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Hybrid systems

Abraham - Hybrid Systems 2/41



m Dynamical system: continuous evolution of the state over time
m Time model:
continuous ~ t€R
discrete ~» k€Z
hybrid ~» continuous time, but there are also discrete
“instants” where something “special” happens
m State model:
continuous ~ evolution described by ordinary differential
equations (ODEs) & = f(z,u)
discrete  ~~ evolution described by
difference equations xy1 = f(xg, u)
hybrid ~» continuous space, but there are also discrete
“instants” for that something “special” holds
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Example: Vending machine

®m insert coin

m choose beverage
(coffee/tee)

m wait for cup

m take cup

~ Discrete
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Example: Bouncing ball

m vertical position of the ball x;
m velocity o
m continuous changes of position between bounces

m discrete changes at bounce time

VAT

~~ Hybrid
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Example: Thermostat

m Temperature z is controlled by switching a heater on and off

m z is regulated by a thermostat:

m 17°< z < 18° ~~ "heater on”
m 22°< x < 23° ~» "heater off”

23
22

20

18
17

~~ Hybrid
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Example: Water tank system

m two constantly leaking tanks v1 and v
m hose w refills exactly one tank at one point in time

m w can switch between tanks instantaneously

~~ Hybrid

Abraham - Hybrid Systems 7/ 41



There are much more complex examples of hybrid systems...

Automobils, trains, etc.

m Automated highway systems
m Collision-avoidance and free flight for aircrafts
]

Biological cell growth and division
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State transition systems
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Labeled state transition system

A labeled state transition system (LSTS) is a tuple
LSTS = (3, Lab, Edge, Init) with

m a (probably infinite) state set X,
m a label set Lab,

m a transition relation Edge C 3 x Lab x %,

m non-empty set of initial states Init C X.
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Semantics of LSTS

Operational semantics is trivial:

(0,a,0") € Edge
oS o

m system run (execution): op B o1 B oy .. with oy € Init

m a state is called reachable iff there is a run leading to it
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Pedestrian light

stop
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Parallel composition

Larger or more complex systems are often modeled compositionally.

m The global system is given by the parallel composition of the
components.

m Component-local, non-synchronizing transitions, having labels
belonging to one components’s label set only, are executed in an
interleaved manner.

m Synchronizing transitions of the components, agreeing on the label,
are executed synchronously.
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Parallel composition of LSTSs

Let

LSTS1 = (X1, Laby, Edge,, Inity) and
£8T82 = (22, LabQ, Edg€2, [nitg)

be two LSTSs. The parallel composition LST S1||LSTSs is the LSTS
(X, Lab, Edge, Init) with

B Y =2 X X,
m Lab = Laby U Labs,
m ((s1,82),a,(s),s5)) € Edge iff
a € Laby N Labs, (s1,a,s)) € Edge,, and (s3,a, sh) € Edge,, or

a € Labi\Labs, (s1,a,s)) € Edge,, and sy = sb, or
a € Labs\Laby, (s2,a,sh) € Edge,y, and s; = s,

m [nit = (Inity X Inits).
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Two traffic lights

891
801
EINNES
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Two traffic lights

801
v
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To be able to formalize properties of LSTSs, it is common to define
m a set of atomic propositions AP and

m a labeling function L : ¥ — 247 assigning a set of atomic
propositions to each state.

The set L(o) consists of all propositions that are defined to hold in o.
These propositional labels on states should not be mixed up with the
synchronization labels on edges.
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Two traffic lights

801
v
0 0
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Railroad crossing: Train, controller and gate

exit

approach -

raise
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Railroad crossing: Train, controller and gate

exit

approach -

raise

0 {down}



Transition systems
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Labeled transition system

A labeled transition system (LTS) is a tuple
LTS = (Loc, Var, Lab, Edge, Init) with
m finite set of locations Loc,
m finite set of (typed) variables Var,
m finite set of synchronization labels Lab, 7 € Lab (stutter label)

m finite set of edges Fdge C Loc X Lab X 2V* x Loc (including stutter
transitions (I, 7, Id, ) for each location [ € Loc),

m initial states Init C X.

with
m valuations v : Var — Domain, V is the set of valuations
m state 0 = (I,v) € Loc x V, ¥ is the set of states
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Semantics of LTS

Operational semantics has a single rule:

(l,a,p,l') € Edge  (v,V) € p
(I,v) N (')

m system run (execution): og B o1 B gy... with oy € Init

m a state is called reachable iff there is a run leading to it
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Modeling a simple while-program

method mult(int y, int z){

int x;
£y x := 0;
4
while( y > 0 ) {
lo y = y-1;
{3 X 1= x+zZ;
}
17
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Modeling a simple while-program
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Parallel composition of LTSs

Definition

Let

LTS1 = (Loci, Var, Laby, Edge;, Inity) and
LTSy = (Locg, Var, Laby, Edges, Initsy)
be two LTSs. The parallel composition or product LT S1||LTS3 is
LTS = (Loc, Var, Lab, Edge, Init)
with
m Loc = Locy X Locsy,
m Lab = Laby U Labsy,
m Init = {((l1,12),v) | (I1,v) € Inity A (2, v) € Inits},
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Parallel composition of LTSs

Definition ((Cont.))

and
u ((lla l2)a a, [, ( ,1’ l/2)) S Edge iff
m there exist (I1,a1, p1,15) € Edgey and (l2, ag, o, l5) € Edge, such that
m either a; = ay = a or
ay; = a € Laby\Labs and as = 7, or
ay =7 and as = a € Labs\ Laby, and
B =y .
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Hybrid automata
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Hybrid automaton

A hybrid automaton H is a tuple H = (Loc, Var, Lab, Edge, Act, Inv, Init) with

finite set of locations Loc,

finite set of real-valued variables Var,

finite set of synchronization labels Lab, 7 € Lab (stutter label)

finite set of edges Edge C Loc x Lab x 2V* x Loc (including stutter

transitions (I, 7, Id,!) for each location [ € Loc),

m Act is a function assigning a set of activities f : Rt — V to each location;
the activity sets are time-invariant, i.e., f € Act(l) implies (f +t) € Act(l),
where (f +)(t') = f(t+t') f.a. t' € RT,

m a function Inv assigning an invariant Inv(l) C V to each location [ € Loc,

m initial states Init C X.

m valuations v : Var — R, V is the set of valuations
m state (I,v) € Loc x V, ¥ is the set of states
m transitions: discrete and time
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Semantics of hybrid automata

(l,a,u,l') € Edge (v,v)) e V' € Inv(l')
(lv) = (V)

Rule piscrete

fedAct(l) fO)=v [f(t)=
t>0 Yo<t <t f(t)eInv(l)
(,v) 5 (1,0)

Rule Time

m execution step: — = 5 U L

B run: o9 — o1 — 0y... with o9 = (lp, ) € Init and vy € Inv(ly)
m reachability of a state: exists run leading to the state
]

activities are represented in form of differential equations
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Example: Timed automaton
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Example: Timed automaton
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Example: Timed automaton

Abraham - Hybrid Systems 33 /41



Example revisited: Bouncing ball

m vertical position of the ball

m velocity zo

m continuous changes of position between bounces
m discrete changes at bounce time

1 =0Az29 <0
r9 = —CI2

1 >0Ax29 >0
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Example revisited: Thermostat

B 17°< z < 18° ~» “heater on”
m 22°< x < 23° ~ "heater off”

x> 22
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Example revisited: Water tank system

m two constantly leaking tanks v1 and vy
m hose w refills exactly one tank at one point in time

m w can switch between tanks instantaneously

1 >1T1 NTo > T2 1 >T1 NTo >T2
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Parallel composition

Definition
Let #, = (Loc1, Var, Laby, Edge,, Acty, Invy, Init;) and
Ho = (Loca, Var, Labs, Edgey, Acto, Invs, Inits)
be two hybrid automata. The product
H1||He = (Locy X Loca, Var, Laby U Laby, Edge, Act, Inv, Init) is the
hybrid automaton with
[ | Act(ll, lg) = Actl(ll) N ACtQ(lQ) for all (ll,lg) € Loc,
m [nv(ly,la) = Invi(l1) N Inva(le) for all (I1,l2) € Loc,
m [nit = {((l1,12),v)|(l1,v) € Inity, (l3,v) € Inits}, and
w (1, 12), a5, (1, 1)) € Bdge if
m (l1,a1,m1,l}) € Edgey and (l2, ag, 2, 15) € Edge,, and
m either ay = ay =a, or a1 = a ¢ Laby and ay =7, or a; = 7 and
as = a ¢ Laby, and
B = i1 N pa.
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Simplified railroad crossing with time component
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Simplified railroad crossing with time component

exit

Train

y:=0

approach
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Simplified railroad crossing with time component

Controller
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exit

y:=0 y>2
approach enter
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