preliminaries

We fix the following parameters:

o P a finite set of at least two (sequential) processes

o C a finite set of message contents

Definition (communication actions, channels)

o Act, = {!(p,q,a) [g€ P\ {p}, acC} (forpeP)
“p sends message a to ¢
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Preliminaries

We fix the following parameters:

o P a finite set of at least two (sequential) processes

o C a finite set of message contents

Definition (communication actions, channels)

o Act, = {!(p,q,a) [g€ P\ {p}, acC} (forpeP)
“p sends message a to ¢

o Act):={?(p,q,a) | g € P\ {p}, a€C}
“p receives message a from ¢*
o Acty:= Act;, U Act;

o Act :=,ep Actp
o Ch:={(p,q) |p,q€P, p#q} “channels”
o Comm :={(!(p,q,a),?(q,p,a)) | (p,q) € Ch, a €}




Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp, &p))per, D, Singt, )
where
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Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure
A = (((Sp, Ap))pep; D, Sinit, F')
where

o D is a nonempty finite set of synchronization messages (or data)

We often write s ﬂp s' instead of (s,0,m,s’) € A, RWTH
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Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp; Ap))per: D, Sinit, F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:
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Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp; Ap))per: D, Sinit, F)
where
o D is a nonempty finite set of synchronization messages (or data)
o for each p € P:

e S, is a non-empty finite set of local states (the S, are disjoint)
o A, C S, x Act, x D x S is a set of local transitions

@ Sinit € S4 is the global initial state
o where Sy4 :=[[,cp Sy is the set of global states of A
o F C Sy is the set of global final states

We often write s ﬂp s' instead of (s,0,m,s’) € A, RWTH
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Communicating finite-state machines

CFM A over P = {1,2}
and C = {req, ack}

° D:{ 7-7]:|}
e S1 = {so,51,52}

o Sy = {to,t1,t2}
1(1,2, req )
) Alt So ———1 S0 ---
7(2,1, req )
AQZ tg ———2 11 ...
® Sinit = (50,%0)

o F'={(s2,t2)}

V.
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Communicating finite-state machines

V.
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Communicating finite-state machines

1(1,2,req) O

1(1,2,req)

V.
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(1,2, req)i
(1,2, req)

1(1,2,req) !(1,2,req)
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Communicating finite-state machines

(1,2, req)i—»@?(?, 1,req)
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Communicating finite-state machines

1(1,2,req) I—»g?(z 1,req)
1(2,1, ack)
(1,2, req)

?(2,1, req )

?(1,2,ack)

req

ack

1(1,2,req) !(1,2,req) ?(2,1,req) !(2,1,ack)
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Communicating finite-state machines

1(1,2,req) i::%?(l 1,req)
1(2,1, ack)
1(1,2,req) ?(2,1,req)

?(2,1, req )

?(1,2,ack)

ack

1(1,2,req) !(1,2,req) ?(2,1,req) (2,1, ack) ?(2,1,req)
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Communicating finite-state machines

1(1,2,req) ?(2,1,req)
1(2,1, ack)
1(1,2,req) ?(2,1,req)
1(2,1, ack)

?(2,1, req )

?(1,2,ack)

ack | ack

1(1,2,req) !(1,2,req) ?(2,1,1req) !(2,1,ack) ?(2,1,req) !(2,1,ack)
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Communicating finite-state machines

1(1,2,req) ?(2,1,req)

1(2,1, ack)

1(1,2,req) ?(2,1,req)

?(2,1, req ) 1(2,1, ack)
?(1,2, ack)

?(1,2,ack)
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Communicating finite-state machines

Example
1(1,2,req) ?(2,1,req)
(1,2, req) 1(2,1, ack)
1(1,2,req) ?(2,1,req)
?(1, 2, ack) ?(2,1, req ) 1(2,1, ack)
?(1,2, ack)
1(1,2,req)

?(1,2,ack)

@ &

ack

1(1,2,req) !(1,2,req) ?(2,1,req) !(2,1,ack) ?(2,1,req) !(2,1,ack) ?(1,2,ack) !(1,2,req)
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Communicating finite-state machines

Example
1(1,2,req) ?(2,1,req)
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Communicating finite-state machines

?(2,1, req ) ack

ack

req

N

?(1,2,ack) e

1(1,2,req) !(1,2,req) ?(2,1,req) (2,1, ack) ?(2,1,req) (2, 1,ack) ?(1,2,ack) !(1,2,req) ?(1,2,ack) !(1,2,req) ?(2
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Overview

© Semantics of Communicating Finite-State Machines

Joost-Pieter Katoen Theoretical Foundations of the



Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, sinit, F) be a CFM over P and C.

Definition (configurations)

Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}
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Let A= (((Sp, Ap))per, D, sinit, F) be a CFM over P and C.

Definition (configurations)
Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:
@ sending a message: ((3,7),!(p,q,a),m, (5',7)) € =>4 if
° (5[, !(p,q,a),m,5'[p]) € A
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o s[r] =9r] for allr € P\ {p}
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Formal semantics of CFMs

Let A= (((Sp, Ap))per, D, sinit, F) be a CFM over P and C.

Definition (configurations)
Configurations of A: Conf, := Sa x {n|n: Ch— (C x D)*}

Definition (global step)
=4 C Conf 4 x Act x D x Conf 4 is defined as follows:
@ sending a message: ((3,7),!(p,q,a),m, (5',7)) € =>4 if
< (g[pL '(p7 q, a)7 m7§l[p]) € AP
o 1" =nl(p,q) = (a,m) - n((p, )]
o s[r] =9r] for allr € P\ {p}
@ receipt of a message: ((5,7),7(p,q,a),m,(5,1)) € =4 if
9 (E[p], ?(p7 q, a)7 m7§1[p]> € AP
o 1(g,p)) =w- (a,m) # e and 0" = n[(q, p) = w]

o 3[r]=3[r] forallr € P\ {p
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Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition (accepting runs)

A run of Aon oy...0, € Act® is a sequence p = YoMLY - - - Vn—1 Mn Vn
such that

® Y0 = (Sinit, M) With 7. mapping any channel to ¢

04 ,My;

@ yi_j=——=47; forany i € {1,...,n}
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Linearizations of a CFM

Let A = (((Sp, Ap))per, D, Sinit, F') be a CEM over P and C.

Definition (accepting runs)

A run of Aon oy...0, € Act® is a sequence p = YoMLY - - - Vn—1 Mn Vn
such that

@ Y0 = (S4nit, me) with . mapping any channel to ¢

04 ,My;

@ yi_j=——=47; forany i € {1,...,n}

Run p is accepting if v, € F x {n:}.

Definition (linearization of a CFM)
The set of linearizations of CFM A:

Lin(A) := {w € Act” | there is an accepting run of A on w}
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

vy
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=1(1,2req))" (7(1,2,ack) !(1,2,req))"
w2 =(?(2,1,req) !(2,1,ack))” (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |u|!(p,q,a) - Z |u‘?(q,p,a) > O}

acC acC p
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Linearizations of an example CFM

CFM A over
{1,2} and {req, ack}

@ !(1,2,req) and (2,1, ack) are always independent.

@ !(1,2,req) and ?(1,2,ack) are always dependent.

@ !(1,2,req) and ?(2,1,req) are sometimes independent.
~> non-regular (word) languages

vy
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Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

Lin(A) = {w € Act™ | there is n > 1 such that:
wll=(!(1,2,req))" (?(1,2,ack) (1,2,req))"
w2 =(?(2,1,req) !(2,1,ack))” (?(2,1,req))"
for any u € Pref(w) and (p,q) € Ch:

Z |u|!(p,q,a) - Z |u‘?(q,p,a) > O}

acC acC p
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Linearizations and MSCs of an example CFM

CFM A over
{1,2} and {req, ack}

L(A) = {]W € M | there is n > 1 such that:

M1 =(1(1,2,req))* (?2(1,2,ack) !(1,2,req))"
M2 =(?(2,1,req) !(2,1,ack))” (?(2, 1.1'(\(1))/"}

vy

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21




Overview

@ Emptiness Problem for CFMs
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Elementary questions are undecidable for CFMs

Proposition (

The following problem is undecidable (even if C is a singleton):

InPUT: CFM A over processes P and message contents C
QUESTION: Is L(A) empty?

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21



Elementary questions are undecidable for CFMs

Proposition ( )

The following problem is undecidable (even if C is a singleton):

INPUT: CFM A over processes P and message contents C
QUESTION: Is L(A) empty?

Proof (sketch)

Reduction from halting problem for Turing machine
™ = (Q,%,A,0,qo,qf) to emptiness for a CFM with two processes.

Build CFM A = ((A1,.A2), D, sinit, F') over {1,2} and some singleton
set such that L(A) # @ iff TM can reach gy .
@ Process 1 sends current configurations to process 2

@ Process 2 chooses successor configurations and sends them to 1

o D= ((Zu{D) x (QU{_h) u{#}

v
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A CFM simulating a Turing machine

Proof (contd.)

79{D<—qu

7 3

o [2]] 4
q1 4

=1 {b !
s N
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A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (go,a,a’, L, q3) is applied so
that process 2

@ sends b unchanged back to process 1

o detects (receives) a < g2

o sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

o receives # so that the symbol [0 < g3 has to be inserted before
returning #

o
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A CFM simulating a Turing machine

Proof (contd.)

@ Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (go,a,a’, L, q3) is applied so
that process 2

@ sends b unchanged back to process 1

o detects (receives) a < g2

o sends a’ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with g3

o receives # so that the symbol [0 < g3 has to be inserted before
returning #

@ Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in favor
of (g2,a,d’, R, q3) while reading b, it would have to

o send b < g3 instead of just b, entering some state t(a < g2)
@ receive a < g2 (no other symbol can be received in state t(a < g2))
o send a’ back to process 1 )
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A CFM simulating a Turing machine

Proof (contd.)
@ Introduce local final states sy and t¢, one for process 1 and one for
process 2, respectively (i.e., F' = {(sf,t¢)} and A is locally
accepting).
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A CFM simulating a Turing machine

Proof (contd.)
@ Introduce local final states sy and t¢, one for process 1 and one for
process 2, respectively (i.e., F' = {(sf,t¢)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).
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A CFM simulating a Turing machine

Proof (contd.)
@ Introduce local final states sy and t¢, one for process 1 and one for
process 2, respectively (i.e., F' = {(sf,t¢)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into ¢y and to empty the channel
(1,2) as soon as it receives a letter ¢ < ¢ for some c.
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A CFM simulating a Turing machine

Proof (contd.)
@ Introduce local final states sy and t¢, one for process 1 and one for
process 2, respectively (i.e., F' = {(sf,t¢)} and A is locally
accepting).

@ At any time, process 1 may switch into sy, in which arbitrary and
arbitrarily many messages can be received to empty channel (2,1).

@ Process 2 is allowed to move into ¢y and to empty the channel
(1,2) as soon as it receives a letter ¢ < ¢ for some c.

@ As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. O
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