

Theorem 1. $L \subseteq \text{Act}^*$ is realizable if and only if L is closed under \models .

\implies . Assume L is realizable. Thus, there exists a weak CFM A (a CFM without synchronization messages) such that $L = \text{Lin}(A)$. As $\text{Lin}(A)$ only contains linearizations, and every linearization is well-formed, each word in L is well formed. Let $w \in \text{Act}^*$, be well-formed, and assume $L \models w$. By definition of \models , this means that for every process p there exists a word $v^p \in L$ such that $v^p \upharpoonright p = w \upharpoonright p$. We show that $w \in L$. (Then it follows that L is closed under \models .) This goes as follows.

Given $v^p \in L$, let π be an accepting run of CFM A on v^p . (Such run does exist, otherwise, v^p would not belong to L .) Let $\pi \upharpoonright p$ be the projection of run π of A by only considering the transitions along π that take place at process p . Thus, transitions along $\pi_p = \pi \upharpoonright p$ correspond to the "local" transitions of process p . It follows from $v^p \in L$ that the local run π_p is an accepting run of local automaton (NFA) A_p (of process p) on $v^p \upharpoonright p$ (which equals $w \upharpoonright p$). Here, accepting means that the local run π_p ends in a local accept state of A_p . This applies to all processes $P = \{p_1, \dots, p_n\}$ of the CFM. The local accepting runs $\pi_{p_1}, \dots, \pi_{p_n}$ can be combined to obtain a run, π^w say, of CFM A on w in a straightforward manner. The run π^w is accepting, as all processes end in a local accepting state, and all channels are empty, as π was accepting and π^w is constituted from "bits" spanning π . Thus there cannot be "open" receipts. Thus $w \in L$.

\Leftarrow . Assume L is closed under \models . As \models is only defined for well-formed words, each word in L is well formed. Moreover, by definition of \models , $L \models w$ implies $w \in L$ for each well-formed $w \in \text{Act}^*$. Proof obligation: L is realizable. This goes as follows:

Let A_p be an NFA over the alphabet Act_p accepting $L_p = \{w \upharpoonright p \mid w \in L\}$. A_p thus accepts all projections to process p of words in L . Let weak CFM $A = ((A_p)_{p \in P}, s_{\text{init}}, F)$ with $F = \prod_{p \in P} F_p$. We now claim that A is a realization of L , i.e., $\text{Lin}(A) = L$. This claim can be proven as follows:

\supseteq . Let $w \in L$. By construction of CFM A , $\text{Lin}(A_p) = L_p$. But then $w \in \text{Lin}(A)$.

\subseteq . Let $w \in \text{Lin}(A)$. Then $w \upharpoonright p \in \text{Lin}(A_p)$ for each $p \in P$. By definition of \models , it follows $L \models w$. Since L is closed under \models , it follows $w \in L$.

Theorem 2. L is safely realizable iff L is closed under \models and \models^{df} .

\implies . Assume L is safely realizable. Then:

1. L is realizable, and by the previous theorem, L is closed under \models .
2. There exists a deadlock-free CFM A with $Lin(A) = L$. By the previous lemma, it follows that $Lin(A) = L$ is closed under \models^{df} .

\Leftarrow . Assume L is closed under \models and \models^{df} . Let $L_p = \{w \upharpoonright p \mid w \in L\}$ for any process $p \in P$. Since L_p is regular, we may assume that DFA A_p (with state set Q_p , initial state s_{init}^p and set F_p of accepting states) is such that $L(A_p) = L_p$. W.l.o.g. we assume that A_p only has productive states, i.e., for any state q in A_p it is possible to reach an accept state in F_p . We now consider the weak CFM: $A = ((A_p)_{p \in P}, s_{init}, F)$ with: $s_{init} = \prod_{p \in P} s_{init}^p$, thus $s_{init} = (s_{init}^{p_1}, \dots, s_{init}^{p_n})$, $F = \prod_{p \in P} F_p$ with $F_p \subseteq Q_p$.

Now we claim: A is deadlock-free and $Lin(A) = L$. (*) Obviously, then L is safely realizable. The proof of this claim goes as follows:

1. A is deadlock-free. Assume A has read the input word $w \in \text{Act}^*$ (not necessarily accepted). Then for every process p , $w \upharpoonright p$ is a prefix of a word in L_p . Since L is closed under \models^{df} , it follows by definition of \models^{df} that $w \in \text{pref}(L)$. As every A_p is deterministic, CFM A is able to reach an accepting state after reading w by processing the word $w.u \in L$. So, there exists $u \in \text{Act}^*$ with $w.u \in L$. As this applies to every input word w , A is deadlock-free.

2. $Lin(A) = L$. This is proven by:

\supseteq . Let $w \in L$. Then, for every process p , $w \upharpoonright p \in L_p$. Thus, DFA A_p has an accepting run for $w \upharpoonright p$ and as $F = \prod_{p \in P} F_p$, CFM A has an accepting run for w . So, $w \in Lin(A)$.

\subseteq . Let $w \in Lin(A)$. As every word in $Lin(A)$ is well-formed, w is well-formed. Since $F = \prod_{p \in P} F_p$, $w \upharpoonright p \in L_p$ for each process p . Thus $L \models w$. Since L is closed under \models , it holds $w \in L$.