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Motivation

Dynamical system: continuous evolution of the state over time
Time model:
continuous  t ∈ R
discrete  k ∈ Z
hybrid  continuous time, but there are also discrete

“instants” where something “special” happens
State model:
continuous  evolution described by ordinary differential

equations (ODEs) ẋ = f(x, u)
discrete  evolution described by

difference equations xk+1 = f(xk, uk)
hybrid  continuous space, but there are also discrete

“instants” for that something “special” holds

Ábrahám - Hybrid Systems 3 / 41



Example: Vending machine

insert coin
choose beverage
(coffee/tee)
wait for cup
take cup

Coin

Coffee

Tee

 Discrete
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Example: Bouncing ball

vertical position of the ball x1
velocity x2
continuous changes of position between bounces
discrete changes at bounce time

 Hybrid
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Example: Thermostat

Temperature x is controlled by switching a heater on and off
x is regulated by a thermostat:

17◦≤ x ≤ 18◦  “heater on”
22◦≤ x ≤ 23◦  “heater off”

t

x
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22

23

t

on

off

 Hybrid
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Example: Water tank system

two constantly leaking tanks v1 and v2
hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

 Hybrid
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There are much more complex examples of hybrid systems...
Automobils, trains, etc.
Automated highway systems
Collision-avoidance and free flight for aircrafts
Biological cell growth and division
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Labeled state transition system

Definition
A labeled state transition system (LSTS) is a tuple
LST S = (Σ,Lab,Edge, Init) with

a (probably infinite) state set Σ,
a label set Lab,
a transition relation Edge ⊆ Σ× Lab × Σ,
non-empty set of initial states Init ⊆ Σ.
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Semantics of LSTS

Operational semantics is trivial:

(σ, a, σ′) ∈ Edge

σ
a→ σ′

system run (execution): σ0
a0→ σ1

a1→ σ2 . . . with σ0 ∈ Init

a state is called reachable iff there is a run leading to it
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Pedestrian light

red green
go

stop
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Parallel composition

Larger or more complex systems are often modeled compositionally.
The global system is given by the parallel composition of the
components.
Component-local, non-synchronizing transitions, having labels
belonging to one components’s label set only, are executed in an
interleaved manner.
Synchronizing transitions of the components, agreeing on the label,
are executed synchronously.

Ábrahám - Hybrid Systems 13 / 41



Parallel composition of LSTSs

Definition
Let

LST S1 = (Σ1,Lab1,Edge1, Init1) and
LST S2 = (Σ2,Lab2,Edge2, Init2)

be two LSTSs. The parallel composition LST S1||LST S2 is the LSTS
(Σ,Lab,Edge, Init) with

Σ = Σ1 × Σ2,
Lab = Lab1 ∪ Lab2,
((s1, s2) , a, (s

′
1, s
′
2)) ∈ Edge iff

1 a ∈ Lab1 ∩ Lab2, (s1, a, s
′
1) ∈ Edge1, and (s2, a, s

′
2) ∈ Edge2, or

2 a ∈ Lab1\Lab2, (s1, a, s
′
1) ∈ Edge1, and s2 = s′2, or

3 a ∈ Lab2\Lab1, (s2, a, s
′
2) ∈ Edge2, and s1 = s′1,

Init = (Init1 × Init2).
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Two traffic lights

red1 green1

go1

go2

green2 red2
go2

go1
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Two traffic lights

(red1, green2) (green1, red2)

go1

go2

(red1, red2) (green1, green2)
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Labeling

To be able to formalize properties of LSTSs, it is common to define
a set of atomic propositions AP and
a labeling function L : Σ→ 2AP assigning a set of atomic
propositions to each state.

The set L(σ) consists of all propositions that are defined to hold in σ.
These propositional labels on states should not be mixed up with the
synchronization labels on edges.
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Two traffic lights

(red1, green2)∅ (green1, red2) ∅

go1

go2

(red1, red2)∅ (green1, green2) {danger}
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Railroad crossing: Train, controller and gate

far near past
approach enter

exit

up coming down

downgoing up

lower

raise

0 1

23

approach

low
er

exit
ra
is
e
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Railroad crossing: Train, controller and gate

far near past
approach enter

exit

up
{up}

coming down
∅

down

{down}

going up

∅

lower

raise
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Labeled transition system

Definition
A labeled transition system (LTS) is a tuple
LT S = (Loc,Var ,Lab,Edge, Init) with

finite set of locations Loc,
finite set of (typed) variables Var ,
finite set of synchronization labels Lab, τ ∈ Lab (stutter label)
finite set of edges Edge ⊆ Loc × Lab × 2V

2 × Loc (including stutter
transitions (l, τ, Id , l) for each location l ∈ Loc),
initial states Init ⊆ Σ.

with
valuations ν : Var → Domain, V is the set of valuations
state σ = (l, ν) ∈ Loc × V , Σ is the set of states
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Semantics of LTS

Operational semantics has a single rule:

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ
(l, ν)

a→ (l′, ν ′)

system run (execution): σ0
a0→ σ1

a1→ σ2 . . . with σ0 ∈ Init

a state is called reachable iff there is a run leading to it
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Modeling a simple while-program

method mult(int y, int z){
int x;

`0 x := 0;
`1

while( y > 0 ) {
`2 y := y-1;
`3 x := x+z;

}
`4 }
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Modeling a simple while-program

`0 `1 `2

`3`4

y ≥ 0 x := 0 y > 0

y
:=

y
−

1
x

:=
x

+
z

y
≤

0
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Parallel composition of LTSs

Definition
Let

LT S1 = (Loc1,Var ,Lab1,Edge1, Init1) and
LT S2 = (Loc2,Var ,Lab2,Edge2, Init2)

be two LTSs. The parallel composition or product LT S1||LT S2 is
LT S = (Loc,Var ,Lab,Edge, Init)

with
Loc = Loc1 × Loc2,
Lab = Lab1 ∪ Lab2,
Init = {((l1, l2), ν) | (l1, ν) ∈ Init1 ∧ (l2, ν) ∈ Init2},
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Parallel composition of LTSs

Definition ((Cont.))

and
((l1, l2), a, µ, (l

′
1, l
′
2)) ∈ Edge iff

there exist (l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2 such that

either a1 = a2 = a or
a1 = a ∈ Lab1\Lab2 and a2 = τ , or
a1 = τ and a2 = a ∈ Lab2\Lab1, and
µ = µ1 ∩ µ2.
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Hybrid automaton

Definition
A hybrid automaton H is a tuple H = (Loc,Var ,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var ,
finite set of synchronization labels Lab, τ ∈ Lab (stutter label)
finite set of edges Edge ⊆ Loc × Lab × 2V

2 × Loc (including stutter
transitions (l, τ, Id, l) for each location l ∈ Loc),
Act is a function assigning a set of activities f : R+ → V to each location;
the activity sets are time-invariant, i.e., f ∈ Act(l) implies (f + t) ∈ Act(l),
where (f + t)(t′) = f(t+ t′) f.a. t′ ∈ R+,
a function Inv assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc,
initial states Init ⊆ Σ.

with

valuations ν : Var → R, V is the set of valuations
state (l, ν) ∈ Loc × V , Σ is the set of states
transitions: discrete and time
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Semantics of hybrid automata

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

f ∈ Act(l) f(0) = ν f(t) = ν ′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)
Rule Time

(l, ν)
t→ (l, ν ′)

execution step: → =
a→ ∪ t→

run: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init and ν0 ∈ Inv(l0)

reachability of a state: exists run leading to the state
activities are represented in form of differential equations
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Example: Timed automaton

q1
ẋ = 1
true

x ≥ 2 x := 0

t

x

2

3
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Example: Timed automaton

q2
ẋ = 1
x ≤ 3

x ≥ 2 x := 0

t

x

2

3
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Example: Timed automaton

q3
ẋ = 1
true

2 ≤ x ≤ 3 x := 0

t

x

2

3
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Example revisited: Bouncing ball

vertical position of the ball x1
velocity x2
continuous changes of position between bounces
discrete changes at bounce time

l0

ẋ1 = x2
ẋ2 = −g
x1 ≥ 0

x1 ≥ 0 ∧ x2 > 0

x1 = 0 ∧ x2 < 0
x2 := −cx2
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Example revisited: Thermostat

17◦≤ x ≤ 18◦  “heater on”
22◦≤ x ≤ 23◦  “heater off”

`on

ẋ = K(h− x)
x ≤ 23

`off

ẋ = −Kx
x ≥ 17

x = 20

x ≥ 22

x ≤ 18
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Example revisited: Water tank system

two constantly leaking tanks v1 and v2
hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

q1
ẋ1 = w − v1
ẋ2 = −v2
x2 ≥ r2

x1 > r1 ∧ x2 > r2

q2
ẋ1 = −v1
ẋ2 = w − v2
x1 ≥ r1

x1 > r1 ∧ x2 > r2

x2 ≤ r2

x1 ≤ r1
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Parallel composition

Definition
Let H1 = (Loc1,Var ,Lab1,Edge1,Act1, Inv1, Init1) and
H2 = (Loc2,Var ,Lab2,Edge2,Act2, Inv2, Init2)

be two hybrid automata. The product
H1||H2 = (Loc1 × Loc2,Var ,Lab1 ∪ Lab2,Edge,Act , Inv , Init) is the
hybrid automaton with

Act(l1, l2) = Act1(l1) ∩Act2(l2) for all (l1, l2) ∈ Loc,
Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2) for all (l1, l2) ∈ Loc,
Init = {((l1, l2), ν)|(l1, ν) ∈ Init1, (l2, ν) ∈ Init2}, and
((l1, l2), a, µ, (l

′
1, l
′
2)) ∈ Edge iff

(l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2, and

either a1 = a2 = a, or a1 = a /∈ Lab2 and a2 = τ , or a1 = τ and
a2 = a /∈ Lab1, and
µ = µ1 ∩ µ2.
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Simplified railroad crossing with time component

Gate

up

coming down

ẋ = 1
x ≤ 1

down

going up

ẋ = 1
x ≤ 2

x := 0

lower

x := 0

raise

x
≥

1

{up} ∅

{down}∅
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Simplified railroad crossing with time component

Train

far

near

ẏ = 1
y ≤ 5

pasty := 0

approach

y > 2

enter

exit
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Simplified railroad crossing with time component

Controller

0

1

ż = 1
z ≤ 1

2

3

ż = 1
z ≤ 1

z := 0

approach

z
=

1

low
er

exit
z := 0

ra
is
e
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far near
y ≤ 5

past
y := 0

approach

y > 2

enter

exit

up coming down
x ≤ 1

downgoing up
x ≤ 2

x := 0

lower

x := 0

raise

x
≥

1

0 1
z ≤ 1

23
z ≤ 1

z := 0

approach

z
=

1

low
er

z := 0

exit

ra
is
e
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