

Modeling and Analysis of Hybrid Systems

Hybrid systems and their modeling

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2011

Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

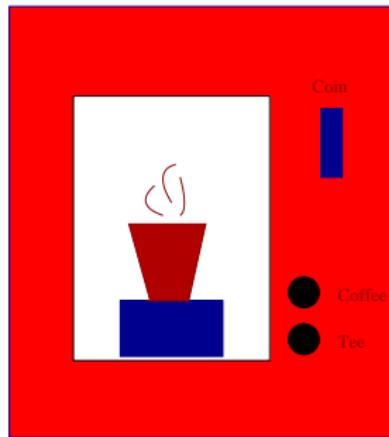
4 Hybrid automata

Motivation

- Dynamical system: continuous evolution of the state over time
- Time model:
 - continuous $\rightsquigarrow t \in \mathbb{R}$
 - discrete $\rightsquigarrow k \in \mathbb{Z}$
 - hybrid \rightsquigarrow continuous time, but there are also discrete "instants" where something "special" happens
- State model:
 - continuous \rightsquigarrow evolution described by *ordinary differential equations (ODEs)* $\dot{x} = f(x, u)$
 - discrete \rightsquigarrow evolution described by *difference equations* $x_{k+1} = f(x_k, u_k)$
 - hybrid \rightsquigarrow continuous space, but there are also discrete "instants" for that something "special" holds

Example: Vending machine

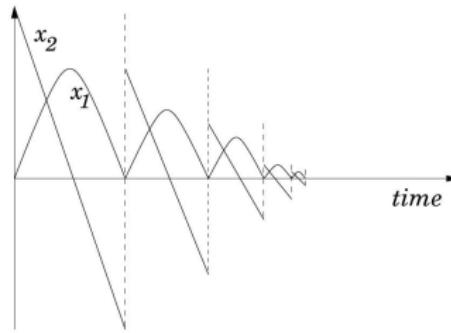
- insert coin
- choose beverage
(coffee/tee)
- wait for cup
- take cup



~~ Discrete

Example: Bouncing ball

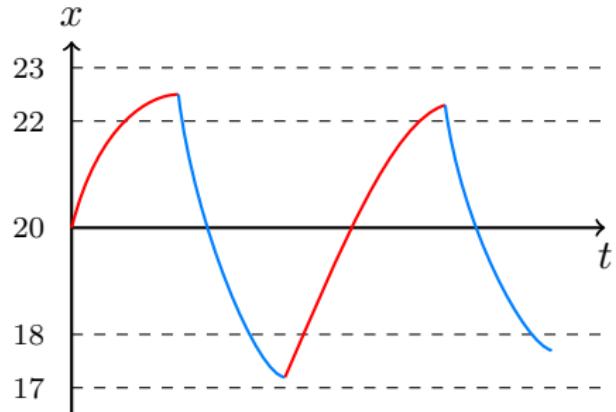
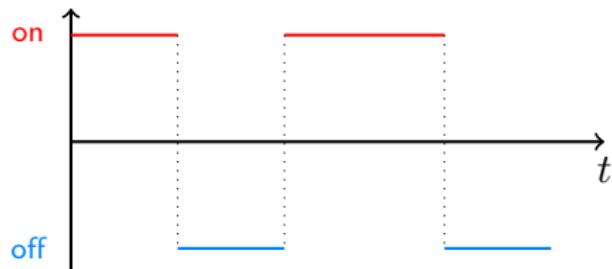
- vertical position of the ball x_1
- velocity x_2
- **continuous** changes of position between bounces
- **discrete** changes at bounce time



~~ Hybrid

Example: Thermostat

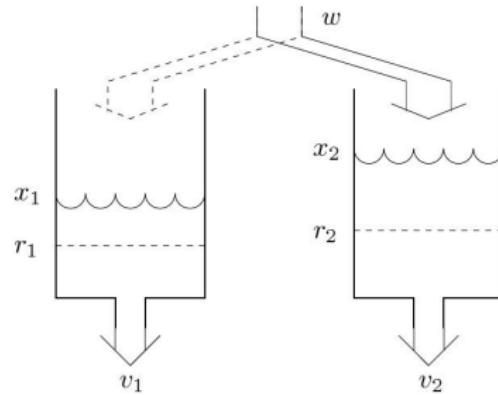
- Temperature x is controlled by switching a heater on and off
- x is regulated by a thermostat:
 - $17^\circ \leq x \leq 18^\circ \rightsquigarrow$ "heater on"
 - $22^\circ \leq x \leq 23^\circ \rightsquigarrow$ "heater off"



\rightsquigarrow Hybrid

Example: Water tank system

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly **one** tank at one point in time
- w can switch between tanks instantaneously



~~ Hybrid

There are much more complex examples of hybrid systems...

- Automobils, trains, etc.
- Automated highway systems
- Collision-avoidance and free flight for aircrafts
- Biological cell growth and division

Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

4 Hybrid automata

Definition

A **labeled state transition system** (LSTS) is a tuple
 $\mathcal{LSTS} = (\Sigma, \text{Lab}, \text{Edge}, \text{Init})$ with

- a (probably infinite) state set Σ ,
- a label set Lab ,
- a transition relation $\text{Edge} \subseteq \Sigma \times \text{Lab} \times \Sigma$,
- non-empty set of initial states $\text{Init} \subseteq \Sigma$.

Operational semantics is trivial:

$$\frac{(\sigma, a, \sigma') \in Edge}{\sigma \xrightarrow{a} \sigma'}$$

- system **run** (execution): $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ with $\sigma_0 \in Init$
- a state is called **reachable** iff there is a run leading to it

Pedestrian light

Larger or more complex systems are often modeled **compositionally**.

- The global system is given by the **parallel composition** of the components.
- **Component-local, non-synchronizing transitions**, having labels belonging to one component's label set only, are executed in an **interleaved** manner.
- **Synchronizing transitions** of the components, agreeing on the label, are executed **synchronously**.

Parallel composition of LSTSs

Definition

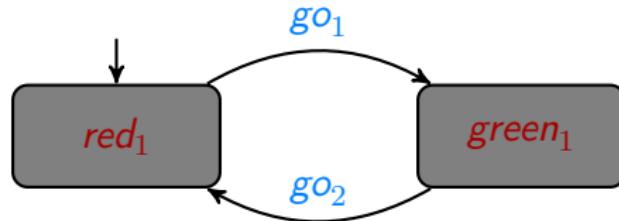
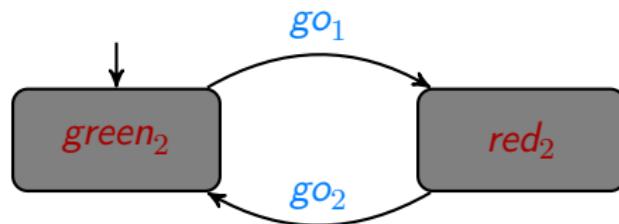
Let

$$\begin{aligned}\mathcal{LSTS}_1 &= (\Sigma_1, \text{Lab}_1, \text{Edge}_1, \text{Init}_1) \text{ and} \\ \mathcal{LSTS}_2 &= (\Sigma_2, \text{Lab}_2, \text{Edge}_2, \text{Init}_2)\end{aligned}$$

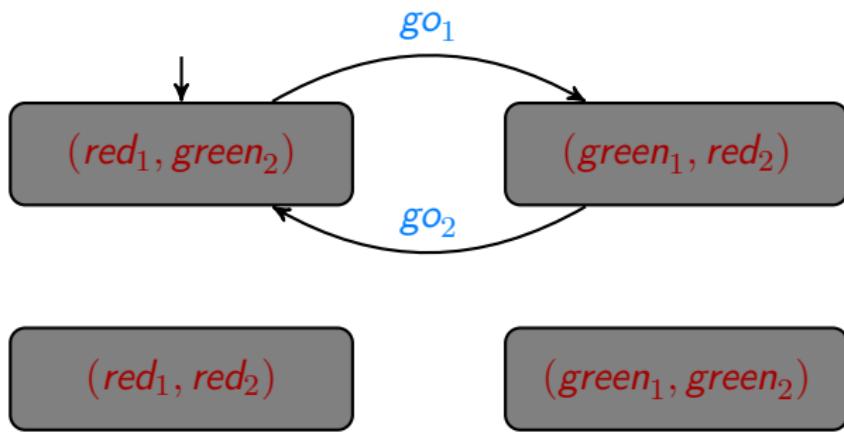
be two LSTSs. The *parallel composition* $\mathcal{LSTS}_1 \parallel \mathcal{LSTS}_2$ is the LSTS $(\Sigma, \text{Lab}, \text{Edge}, \text{Init})$ with

- $\Sigma = \Sigma_1 \times \Sigma_2$,
- $\text{Lab} = \text{Lab}_1 \cup \text{Lab}_2$,
- $((s_1, s_2), a, (s'_1, s'_2)) \in \text{Edge}$ iff
 - 1 $a \in \text{Lab}_1 \cap \text{Lab}_2$, $(s_1, a, s'_1) \in \text{Edge}_1$, and $(s_2, a, s'_2) \in \text{Edge}_2$, or
 - 2 $a \in \text{Lab}_1 \setminus \text{Lab}_2$, $(s_1, a, s'_1) \in \text{Edge}_1$, and $s_2 = s'_2$, or
 - 3 $a \in \text{Lab}_2 \setminus \text{Lab}_1$, $(s_2, a, s'_2) \in \text{Edge}_2$, and $s_1 = s'_1$,
- $\text{Init} = (\text{Init}_1 \times \text{Init}_2)$.

Two traffic lights



Two traffic lights



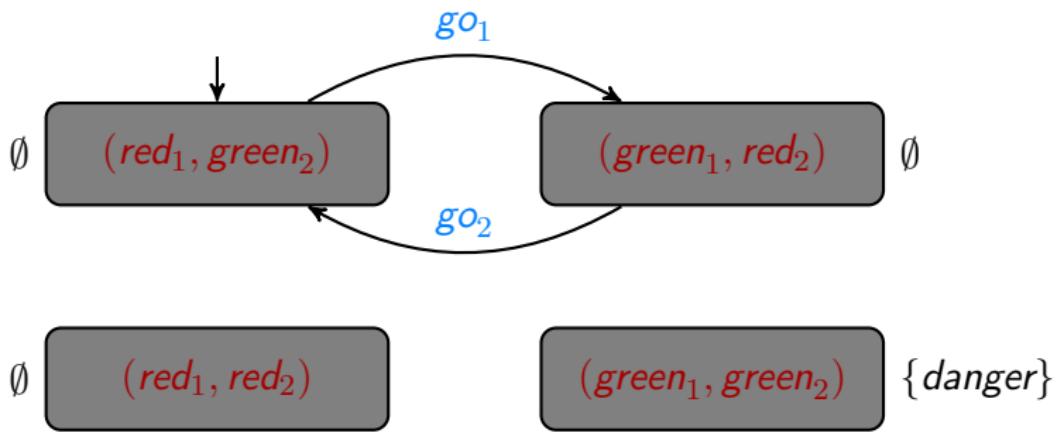
Labeling

To be able to formalize properties of LSTSs, it is common to define

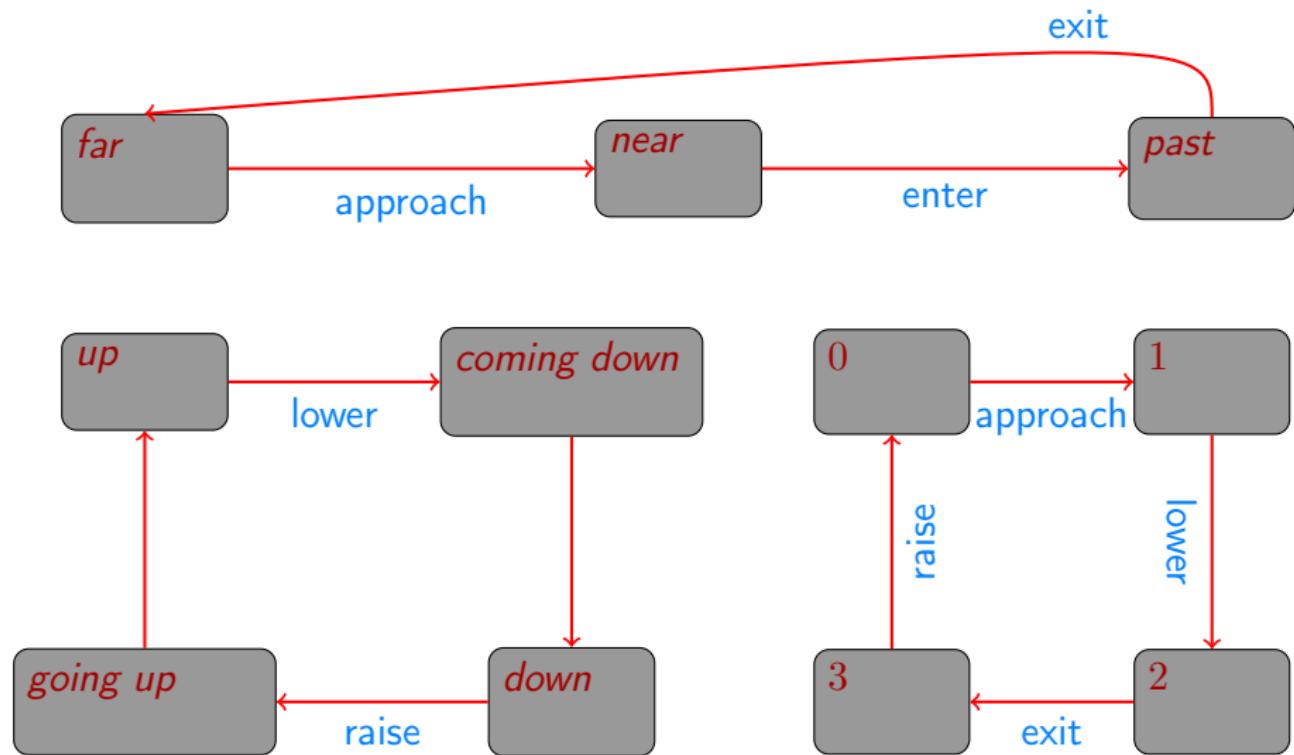
- a set of **atomic propositions** AP and
- a **labeling function** $L : \Sigma \rightarrow 2^{AP}$ assigning a set of atomic propositions to each state.

The set $L(\sigma)$ consists of all propositions that are defined to hold in σ . These **propositional labels** on states should not be mixed up with the **synchronization labels** on edges.

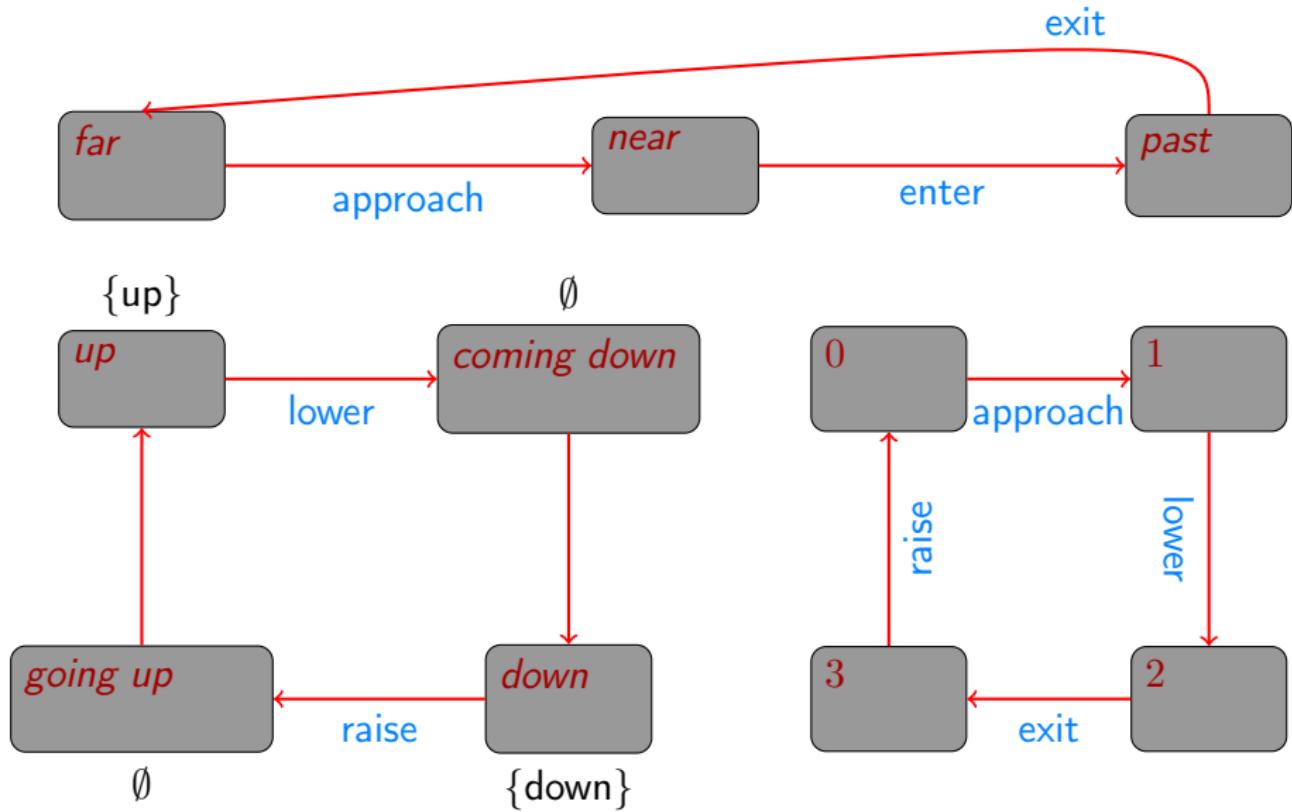
Two traffic lights



Railroad crossing: Train, controller and gate



Railroad crossing: Train, controller and gate



Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

4 Hybrid automata

Labeled transition system

Definition

A **labeled transition system** (LTS) is a tuple

$\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$ with

- finite set of locations Loc ,
- finite set of (typed) variables Var ,
- finite set of synchronization labels Lab , $\tau \in Lab$ (stutter label)
- finite set of edges $Edge \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions (l, τ, Id, l) for each location $l \in Loc$),
- initial states $Init \subseteq \Sigma$.

with

- **valuations** $\nu : Var \rightarrow Domain$, V is the set of valuations
- **state** $\sigma = (l, \nu) \in Loc \times V$, Σ is the set of states

Operational semantics has a single rule:

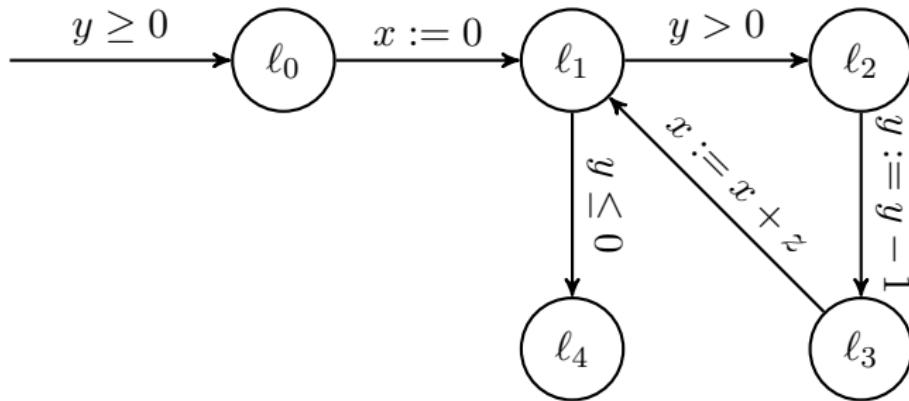
$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu}{(l, \nu) \xrightarrow{a} (l', \nu')}$$

- system **run** (execution): $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ with $\sigma_0 \in Init$
- a state is called **reachable** iff there is a run leading to it

Modeling a simple while-program

```
method mult(int y, int z){  
    int x;  
     $\ell_0$     x := 0;  
     $\ell_1$     while( y > 0 ) {  
         $\ell_2$         y := y-1;  
         $\ell_3$         x := x+z;  
    }  
     $\ell_4$  }
```

Modeling a simple while-program



Parallel composition of LTSs

Definition

Let

$$\begin{aligned}\mathcal{LTS}_1 &= (Loc_1, Var, Lab_1, Edge_1, Init_1) \text{ and} \\ \mathcal{LTS}_2 &= (Loc_2, Var, Lab_2, Edge_2, Init_2)\end{aligned}$$

be two LTSs. The *parallel composition* or *product* $\mathcal{LTS}_1 \parallel \mathcal{LTS}_2$ is

$$\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$$

with

- $Loc = Loc_1 \times Loc_2$,
- $Lab = Lab_1 \cup Lab_2$,
- $Init = \{((l_1, l_2), \nu) \mid (l_1, \nu) \in Init_1 \wedge (l_2, \nu) \in Init_2\}$,

Definition ((Cont.))

and

- $((l_1, l_2), a, \mu, (l'_1, l'_2)) \in Edge$ iff
 - there exist $(l_1, a_1, \mu_1, l'_1) \in Edge_1$ and $(l_2, a_2, \mu_2, l'_2) \in Edge_2$ such that
 - either $a_1 = a_2 = a$ or
 - $a_1 = a \in Lab_1 \setminus Lab_2$ and $a_2 = \tau$, or
 - $a_1 = \tau$ and $a_2 = a \in Lab_2 \setminus Lab_1$, and
 - $\mu = \mu_1 \cap \mu_2$.

Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

4 Hybrid automata

Hybrid automaton

Definition

A **hybrid automaton** \mathcal{H} is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations Loc ,
- finite set of real-valued variables Var ,
- finite set of synchronization labels Lab , $\tau \in Lab$ (stutter label)
- finite set of edges $Edge \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions (l, τ, Id, l) for each location $l \in Loc$),
- Act is a function assigning a set of activities $f : \mathbb{R}^+ \rightarrow V$ to each location; the activity sets are time-invariant, i.e., $f \in Act(l)$ implies $(f + t) \in Act(l)$, where $(f + t)(t') = f(t + t')$ f.a. $t' \in \mathbb{R}^+$,
- a function Inv assigning an invariant $Inv(l) \subseteq V$ to each location $l \in Loc$,
- initial states $Init \subseteq \Sigma$.

with

- **valuations** $\nu : Var \rightarrow \mathbb{R}$, V is the set of valuations
- **state** $(l, \nu) \in Loc \times V$, Σ is the set of states
- **transitions**: discrete and time

Semantics of hybrid automata

$$\frac{(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu \quad \nu' \in Inv(l')}{(l, \nu) \xrightarrow{a} (l', \nu')} \text{ Rule Discrete}$$

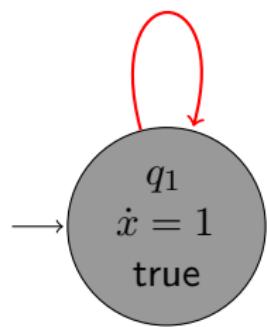
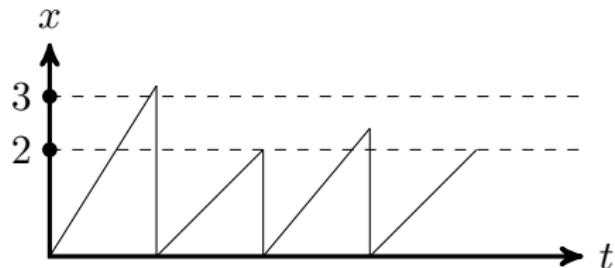
$$f \in Act(l) \quad f(0) = \nu \quad f(t) = \nu'$$

$$\frac{t \geq 0 \quad \forall 0 \leq t' \leq t. f(t') \in Inv(l)}{(l, \nu) \xrightarrow{t} (l, \nu')} \text{ Rule Time}$$

- execution step: $\rightarrow = \xrightarrow{a} \cup \xrightarrow{t}$
- run: $\sigma_0 \rightarrow \sigma_1 \rightarrow \sigma_2 \dots$ with $\sigma_0 = (l_0, \nu_0) \in Init$ and $\nu_0 \in Inv(l_0)$
- reachability of a state: exists run leading to the state
- activities are represented in form of differential equations

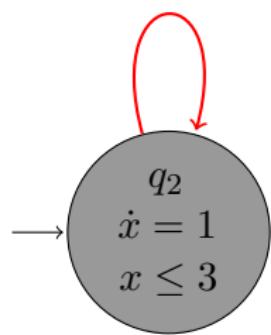
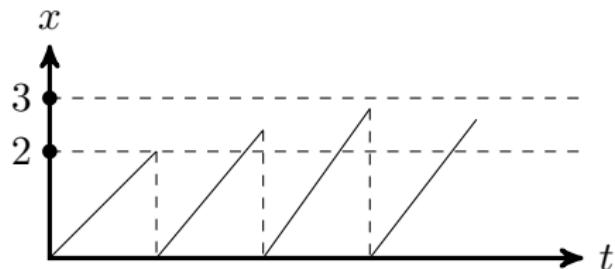
Example: Timed automaton

$$x \geq 2 \quad x := 0$$



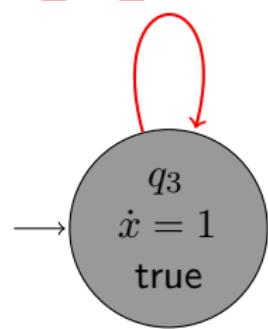
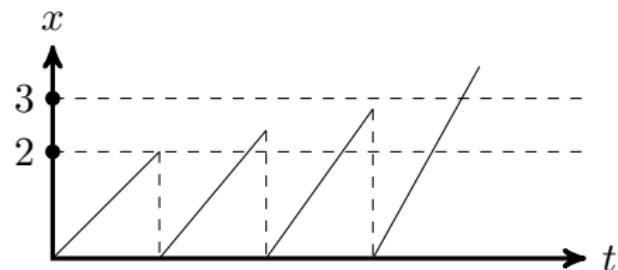
Example: Timed automaton

$$x \geq 2 \quad x := 0$$



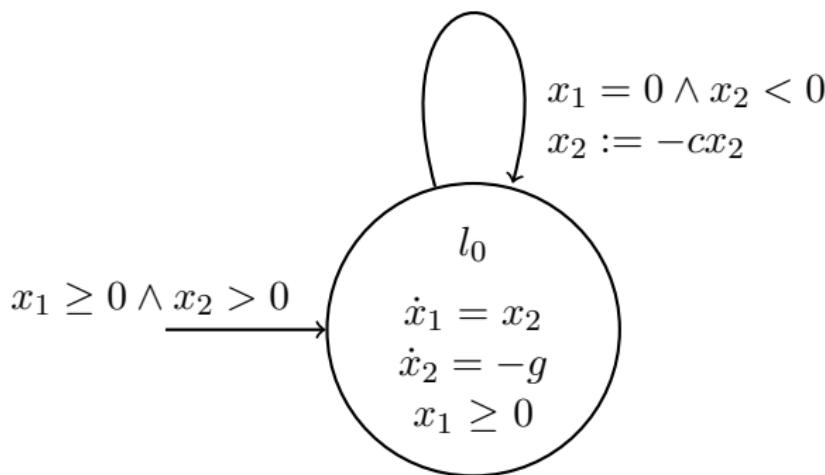
Example: Timed automaton

$$2 \leq x \leq 3 \quad x := 0$$



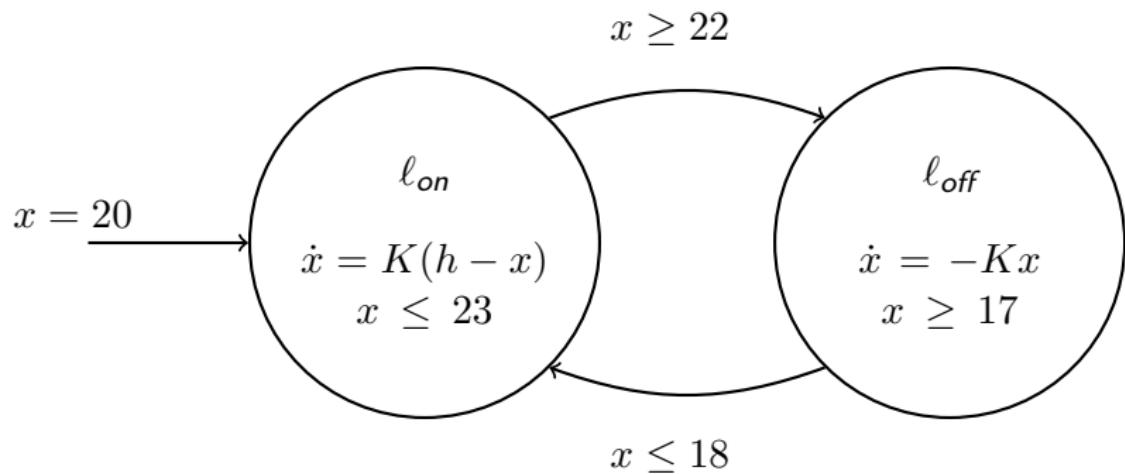
Example revisited: Bouncing ball

- vertical position of the ball x_1
- velocity x_2
- **continuous** changes of position between bounces
- **discrete** changes at bounce time



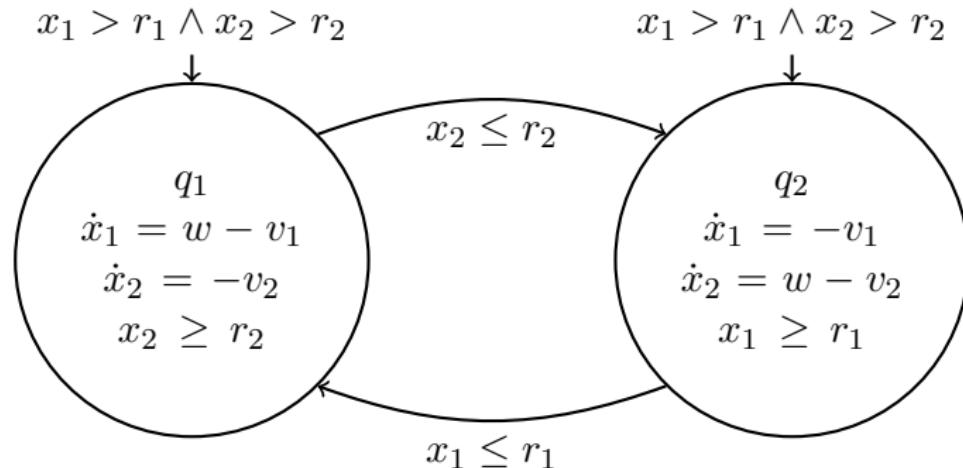
Example revisited: Thermostat

- $17^\circ \leq x \leq 18^\circ \rightsquigarrow$ "heater on"
- $22^\circ \leq x \leq 23^\circ \rightsquigarrow$ "heater off"



Example revisited: Water tank system

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly **one** tank at one point in time
- w can switch between tanks instantaneously



Parallel composition

Definition

Let $\mathcal{H}_1 = (Loc_1, Var, Lab_1, Edge_1, Act_1, Inv_1, Init_1)$ and

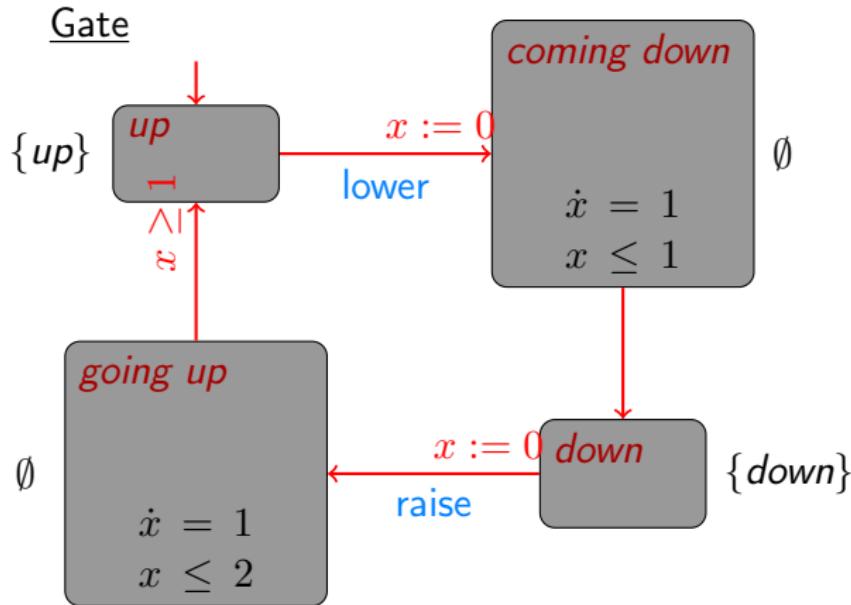
$\mathcal{H}_2 = (Loc_2, Var, Lab_2, Edge_2, Act_2, Inv_2, Init_2)$

be two hybrid automata. The **product**

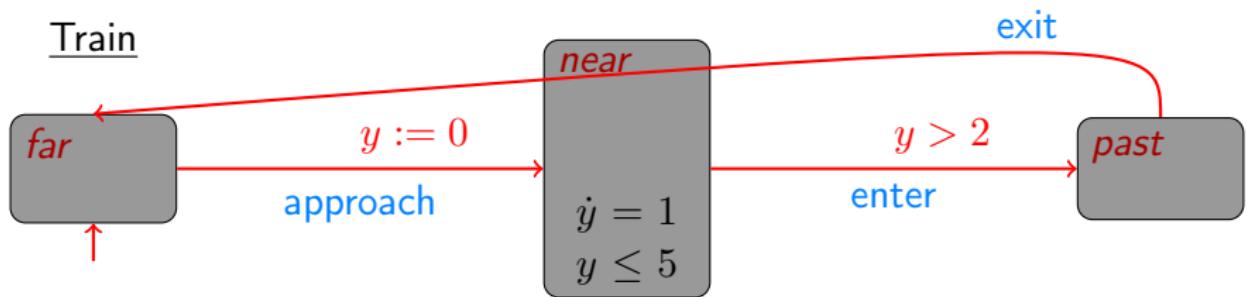
$\mathcal{H}_1 \parallel \mathcal{H}_2 = (Loc_1 \times Loc_2, Var, Lab_1 \cup Lab_2, Edge, Act, Inv, Init)$ is the hybrid automaton with

- $Act(l_1, l_2) = Act_1(l_1) \cap Act_2(l_2)$ for all $(l_1, l_2) \in Loc$,
- $Inv(l_1, l_2) = Inv_1(l_1) \cap Inv_2(l_2)$ for all $(l_1, l_2) \in Loc$,
- $Init = \{((l_1, l_2), \nu) | (l_1, \nu) \in Init_1, (l_2, \nu) \in Init_2\}$, and
- $((l_1, l_2), a, \mu, (l'_1, l'_2)) \in Edge$ iff
 - $(l_1, a_1, \mu_1, l'_1) \in Edge_1$ and $(l_2, a_2, \mu_2, l'_2) \in Edge_2$, and
 - either $a_1 = a_2 = a$, or $a_1 = a \notin Lab_2$ and $a_2 = \tau$, or $a_1 = \tau$ and $a_2 = a \notin Lab_1$, and
 - $\mu = \mu_1 \cap \mu_2$.

Simplified railroad crossing with time component



Simplified railroad crossing with time component



Simplified railroad crossing with time component

