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Specification to implementation

Consider an MSGs as complete system specifications
they describe a full set of possible system scenarios

Can we obtain “realisations“ that exhibit precisely these scenarios?

Map MSGs, i.e., scenarios onto an executable model
model each process by a finite-state automaton
that communicate via unbounded FIFO channels

⇒ Communicating finite-state machines
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Intuition
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The need for synchronisation messages
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Preliminaries

Definition
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C a finite set of message contents
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“p sends message a to q“
Act?p := {?(p, q, a) | q ∈ P \ {p}, a ∈ C}
“p receives message a from q“
Actp := Act !p ∪ Act?p

Act :=
⋃

p∈P Actp

Ch := {(p, q) | p, q ∈ P, p �= q} “channels“
Comm := {(!(p, q, a), ?(q, p, a)) | (p, q) ∈ Ch, a ∈ C}
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Communicating finite-state machines

Definition
A communicating finite-state machine (CFM) over P and C is a
structure

A = (((Sp,∆p))p∈P ,D, sinit , F )
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∏
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Communicating finite-state machines

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over P = {1, 2}
and C = {req, ack}

D = { , , }
S1 = {s0, s1, s2}
S2 = {t0, t1, t2}
∆1: s0

!(1,2, req )−−−−−−→1 s0 ...

∆2: t0
?(2,1, req )−−−−−−→2 t1 ...

sinit = (s0, t0)

F = {(s2, t2)}
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(s[p], !(p, q, a),m, s′[p]) ∈ ∆p

η′ = η[(p, q) := (a,m) · η((p, q))]
s[r] = s′[r] for all r ∈ P \ {p}

receipt of a message: ((s, η), ?(p, q, a),m, (s′, η′)) ∈ =⇒A if
(s[p], ?(p, q, a),m, s′[p]) ∈ ∆p

η(q, p)) = w · (a,m) �= ε and η′ = η[(q, p) := w]

s[r] = s′[r] for all r ∈ P \ {p}
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Linearizations of a CFM

Let A = (((Sp,∆p))p∈P ,D, sinit , F ) be a CFM over P and C.
Definition (accepting runs)
A run of A on σ1 . . . σn ∈ Act∗ is a sequence ρ = γ0 m1 γ1 . . . γn−1mn γn
such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}
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such that

γ0 = (sinit , ηε) with ηε mapping any channel to ε

γi−1
σi,mi⇒A γi for any i ∈ {1, . . . , n}

Run ρ is accepting if γn ∈ F × {ηε}.

Definition (linearization of a CFM)
The set of linearizations of CFM A:

Lin(A) := {w ∈ Act∗ | there is an accepting run of A on w}
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Linearizations of an example CFM
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CFM A over
{1, 2} and {req, ack}

Lin(A) =
{
w ∈ Act∗ | there is n � 1 such that:

w �1 = !(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w �2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑
a∈C
|u|!(p,q,a) −

∑
a∈C
|u|?(q,p,a) � 0

}
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Example
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!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

!(1, 2, req) and !(2, 1, ack) are always independent.
!(1, 2, req) and ?(1, 2, ack) are always dependent.
!(1, 2, req) and ?(2, 1, req) are sometimes independent.

� non-regular (word) languages
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Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

Lin(A) =
{
w ∈ Act∗ | there is n � 1 such that:

w �1 = (!(1, 2, req))n (?(1, 2, ack) !(1, 2, req))n

w �2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))n

for any u ∈ Pref (w) and (p, q) ∈ Ch:
∑
a∈C
|u|!(p,q,a) −

∑
a∈C
|u|?(q,p,a) � 0

}
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Linearizations and MSCs of an example CFM

Example

s0

s1

s2

t0

t1

t2

!(1, 2, req )

?(2, 1, req )

?(1, 2, ack)

!(2, 1, ack)!(1, 2, req ) ?(1, 2, ack)

?(2, 1, req ) !(2, 1, ack)

CFM A over
{1, 2} and {req, ack}

L(A) =
{
M ∈M | there is n ≥ 1 such that:

M �1 = (!(1, 2, req))k (?(1, 2, ack) !(1, 2, req))n

M �2 = (?(2, 1, req) !(2, 1, ack))n (?(2, 1, req))k
}
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Overview

1 Introduction

2 Communicating Finite-State Machines

3 Semantics of Communicating Finite-State Machines

4 Emptiness Problem for CFMs
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Elementary questions are undecidable for CFMs

Proposition ([Brand & Zafiropulo 1983])
The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?
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Elementary questions are undecidable for CFMs

Proposition ([Brand & Zafiropulo 1983])
The following problem is undecidable (even if C is a singleton):

Input: CFM A over processes P and message contents C
Question: Is L(A) empty?

Proof (sketch)
Reduction from halting problem for Turing machine
TM = (Q,Σ,∆,�, q0, qf ) to emptiness for a CFM with two processes.
Build CFM A = ((A1,A2),D, sinit , F ) over {1, 2} and some singleton
set such that L(A) �= ∅ iff TM can reach qf .

Process 1 sends current configurations to process 2

Process 2 chooses successor configurations and sends them to 1

D =
(
(Σ ∪ {�}) × (Q ∪ {_})

)
∪ {#}
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A CFM simulating a Turing machine

Proof (contd.)

�

q0

a �

q1

a

q2

b

�

q3

a′ b

...

�TM

�TM

�TM

γ0

{

γ1




γ2




γ3


 ...




γ1




γ2




γ3

�← q0

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#

�← q1

a

#

b

a← q2

#

b

a′

�← q3

#
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A CFM simulating a Turing machine

Proof (contd.)
Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a

′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol �← q3 has to be inserted before
returning #
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A CFM simulating a Turing machine

Proof (contd.)
Left or standstill transition: Process 2 may just wait for a symbol
containing a state of TM and to alter it correspondingly. In the
example, the left-moving transition (q2, a, a

′, L, q3) is applied so
that process 2

sends b unchanged back to process 1
detects (receives) a← q2
sends a′ to process 1 entering a state indicating that the symbol to
be sent next has to be equipped with q3
receives # so that the symbol �← q3 has to be inserted before
returning #

Right transition: Process 2 has to guess what the position right
before the head is. For example, provided process 2 decided in favor
of (q2, a, a′, R, q3) while reading b, it would have to

send b← q3 instead of just b, entering some state t(a← q2)
receive a← q2 (no other symbol can be received in state t(a← q2))
send a′ back to process 1
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A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).
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A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).
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A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.
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A CFM simulating a Turing machine

Proof (contd.)
Introduce local final states sf and tf , one for process 1 and one for
process 2, respectively (i.e., F = {(sf , tf )} and A is locally
accepting).

At any time, process 1 may switch into sf , in which arbitrary and
arbitrarily many messages can be received to empty channel (2, 1).

Process 2 is allowed to move into tf and to empty the channel
(1, 2) as soon as it receives a letter c← qf for some c.

As process 2 modifies a configuration of TM locally, finitely many
states are sufficient in A. �
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