
Modeling and Analysis of Hybrid Systems
Hybrid systems and their modeling

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2011

Ábrahám - Hybrid Systems 1 / 41

Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

4 Hybrid automata

Ábrahám - Hybrid Systems 2 / 41

Motivation

Dynamical system: continuous evolution of the state over time
Time model:
continuous t ∈ R
discrete k ∈ Z
hybrid continuous time, but there are also discrete

“instants” where something “special” happens
State model:
continuous evolution described by ordinary differential

equations (ODEs) ẋ = f(x, u)
discrete evolution described by

difference equations xk+1 = f(xk, uk)
hybrid continuous space, but there are also discrete

“instants” for that something “special” holds

Ábrahám - Hybrid Systems 3 / 41

Example: Vending machine

insert coin
choose beverage
(coffee/tee)
wait for cup
take cup

Coin

Coffee

Tee

 Discrete

Ábrahám - Hybrid Systems 4 / 41

Example: Bouncing ball

vertical position of the ball x1
velocity x2
continuous changes of position between bounces
discrete changes at bounce time

 Hybrid

Ábrahám - Hybrid Systems 5 / 41

Example: Thermostat

Temperature x is controlled by switching a heater on and off
x is regulated by a thermostat:

17◦≤ x ≤ 18◦ “heater on”
22◦≤ x ≤ 23◦ “heater off”

t

x

20

18

17

22

23

t

on

off

 Hybrid

Ábrahám - Hybrid Systems 6 / 41

Example: Water tank system

two constantly leaking tanks v1 and v2
hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

 Hybrid

Ábrahám - Hybrid Systems 7 / 41

There are much more complex examples of hybrid systems...
Automobils, trains, etc.
Automated highway systems
Collision-avoidance and free flight for aircrafts
Biological cell growth and division

Ábrahám - Hybrid Systems 8 / 41

Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

4 Hybrid automata

Ábrahám - Hybrid Systems 9 / 41

Labeled state transition system

Definition
A labeled state transition system (LSTS) is a tuple
LST S = (Σ,Lab,Edge, Init) with

a (probably infinite) state set Σ,
a label set Lab,
a transition relation Edge ⊆ Σ× Lab × Σ,
non-empty set of initial states Init ⊆ Σ.

Ábrahám - Hybrid Systems 10 / 41

Semantics of LSTS

Operational semantics is trivial:

(σ, a, σ′) ∈ Edge

σ
a→ σ′

system run (execution): σ0
a0→ σ1

a1→ σ2 . . . with σ0 ∈ Init

a state is called reachable iff there is a run leading to it

Ábrahám - Hybrid Systems 11 / 41

Pedestrian light

red green
go

stop

Ábrahám - Hybrid Systems 12 / 41

Parallel composition

Larger or more complex systems are often modeled compositionally.
The global system is given by the parallel composition of the
components.
Component-local, non-synchronizing transitions, having labels
belonging to one components’s label set only, are executed in an
interleaved manner.
Synchronizing transitions of the components, agreeing on the label,
are executed synchronously.

Ábrahám - Hybrid Systems 13 / 41

Parallel composition of LSTSs

Definition
Let

LST S1 = (Σ1,Lab1,Edge1, Init1) and
LST S2 = (Σ2,Lab2,Edge2, Init2)

be two LSTSs. The parallel composition LST S1||LST S2 is the LSTS
(Σ,Lab,Edge, Init) with

Σ = Σ1 × Σ2,
Lab = Lab1 ∪ Lab2,
((s1, s2) , a, (s

′
1, s
′
2)) ∈ Edge iff

1 a ∈ Lab1 ∩ Lab2, (s1, a, s
′
1) ∈ Edge1, and (s2, a, s

′
2) ∈ Edge2, or

2 a ∈ Lab1\Lab2, (s1, a, s
′
1) ∈ Edge1, and s2 = s′2, or

3 a ∈ Lab2\Lab1, (s2, a, s
′
2) ∈ Edge2, and s1 = s′1,

Init = (Init1 × Init2).

Ábrahám - Hybrid Systems 14 / 41

Two traffic lights

red1 green1

go1

go2

green2 red2
go2

go1

Ábrahám - Hybrid Systems 15 / 41

Two traffic lights

(red1, green2) (green1, red2)

go1

go2

(red1, red2) (green1, green2)

Ábrahám - Hybrid Systems 16 / 41

Labeling

To be able to formalize properties of LSTSs, it is common to define
a set of atomic propositions AP and
a labeling function L : Σ→ 2AP assigning a set of atomic
propositions to each state.

The set L(σ) consists of all propositions that are defined to hold in σ.
These propositional labels on states should not be mixed up with the
synchronization labels on edges.

Ábrahám - Hybrid Systems 17 / 41

Two traffic lights

(red1, green2)∅ (green1, red2) ∅

go1

go2

(red1, red2)∅ (green1, green2) {danger}

Ábrahám - Hybrid Systems 18 / 41

Railroad crossing: Train, controller and gate

far near past
approach enter

exit

up coming down

downgoing up

lower

raise

0 1

23

approach

low
er

exit
ra
is
e

Ábrahám - Hybrid Systems 19 / 41

Railroad crossing: Train, controller and gate

far near past
approach enter

exit

up
{up}

coming down
∅

down

{down}

going up

∅

lower

raise

0 1

23

approach

low
er

exit

ra
is
e

Ábrahám - Hybrid Systems 20 / 41

Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

4 Hybrid automata

Ábrahám - Hybrid Systems 21 / 41

Labeled transition system

Definition
A labeled transition system (LTS) is a tuple
LT S = (Loc,Var ,Lab,Edge, Init) with

finite set of locations Loc,
finite set of (typed) variables Var ,
finite set of synchronization labels Lab, τ ∈ Lab (stutter label)
finite set of edges Edge ⊆ Loc × Lab × 2V

2 × Loc (including stutter
transitions (l, τ, Id , l) for each location l ∈ Loc),
initial states Init ⊆ Σ.

with
valuations ν : Var → Domain, V is the set of valuations
state σ = (l, ν) ∈ Loc × V , Σ is the set of states

Ábrahám - Hybrid Systems 22 / 41

Semantics of LTS

Operational semantics has a single rule:

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ
(l, ν)

a→ (l′, ν ′)

system run (execution): σ0
a0→ σ1

a1→ σ2 . . . with σ0 ∈ Init

a state is called reachable iff there is a run leading to it

Ábrahám - Hybrid Systems 23 / 41

Modeling a simple while-program

method mult(int y, int z){
int x;

`0 x := 0;
`1

while(y > 0) {
`2 y := y-1;
`3 x := x+z;

}
`4 }

Ábrahám - Hybrid Systems 24 / 41

Modeling a simple while-program

`0 `1 `2

`3`4

y ≥ 0 x := 0 y > 0

y
:=

y
−

1
x

:=
x

+
z

y
≤

0

Ábrahám - Hybrid Systems 25 / 41

Parallel composition of LTSs

Definition
Let

LT S1 = (Loc1,Var ,Lab1,Edge1, Init1) and
LT S2 = (Loc2,Var ,Lab2,Edge2, Init2)

be two LTSs. The parallel composition or product LT S1||LT S2 is
LT S = (Loc,Var ,Lab,Edge, Init)

with
Loc = Loc1 × Loc2,
Lab = Lab1 ∪ Lab2,
Init = {((l1, l2), ν) | (l1, ν) ∈ Init1 ∧ (l2, ν) ∈ Init2},

Ábrahám - Hybrid Systems 26 / 41

Parallel composition of LTSs

Definition ((Cont.))

and
((l1, l2), a, µ, (l

′
1, l
′
2)) ∈ Edge iff

there exist (l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2 such that

either a1 = a2 = a or
a1 = a ∈ Lab1\Lab2 and a2 = τ , or
a1 = τ and a2 = a ∈ Lab2\Lab1, and
µ = µ1 ∩ µ2.

Ábrahám - Hybrid Systems 27 / 41

Contents

1 Hybrid systems

2 State transition systems

3 Transition systems

4 Hybrid automata

Ábrahám - Hybrid Systems 28 / 41

Hybrid automaton

Definition
A hybrid automaton H is a tuple H = (Loc,Var ,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var ,
finite set of synchronization labels Lab, τ ∈ Lab (stutter label)
finite set of edges Edge ⊆ Loc × Lab × 2V

2 × Loc (including stutter
transitions (l, τ, Id, l) for each location l ∈ Loc),
Act is a function assigning a set of activities f : R+ → V to each location;
the activity sets are time-invariant, i.e., f ∈ Act(l) implies (f + t) ∈ Act(l),
where (f + t)(t′) = f(t+ t′) f.a. t′ ∈ R+,
a function Inv assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc,
initial states Init ⊆ Σ.

with

valuations ν : Var → R, V is the set of valuations
state (l, ν) ∈ Loc × V , Σ is the set of states
transitions: discrete and time

Ábrahám - Hybrid Systems 29 / 41

Semantics of hybrid automata

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

f ∈ Act(l) f(0) = ν f(t) = ν ′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)
Rule Time

(l, ν)
t→ (l, ν ′)

execution step: → =
a→ ∪ t→

run: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init and ν0 ∈ Inv(l0)

reachability of a state: exists run leading to the state
activities are represented in form of differential equations

Ábrahám - Hybrid Systems 30 / 41

Example: Timed automaton

q1
ẋ = 1
true

x ≥ 2 x := 0

t

x

2

3

Ábrahám - Hybrid Systems 31 / 41

Example: Timed automaton

q2
ẋ = 1
x ≤ 3

x ≥ 2 x := 0

t

x

2

3

Ábrahám - Hybrid Systems 32 / 41

Example: Timed automaton

q3
ẋ = 1
true

2 ≤ x ≤ 3 x := 0

t

x

2

3

Ábrahám - Hybrid Systems 33 / 41

Example revisited: Bouncing ball

vertical position of the ball x1
velocity x2
continuous changes of position between bounces
discrete changes at bounce time

l0

ẋ1 = x2
ẋ2 = −g
x1 ≥ 0

x1 ≥ 0 ∧ x2 > 0

x1 = 0 ∧ x2 < 0
x2 := −cx2

Ábrahám - Hybrid Systems 34 / 41

Example revisited: Thermostat

17◦≤ x ≤ 18◦ “heater on”
22◦≤ x ≤ 23◦ “heater off”

`on

ẋ = K(h− x)
x ≤ 23

`off

ẋ = −Kx
x ≥ 17

x = 20

x ≥ 22

x ≤ 18

Ábrahám - Hybrid Systems 35 / 41

Example revisited: Water tank system

two constantly leaking tanks v1 and v2
hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

q1
ẋ1 = w − v1
ẋ2 = −v2
x2 ≥ r2

x1 > r1 ∧ x2 > r2

q2
ẋ1 = −v1
ẋ2 = w − v2
x1 ≥ r1

x1 > r1 ∧ x2 > r2

x2 ≤ r2

x1 ≤ r1

Ábrahám - Hybrid Systems 36 / 41

Parallel composition

Definition
Let H1 = (Loc1,Var ,Lab1,Edge1,Act1, Inv1, Init1) and
H2 = (Loc2,Var ,Lab2,Edge2,Act2, Inv2, Init2)

be two hybrid automata. The product
H1||H2 = (Loc1 × Loc2,Var ,Lab1 ∪ Lab2,Edge,Act , Inv , Init) is the
hybrid automaton with

Act(l1, l2) = Act1(l1) ∩Act2(l2) for all (l1, l2) ∈ Loc,
Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2) for all (l1, l2) ∈ Loc,
Init = {((l1, l2), ν)|(l1, ν) ∈ Init1, (l2, ν) ∈ Init2}, and
((l1, l2), a, µ, (l

′
1, l
′
2)) ∈ Edge iff

(l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2, and

either a1 = a2 = a, or a1 = a /∈ Lab2 and a2 = τ , or a1 = τ and
a2 = a /∈ Lab1, and
µ = µ1 ∩ µ2.

Ábrahám - Hybrid Systems 37 / 41

Simplified railroad crossing with time component

Gate

up

coming down

ẋ = 1
x ≤ 1

down

going up

ẋ = 1
x ≤ 2

x := 0

lower

x := 0

raise

x
≥

1

{up} ∅

{down}∅

Ábrahám - Hybrid Systems 38 / 41

Simplified railroad crossing with time component

Train

far

near

ẏ = 1
y ≤ 5

pasty := 0

approach

y > 2

enter

exit

Ábrahám - Hybrid Systems 39 / 41

Simplified railroad crossing with time component

Controller

0

1

ż = 1
z ≤ 1

2

3

ż = 1
z ≤ 1

z := 0

approach

z
=

1

low
er

exit
z := 0

ra
is
e

Ábrahám - Hybrid Systems 40 / 41

far near
y ≤ 5

past
y := 0

approach

y > 2

enter

exit

up coming down
x ≤ 1

downgoing up
x ≤ 2

x := 0

lower

x := 0

raise

x
≥

1

0 1
z ≤ 1

23
z ≤ 1

z := 0

approach

z
=

1

low
er

z := 0

exit

ra
is
e

Ábrahám - Hybrid Systems 41 / 41

	Hybrid systems
	State transition systems
	Transition systems
	Hybrid automata

