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Motivation

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.
The first choice in modeling: discrete or continuous time?
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Discrete-time systems

conceptually simple

each action lasts for a single time unit (tick)

action « lasts k > 0 time units ~ k — 1 ticks followed by «
leads to large transition systems

minimal time between two actions is a multiple of the tick

logic: CTL or LTL extended with syntactic sugar
(Xp) Op : ¢ holds after one tick
(XFp)  OFp : ¢ holds after k ticks
(F<kp) OSkp © ¢ occurs within k ticks

We deal in this lecture with continuous-time models.
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Timed automata

m Measure time: finite set C of clocks x,v, 2, . ..

m Clocks increase their value implicitely as time progresses
m All clocks proceed at rate 1

m Limited clock access:

Reading: Clock constraints
g = xz<c | z<c¢ | z>c
with ce N (c€ Q) and z € C.
Syntactic sugar: true, x € [c1,¢2), 1 <z <cy, T=g¢,...
ACC(C): set of atomic clock constraints over C
CC(C): set of clock constraints over C

Writing: Clock reset sets value to 0

r>c | ghg
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Semantics of clock constraints

Given a set C of clocks, a clock valuation v : C — R>( assigns a
non-negative value to each clock. We use V- to denote the set of clock
valuations for the clock set C.

Definition

For a set C of clocks, z € C, v € V¢, c€ N, and g,¢' € CC(C), let
= C Ve xCC(C) be defined by

viEz<c iff
viEz<c iff
viExz>c iff
viEz>c iff
viEgng iff

v\x

(
(33
(
(

NI

T
T

~— — — —

v
v gandy|:g’

Abraham - Modeling and Analysis of Hybrid Systems 8/1



Semantics of clock access

m For a set C of clocks, v € V¢, and ¢ € N we denote by v + ¢ the
valuation with (v + ¢)(z) = v(z) + ¢ for all z € C.

m For a valuation v € V¢ and a clock z € C we define reset x in v to be
the valuation which equals v except on x whose value is 0:

(reset = in v)(y) = { g(y) Zs?ie# '
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Semantics of clock access

m For a set C of clocks, v € V¢, and ¢ € N we denote by v + ¢ the
valuation with (v + ¢)(z) = v(z) + ¢ for all z € C.

m For a valuation v € V¢ and a clock z € C we define reset x in v to be
the valuation which equals v except on x whose value is 0:

(reset z in v)(y) = { v(y) ify#x

0 else

What does it mean?
mrv+9

reset x in (v +9)

(reset x inv) +9

reset x in (reset y in v)

Abraham - Modeling and Analysis of Hybrid Systems 9/1



Timed automata

A timed automaton is a special hybrid system:
m All variables are clocks.

m Edges are defined by

m source and target locations,

a label,

a guard: clock constraint specifying enabling,
a set of clocks to be reset.

m Invariants are clock constraints.
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Timed automaton

Definition (Syntax of timed automata)

A timed automaton 7 = (Loc, Clocks, Lab, Edge, Inv, Init) is a tuple with
m Loc is a finite set of locations,
m Clocks is a finite set of clocks,
m Lab is a finite set of synchronization labels,

m Fdge C Loc x Lab x (CC(Clocks) x 2€9°%) x Loc is a finite set of
edges,

m [nv : Loc — CC(Clocks) is a function assigning an invariant to each
location, and

m [nit C X with v(z) =0 for all z € Clocks and all (I,v) € Init.

:g,C
We call the variables in Clocks clocks. We also use the notation [ "< [’
to state that there exists an edge (I, a, (g,C),l") € Edge.

Note: (1) no explicite activities given (2) restricted logic for constraints
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Timed automaton

Analogously to Kripke structures, we can additionally define
m a set of atomic propositions AP and
m a labeling function L : Loc — 247

to model further system properties.
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Operational semantics

(,a,(9,R),l') € Edge
viEg VvV =reset Rinv v EInv(l') Rule piscrete
(Lv) = (U,

t>0 vV =v+t VvV EInu(l)
(Lv) = (V)

Rule Time

. ¢
m Execution step: — = Lus

m Path: 09g - 01 — 09 ..

m Run: path o9 — 01 — 02... with o9 = (lp, o), lo € Init, vy(x) =0
f.a. x € C (and vy € Inv(lp))

m Reachability of a state: exists a run leading to the state
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Examples:
Light switch
Controller from the railroad crossing example

Simplified railroad crossing

Parallel composition for the simplified railroad crossing
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Example: Timed Automaton

x > 2, reset(x)
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Example: Timed Automaton
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Example: Timed Automaton

2 < <3, reset(x)
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exit

reset(y)

~

approach enter

reset(x) reset(z)

reset(z)

reset(x)
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Time divergence, timelock, and zenoness

Paradox:
Achilles and the tortoise

(Achilles was the great Greek hero of Homer's

Zeno of Elea  Aristotle

(ca.490 BC-ca.430 BC) (384 BC-322 BC)
The lliad.)

“In a race, the quickest runner can never overtake the slowest, since the
pursuer must first reach the point where the pursued started, so that the
slower must always hold a lead.” —Aistotle, Physics VI:9, 239b15

m Not all paths of a timed automata represent realistic behaviour.

m Three essential phenomena: time divergence, timelock, zenoness.
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Time divergence

For a timed automaton 7 = (Loc,C, Lab, Edge, Inv, Init). we define
EzecTime : (Lab URZ%) — R20 with

m EzecTime(a) =0 for a € Lab and
m EzecTime(d) = d for d € R2O.

« (6% « 5
Furthermore, for p = sy =5 51 — 53 — ... we define

o
EzecTime(p) = Z EzecTime(a;).
=0

A path is time-divergent iff EzecTime(p) = 0o, and time-convergent
otherwise.

m Time-convergent paths are not realistic, and are not considered in the
semantics.
m Note: their existence cannot be avoided (in general).
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Timelock

Definition
For a state 0 € X let Pathsg;, (o) be the set of time-divergent paths

starting in o.
A state o € X contains a timelock iff Paths g, (c) = 0.
A timed automaton is timelock-free iff none of its reachable states contains

a timelock.

Timelocks are modeling flows and should be avoided.
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/enoness

Definition
An infinite path fragment 7 is zeno iff it is time-convergent and infinitely

many discrete actions are executed within 7.
A timed automaton is non-zeno iff no zeno path starts in an initial state.

m Zeno paths represent nonrealizable behaviour, since their execution
would require infinitely fast processors.

m Thus zeno paths are modeling flows and should be avoided.

m To check whether a timed automaton is non-zeno is algorithmically
difficult.

m Instead, sufficient conditions are considered that are simple to check,
e.g., by static analysis.
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Checking non-zenoness

Theorem (Sufficient condition for non-zenoness)

Let T be a timed automaton with clocks C such that for every control cycle

a1:91,C1 , a2:92,C2 anign,Cn
=T ==y T

lo In

in T there exists a clock x € C such that

m z cC; for some (0 < i <mn, and

m for all evaluations v € V there exist some 0 < j < n and d € N>° with

v(z) <d implies (v~ g; orv = Inv(ly)).

Then T is non-zeno.
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TCTL

m How to describe the behaviour of timed automata?
m Logic: TCTL, a real-time variant of CTL
m Syntax:

State formulae

v ou= true | a | g | ¥AY | | By | Ag
Path formulae:
o n= U
with J C RZY is an interval with integer bounds (open right bound

may be c0).
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TCTL syntax

m Syntactic sugar:

Fly = truelU’
EG’y = -AF/—w
AGTYy = —EF/-
ViU Y =y U0
Fip = Fl0eoy
Gy = Gloely

m Note: no next-time operator
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TCTL semantics

Definition (TCTL semantics)

Let 7 = (Loc,C, Lab, Edge, Inv, Init) be a timed automaton, AP a set of
atomic propositions, and L : Loc — 24F a state labeling function.The
function = assigns a truth value to each TCTL state and path formulae as
follows:

o = true

o E=a Iff a € L(U)

o = iff o=

o EY1AYe iff o= ando =

o =Ep iff w [ ¢ for some w € Pathsgj, (o)
o EAp iff = @ for all T € Pathsg;,(0).

where 0 € ¥, a € AP, g € ACC(C), v, ¥ and 1y are TCTL state

formulae, and ¢ is a TCTL path formula.



Meaning of U : a time-divergent path satisfies 1 U” 1)5 whenever at
some time point in J property ¥ holds and at all previous time instants
11 V 19 is satisfied.
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TCTL semantics (cont.)

Definition (TCTL semantics)

For a time-divergent path 7 = 0g 2 o1 23 ... we define m = ¢y U7 1)y iff
m 3i > 0. 0; +d = 11 for some d € [0,d;] with

i—1
) di)+deJ, and
k=0

mVj<i. o +d ): 1 V 1o for any d’ € [O,dj] with
j—1 i—1
O di)+d <O di) +d
k=0 k=0
where d; = EzecTime(«;).
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Satisfaction set

Definition
For a timed automaton 7 with clocks C and locations Loc, and a TCTL
state formula ¢ the satisfaction set Sat(1)) is defined by

Sat(w) = {s € Ts = v}.
T satisfies v iff 1) holds in all initial states:
T ): P iffVly € Init. (lo, 1/0) ): P

where vp(z) =0 for all z € C.
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TCTL vs. CTL

m TCTL formulae with intervals [0, 0c0) may be considered as CTL
formulae

m However, there is a difference due to time convergent paths

m TCTL ranges over time-divergent paths, whereas CTL over all paths!
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