
Theoretical Foundations of the UML
Lecture 6: Communicating Finite-State Machines

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/i2/uml09100/

4. November 2012

Joost-Pieter Katoen Theoretical Foundations of the UML 1/21

Outline

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/21

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 3/21

Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Map MSGs, i.e., scenarios onto an executable model
model each process by a finite-state automaton
that communicate via unbounded FIFO channels

⇒ Communicating finite-state machines

Joost-Pieter Katoen Theoretical Foundations of the UML 4/21

Intuition

Joost-Pieter Katoen Theoretical Foundations of the UML 5/21

The need for synchronisation messages

Joost-Pieter Katoen Theoretical Foundations of the UML 6/21

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 7/21

Preliminaries

Definition
We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)
“p sends message a to q“

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)
“p sends message a to q“
Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
“p receives message a from q“

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)
“p sends message a to q“
Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
“p receives message a from q“
Actp := Act !p ∪ Act?p

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)
“p sends message a to q“
Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
“p receives message a from q“
Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)
“p sends message a to q“
Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
“p receives message a from q“
Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q} “channels“

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Preliminaries

Definition
We fix the following parameters:

P a finite set of at least two (sequential) processes

C a finite set of message contents

Definition (communication actions, channels)

Act !p := {!(p, q, a) | q ∈ P \ {p}, a ∈ C} (for p ∈ P)
“p sends message a to q“
Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
“p receives message a from q“
Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q} “channels“
Comm := {(!(p, q, a), ?(q, p, a)) | (p, q) ∈ Ch, a ∈ C}

Joost-Pieter Katoen Theoretical Foundations of the UML 8/21

Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
D is a nonempty finite set of synchronization messages (or data)

We often write s
σ,m−→p s

′ instead of (s, σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
D is a nonempty finite set of synchronization messages (or data)
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

We often write s
σ,m−→p s

′ instead of (s, σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
D is a nonempty finite set of synchronization messages (or data)
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

sinit ∈ SA is the global initial state
where SA :=

∏
p∈P Sp is the set of global states of A

We often write s
σ,m−→p s

′ instead of (s, σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F)

where
D is a nonempty finite set of synchronization messages (or data)
for each p ∈ P:

Sp is a non-empty finite set of local states (the Sp are disjoint)
∆p ⊆ Sp ×Actp × D× Sp is a set of local transitions

sinit ∈ SA is the global initial state
where SA :=

∏
p∈P Sp is the set of global states of A

F ⊆ SA is the set of global final states

We often write s
σ,m−→p s

′ instead of (s, σ,m, s′) ∈ ∆p

Joost-Pieter Katoen Theoretical Foundations of the UML 9/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over P = {1, 2}
and C = {req, ack}

D = { , , }
S1 = {s0, s1, s2}
S2 = {t0, t1, t2}
∆1: s0

!(1,2, req)−−−−−−→1 s0 ...

∆2: t0
?(2,1, req)−−−−−−→2 t1 ...

sinit = (s0, t0)

F = {(s2, t2)}

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

. . .

. . .

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req. . .

. . .

!(1, 2, req)

!(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

reqreq. . .

. . .

!(1, 2, req)

!(1, 2, req)

!(1, 2, req) !(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

ack ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)
!(2, 1, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)
!(2, 1, ack)

?(1, 2, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req

ack

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)
!(2, 1, ack)

?(1, 2, ack)
!(1, 2, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)
!(2, 1, ack)

?(1, 2, ack)
!(1, 2, req)
?(1, 2, ack)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

reqreq. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)
!(2, 1, ack)

?(1, 2, ack)
!(1, 2, req)
?(1, 2, ack)
!(1, 2, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req)

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

req. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)
!(2, 1, ack)

?(1, 2, ack)
!(1, 2, req)
?(1, 2, ack)
!(1, 2, req)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req) ?(2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

. . .

. . .

!(1, 2, req)

!(1, 2, req)

?(2, 1, req)
!(2, 1, ack)
?(2, 1, req)
!(2, 1, ack)

?(1, 2, ack)
!(1, 2, req)
?(1, 2, ack)
!(1, 2, req)

?(2, 1, req)

?(2, 1, req)

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req) ?(2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

. . .

. . .

1 2
req

req

ack

ack

req

req

!(1, 2, req) !(1, 2, req) ?(2, 1, req) !(2, 1, ack) ?(2, 1, req) !(2, 1, ack) ?(1, 2, ack) !(1, 2, req) ?(1, 2, ack) !(1, 2, req) ?(2

Joost-Pieter Katoen Theoretical Foundations of the UML 10/21

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 11/21

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.
Definition (configurations)
Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.
Definition (configurations)
Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.
Definition (configurations)
Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

Formal semantics of CFMs

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.
Definition (configurations)
Configurations of A: ConfA := SA × {η | η : Ch→ (C × D)∗}

Definition (global step)
=⇒A ⊆ ConfA × Act × D× ConfA is defined as follows:

sending a message: ((s, η), !(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η(q, p)) = w · (a,m) �= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
Joost-Pieter Katoen Theoretical Foundations of the UML 12/21

Example

Joost-Pieter Katoen Theoretical Foundations of the UML 13/21

Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.
Definition (accepting runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.
Definition (accepting runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F) be a CFM over P and C.
Definition (accepting runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition (linearization of a CFM)
The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}

Joost-Pieter Katoen Theoretical Foundations of the UML 14/21

Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{
w ∈ Act∗ | there is n � 1 such that:

w �1 = !(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w �2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑
a∈C
|u|!(p,q,a) −

∑
a∈C
|u|?(q,p,a) � 0

}

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

Linearizations of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

!(1, 2, req) and !(2, 1, ack) are always independent.
!(1, 2, req) and ?(1, 2, ack) are always dependent.
!(1, 2, req) and ?(2, 1, req) are sometimes independent.

� non-regular (word) languages

Joost-Pieter Katoen Theoretical Foundations of the UML 15/21

Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{
w ∈ Act∗ | there is n � 1 such that:

w �1 = (!(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w �2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑
a∈C
|u|!(p,q,a) −

∑
a∈C
|u|?(q,p,a) � 0

}

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req)

?(2, 1, req)

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req) ?(1, 2, ack)

?(2, 1, req) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

L(A) =
{
M ∈M | there is n ≥ 1 such that:

M �1 = (!(1, 2, req))k (?(1, 2, ack) !(1, 2, req))n

M �2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))k
}

Joost-Pieter Katoen Theoretical Foundations of the UML 16/21

Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs

Joost-Pieter Katoen Theoretical Foundations of the UML 17/21

Elementary questions are undecidable for CFMs

Proposition ([Brand & Zafiropulo 1983])
The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

Elementary questions are undecidable for CFMs

Proposition ([Brand & Zafiropulo 1983])
The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

Proof (sketch)
Reduction from halting problem for Turing machine
TM = (Q,Σ,∆,�, q0, qf) to emptiness for a CFM with two processes.
Build CFM A = ((A1,A2),D, sinit , F) over {1, 2} and some singleton
set such that L(A) �= ∅ iff TM can reach qf .

Process 1 sends current configurations to process 2

Process 2 chooses successor configurations and sends them to 1

D =
(
(Σ ∪ {�}) × (Q ∪ {_})

)
∪ {#}

Joost-Pieter Katoen Theoretical Foundations of the UML 18/21

A CFM simulating a Turing machine

Proof (contd.)

�

q0

a �

q1

a

q2

b

�

q3

a′ b

...

�TM

�TM

�TM

γ0

{

γ1




γ2




γ3


 ...




γ1




γ2




γ3

�← q0

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#

Joost-Pieter Katoen Theoretical Foundations of the UML 19/21

A CFM simulating a Turing machine

Proof (contd.)
Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a

′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol �← q3 has to be inserted before
returning #

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

A CFM simulating a Turing machine

Proof (contd.)
Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a

′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol �← q3 has to be inserted before
returning #

Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in favor
of (q2, a, a′, R, q3) while reading b, it would have to

send b← q3 instead of just b, entering some state t(a← q2)
receive a← q2 (no other symbol can be received in state t(a← q2))
send a′ back to process 1

Joost-Pieter Katoen Theoretical Foundations of the UML 20/21

A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally
accepting).

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf)} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. �

Joost-Pieter Katoen Theoretical Foundations of the UML 21/21

