

Modeling and Analysis of Hybrid Systems

Convex polyhedra

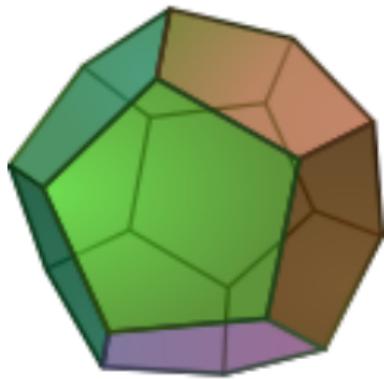
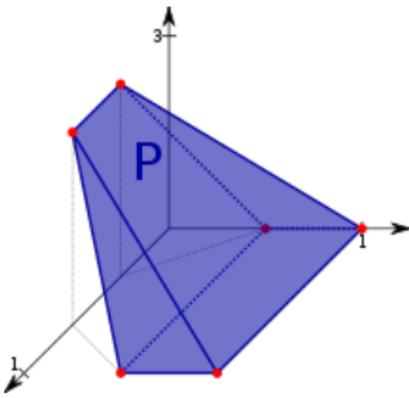
Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2011

Contents

Polyhedra



Definition

A (convex) polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Depending on the form of the representation, we distinguish between

- \mathcal{H} -polytopes and
- \mathcal{V} -polytopes.

Definition (Closed halfspace)

A d -dimensional **closed halfspace** is a set $\mathcal{H} = \{x \in \mathbb{R}^d \mid c \cdot x \leq z\}$ for some $c \in \mathbb{R}^d$, called the **normal** of the halfspace, and a $z \in \mathbb{R}$.

\mathcal{H} -polytopes

Definition (Closed halfspace)

A d -dimensional **closed halfspace** is a set $\mathcal{H} = \{x \in \mathbb{R}^d \mid c \cdot x \leq z\}$ for some $c \in \mathbb{R}^d$, called the **normal** of the halfspace, and a $z \in \mathbb{R}$.

Definition (\mathcal{H} -polyhedron, \mathcal{H} -polytope)

A d -dimensional **\mathcal{H} -polyhedron** $P = \bigcap_{i=1}^n \mathcal{H}_i$ is the intersection of finitely many closed halfspaces. A bounded \mathcal{H} -polyhedron is called an **\mathcal{H} -polytope**.

The facets of a d -dimensional \mathcal{H} -polytope are $d - 1$ -dimensional \mathcal{H} -polytopes.

\mathcal{H} -polytopes

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^n \mathcal{H}_i = \bigcap_{i=1}^n \{x \in \mathbb{R}^d \mid c_i \cdot x \leq z_i\}$$

can also be written in the form

$$P = \{x \in \mathbb{R}^d \mid Cx \leq z\}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

\mathcal{H} -polytopes

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^n \mathcal{H}_i = \bigcap_{i=1}^n \{x \in \mathbb{R}^d \mid c_i \cdot x \leq z_i\}$$

can also be written in the form

$$P = \{x \in \mathbb{R}^d \mid Cx \leq z\}.$$

We call (C, z) the **\mathcal{H} -representation** of the polytope.

- Each row of C is the **normal vector to the i th facet** of the polytope.

\mathcal{H} -polytopes

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^n \mathcal{H}_i = \bigcap_{i=1}^n \{x \in \mathbb{R}^d \mid c_i \cdot x \leq z_i\}$$

can also be written in the form

$$P = \{x \in \mathbb{R}^d \mid Cx \leq z\}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

- Each row of C is the normal vector to the i th facet of the polytope.
- An \mathcal{H} -polytope P has a finite number of vertices $V(P)$.

\mathcal{H} -polytopes

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^n \mathcal{H}_i = \bigcap_{i=1}^n \{x \in \mathbb{R}^d \mid c_i \cdot x \leq z_i\}$$

can also be written in the form

$$P = \{x \in \mathbb{R}^d \mid Cx \leq z\}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

- Each row of C is the normal vector to the i th facet of the polytope.
- An \mathcal{H} -polytope P has a finite number of vertices $V(P)$.

Definition

A set S is called convex, if

$$\forall x, y \in S. \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \lambda x + (1 - \lambda)y \in S.$$

\mathcal{H} -polyhedra are convex sets.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the **convex hull** $CH(V)$ of V is the smallest convex set that contains V .

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the **convex hull** $CH(V)$ of V is the smallest convex set that contains V .

For a finite set $V = \{v_1, \dots, v_n\}$, its convex hull can be computed by

$$CH(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x\}.$$

\mathcal{V} -polytopes

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the **convex hull** $CH(V)$ of V is the smallest convex set that contains V .

For a finite set $V = \{v_1, \dots, v_n\}$, its convex hull can be computed by

$$CH(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x\}.$$

Definition (\mathcal{V} -polytope)

A **\mathcal{V} -polytope** $P = CH(V)$ is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the **\mathcal{V} -representation** of the polytope.

\mathcal{V} -polytopes

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the **convex hull** $CH(V)$ of V is the smallest convex set that contains V .

For a finite set $V = \{v_1, \dots, v_n\}$, its convex hull can be computed by

$$CH(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x\}.$$

Definition (\mathcal{V} -polytope)

A **\mathcal{V} -polytope** $P = CH(V)$ is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the **\mathcal{V} -representation** of the polytope.

Note that all \mathcal{V} -polytopes are bounded.

- For each \mathcal{H} -polytope, the convex hull of its vertices defines the same set in the form of a \mathcal{V} -polytope, and vice versa,
- each set defined as a \mathcal{V} -polytope can be also given as an \mathcal{H} -polytope by computing the halfspaces defined by its facets.

The translations between the \mathcal{H} - and the \mathcal{V} -representations of polytopes can be exponential in the state space dimension d .

Contents

Operations

If we represent reachable sets of hybrid automata by polytopes, we need some **operations** like

- membership computation,
- intersection, or the
- union of two polytopes.

Operations: Membership

Membership for $p \in \mathbb{R}^d$:

Operations: Membership

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$:

Operations: Membership

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$:
just substitute p for x to check if the inequation holds.

Operations: Membership

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$:
just substitute p for x to check if the inequation holds.
- \mathcal{V} -polytope defined by the vertex set V :

Operations: Membership

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$:
just substitute p for x to check if the inequation holds.
- \mathcal{V} -polytope defined by the vertex set V :
check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x .$$

Operations: Membership

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$:
just substitute p for x to check if the inequation holds.
- \mathcal{V} -polytope defined by the vertex set V :
check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x .$$

Alternatively:

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$:
just substitute p for x to check if the inequation holds.
- \mathcal{V} -polytope defined by the vertex set V :
check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x .$$

Alternatively: convert the \mathcal{V} -polytope into an \mathcal{H} -polytope by computing its facets.

Intersection

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:
the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.
- \mathcal{V} -polytopes defined by V_1 and V_2 :

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:
the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.
- \mathcal{V} -polytopes defined by V_1 and V_2 :
Convert P_1 and P_2 to \mathcal{H} -polytopes and convert the result back to a \mathcal{V} -polytope.

Union

Note that the union of two convex polytopes is in general not a convex polytope.

Union

Note that the union of two convex polytopes is in general not a convex polytope.
→ take the convex hull of the union.

Union

Note that the union of two convex polytopes is in general not a convex polytope.

→ take the convex hull of the union.

- \mathcal{V} -polytopes defined by V_1 and V_2 :

Note that the union of two convex polytopes is in general not a convex polytope.

→ take the convex hull of the union.

- \mathcal{V} -polytopes defined by V_1 and V_2 :
 \mathcal{V} -representation $V_1 \cup V_2$.
- \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:

Note that the union of two convex polytopes is in general not a convex polytope.

→ take the convex hull of the union.

- \mathcal{V} -polytopes defined by V_1 and V_2 :
 \mathcal{V} -representation $V_1 \cup V_2$.
- \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:
convert to \mathcal{V} -polytopes and compute back the result.