

Modeling and analysis of hybrid systems

Modeling

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Contents

1 Hybrid systems

2 Finite automata

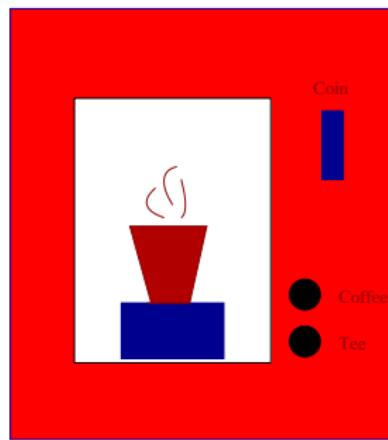
3 Hybrid automata

Motivation

- Dynamical system: evolution of the state over time
- Classification based on state type:
 - continuous \rightsquigarrow states from \mathbb{R}^n (subclasses: linear/nonlinear)
 - discrete \rightsquigarrow states from a countable set
 - hybrid \rightsquigarrow both
- Classification based on time:
 - continuous time $\rightsquigarrow t \in \mathbb{R}$, evolution of the state is described by *ordinary differential equations (ODEs)*
$$\dot{x} = f(x, u)$$
 - discrete time $\rightsquigarrow k \in \mathbb{Z}$, evolution of the state is described by *difference equations* $x_{k+1} = f(x_k, u_k)$
 - hybrid time \rightsquigarrow the evolution is over continuous time, but there are also discrete “instants” where something “special” happens

Example: Vending machine

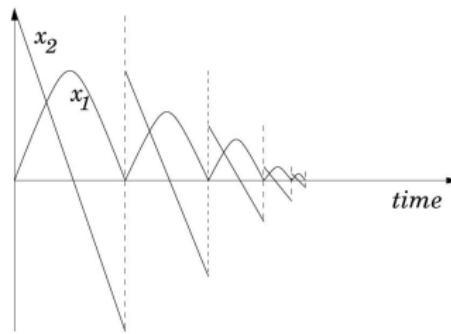
- insert coin
- choose beverage (coffee/tee)
- wait for cup
- take cup



~~ Discrete space, discrete time

Example: Bouncing Ball

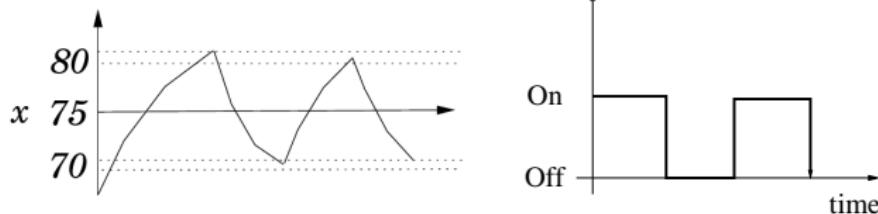
- vertical position of the ball x_1
- velocity x_2
- **continuous** changes of position between bounces
- **discrete** changes at bounce time



↝ Continuous space, hybrid time

Example: Thermostat

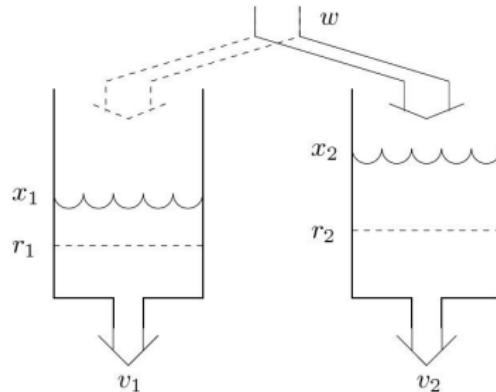
- temperature x controlled by switching a heater
- x regulated by thermostat:
 - $68^\circ \leq x \leq 70^\circ \rightsquigarrow$ "heater on"
 - $80^\circ \leq x \leq 82^\circ \rightsquigarrow$ "heater off"



\rightsquigarrow Hybrid space, hybrid time

Example: Water Tank System

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly **one** tank at one point in time
- w can switch between tanks instantaneously



~ Hybrid space, hybrid time

There are much more complex examples of hybrid systems...

Quelle: www.digi-help.com

- Automobils, trains, etc.
- Automated highway systems
- Collision-avoidance and free flight for aircrafts
- Biological cell growth and division

Aims:

- modeling
- analysis
- synthesis

Contents

1 Hybrid systems

2 Finite automata

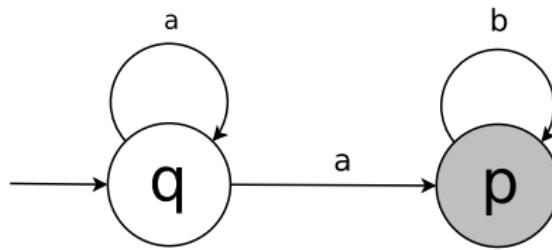
3 Hybrid automata

Definition

A *nondeterministic finite automaton* (NFA) \mathcal{A} is a tuple

$\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ with

- finite set of states Q ,
- finite alphabet Σ ,
- transition relation $\Delta \subseteq Q \times \Sigma \times Q$,
- initial state $q_0 \in Q$,
- set of final (accepting) states $F \subseteq Q$.



- An execution $q_0 \sigma_0 q_1 \sigma_1 \dots$ of the NFA A is a (finite or infinite) sequence of states and inputs with q_0 the initial state and $(q_i, \sigma_i, q_{i+1}) \in \Delta$.
- The NFA A accepts a word $\sigma_0 \sigma_1 \dots \in \Sigma^*$ iff there is an execution $q_0 \sigma_0 q_1 \sigma_1 \dots$ visiting some finite states infinitely often.
- The language $L(A) \subseteq \Sigma^*$ accepted by A is the set of accepted words.
- Two NFA are equivalent iff they accept the same language.
- An NFA may be blocking.
- An NFA may be non-deterministic.

Deterministic finite automaton

Definition

A *deterministic finite automaton* (DFA) \mathcal{A} is a tuple $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ with

- finite set of states Q ,
- finite alphabet Σ ,
- transition function $\Delta : Q \times \Sigma \rightarrow Q$,
- initial state $q_0 \in Q$,
- set of final (accepting) states $F \subseteq Q$.

- For every NFA there is a DFA that accepts the same language.
- Language type: regular

Definition

For two DFAs $\mathcal{A}_1 = (Q_1, \Sigma, \Delta_1, q_0^1, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \Delta_2, q_0^2, F_2)$ we define $\mathcal{A}_1 \parallel \mathcal{A}_2 = (Q, \Sigma, \Delta, q_0, F)$ with

- $Q = Q_1 \times Q_2$,
- $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$ for all $(q_1, q_2) \in Q_1 \times Q_2$ and $a \in \Sigma$,
- $q_0 = (q_0^1, q_0^2)$,
- $F = F_1 \times F_2$.

Contents

1 Hybrid systems

2 Finite automata

3 Hybrid automata

Definition

A *labeled state transition system* (LSTS) is a tuple
 $\mathcal{LSTS} = (\Sigma, \text{Lab}, \text{Edge}, \text{Init})$ with

- a (probably infinite) state set Σ ,
- a label set Lab ,
- a transition relation $\text{Edge} \subseteq \Sigma \times \text{Lab} \times \Sigma$,
- non-empty set of initial states $\text{Init} \subseteq \Sigma$.

Labeled (state) transition system

Definition

A *labeled transition system* (LTS) is a tuple

$\mathcal{LTS} = (Loc, Var, Lab, Edge, Init)$ with

- finite set of locations Loc ,
- finite set of (typed) variables Var ,
- finite set of synchronization labels Lab , $\tau \in Lab$ (stutter label)
- finite set of edges $Edge \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions (l, τ, Id, l) for each location $l \in Loc$),
- initial states $Init \subseteq \Sigma$.

with

- **valuations** $\nu : Var \rightarrow Domain$, V is the set of valuations
- **state** $\sigma = (l, \nu) \in Loc \times V$, Σ is the set of states

Operational semantics has a single rule:

$$e = (l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu$$

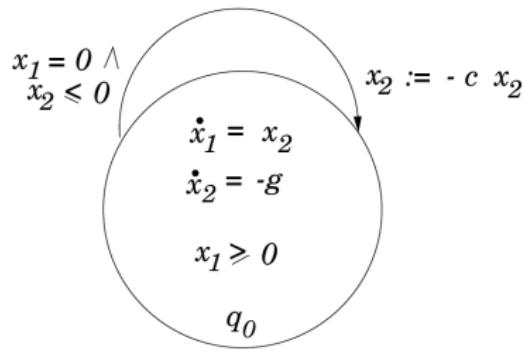
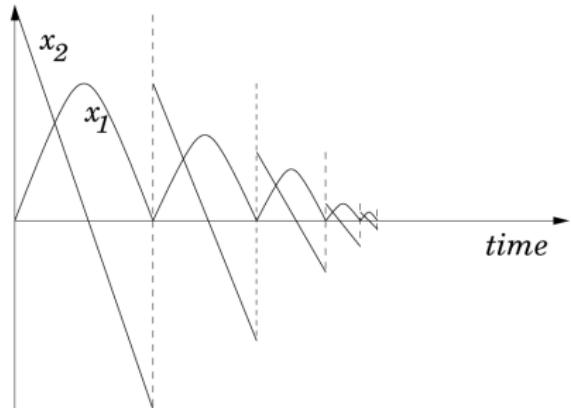
$$(l, \nu) \xrightarrow{a} (l', \nu')$$

- system *run* (execution): $\sigma_0 \xrightarrow{a_0} \sigma_1 \xrightarrow{a_1} \sigma_2 \dots$ with $\sigma_0 \in Init$
- a state is called *reachable* iff there is a run leading to it

Example: modeling a simple while-program

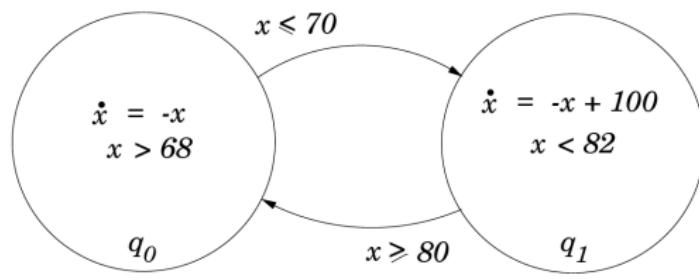
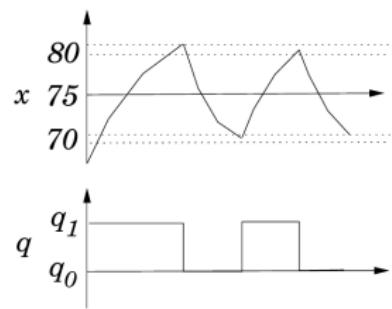
Example revisited: Bouncing Ball

- vertical position of the ball x_1
- velocity x_2
- **continuous** changes of position between bounces
- **discrete** changes of bounce time



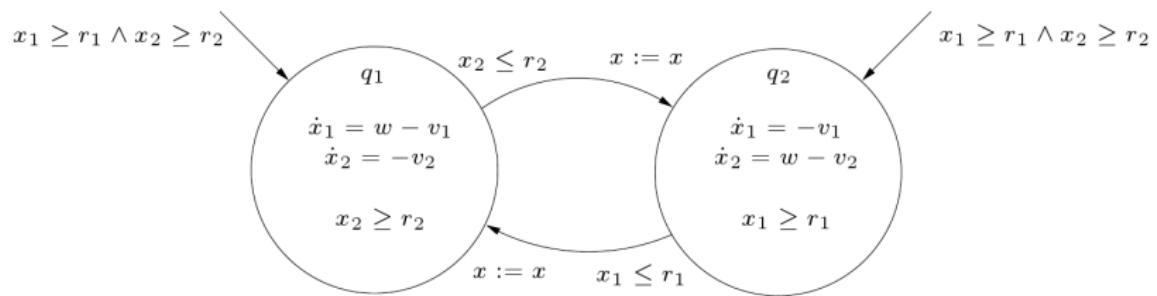
Example revisited: Thermostat

- $68^\circ \leq x \leq 70^\circ \rightsquigarrow$ "heater on"
- $80^\circ \leq x \leq 82^\circ \rightsquigarrow$ "heater off"



Example revisited: Water Tank System

- two constantly leaking tanks v_1 and v_2
- hose w refills exactly **one** tank at one point in time
- w can switch between tanks instantaneously



Hybrid automaton

Definition

A *hybrid automaton* \mathcal{H} is a tuple $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with

- finite set of locations Loc ,
- finite set of real-valued variables Var ,
- finite set of synchronization labels Lab , $\tau \in Lab$ (stutter label)
- finite set of edges $Edge \subseteq Loc \times Lab \times 2^{V^2} \times Loc$ (including stutter transitions (l, τ, Id, l) for each location $l \in Loc$),
- Act is a function assigning a set of activities $f : \mathbb{R}^+ \rightarrow V$ to each location; the activity sets are time-invariant, i.e., $f \in Act(l)$ implies $(f + t) \in Act(l)$, where $(f + t)(t') = f(t + t')$ f.a. $t' \in \mathbb{R}^+$,
- a function Inv assigning an invariant $Inv(l) \subseteq V$ to each location $l \in Loc$,
- initial states $Init \subseteq \Sigma$.

with

- **valuations** $\nu : Var \rightarrow \mathbb{R}$, V is the set of valuations
- **state** $(l, \nu) \in Loc \times V$, Σ is the set of states
- **transitions**: discrete and time

Semantics of hybrid automata

$$(l, a, \mu, l') \in Edge \quad (\nu, \nu') \in \mu \quad \nu' \in Inv(l')$$

Rule Discrete

$$(l, \nu) \xrightarrow{a} (l', \nu')$$

$$f \in Act(l) \quad f(0) = \nu \quad f(t) = \nu'$$

$$t \geq 0 \quad \forall 0 \leq t' \leq t. f(t') \in Inv(l)$$

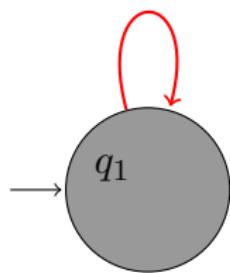
Rule Time

$$(l, \nu) \xrightarrow{t} (l, \nu')$$

- execution step: $\rightarrow = \xrightarrow{a} \cup \xrightarrow{t}$
- run: $\sigma_0 \rightarrow \sigma_1 \rightarrow \sigma_2 \dots$ with $\sigma_0 = (l_0, \nu_0) \in Init$ and $\nu_0 \in Inv(l_0)$
- reachability of a state: exists run leading to the state
- activities are represented in form of differential equations

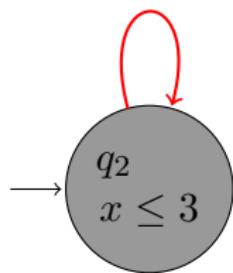
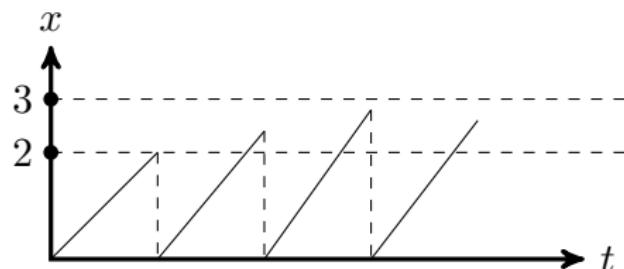
Example: Timed Automaton

$x \geq 2, \text{reset}(x)$



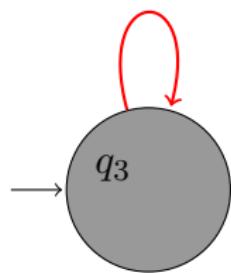
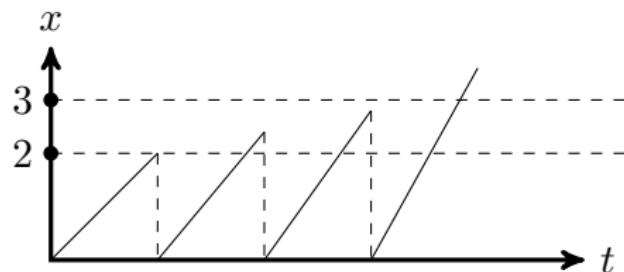
Example: Timed Automaton

$x \geq 2, \text{reset}(x)$



Example: Timed Automaton

$2 \leq x \leq 3, \text{reset}(x)$



Parallel composition

Definition

Let $\mathcal{H}_1 = (Loc_1, Var, Lab_1, Edge_1, Act_1, Inv_1, Init_1)$ and

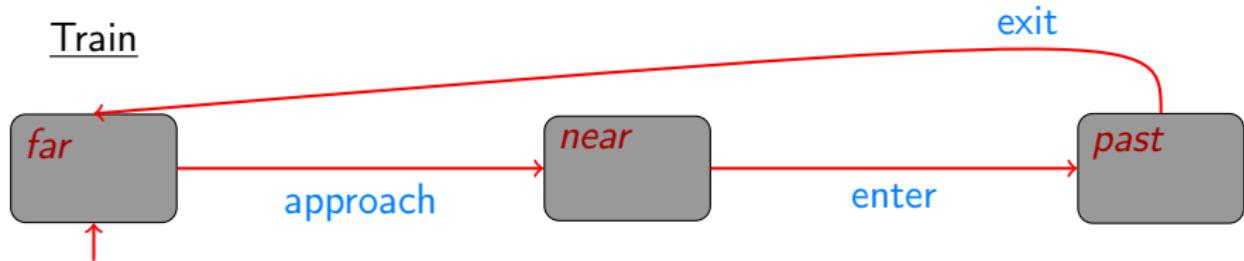
$\mathcal{H}_2 = (Loc_2, Var, Lab_2, Edge_2, Act_2, Inv_2, Init_2)$

be two hybrid automata. The *product*

$\mathcal{H}_1 \parallel \mathcal{H}_2 = (Loc_1 \times Loc_2, Var, Lab_1 \cup Lab_2, Edge, Act, Inv, Init)$ is the hybrid automaton with

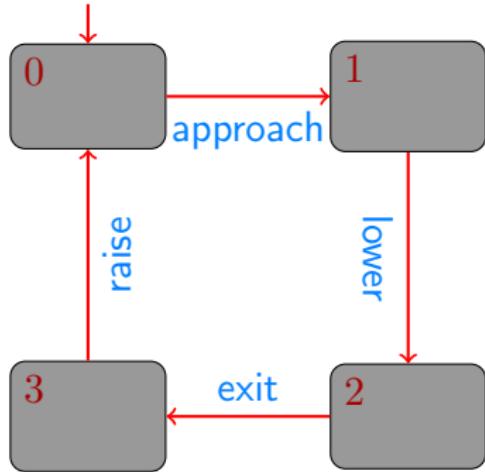
- $Act(l_1, l_2) = Act_1(l_1) \cap Act_2(l_2)$ for all $(l_1, l_2) \in Loc$,
- $Inv(l_1, l_2) = Inv_1(l_1) \cap Inv_2(l_2)$ for all $(l_1, l_2) \in Loc$,
- $Init = \{((l_1, l_2), \nu) | (l_1, \nu) \in Init_1, (l_2, \nu) \in Init_2\}$, and
- $((l_1, l_2), a, \mu, (l'_1, l'_2)) \in Edge$ iff
 - $(l_1, a_1, \mu_1, l'_1) \in Edge_1$ and $(l_2, a_2, \mu_2, l'_2) \in Edge_2$, and
 - either $a_1 = a_2 = a$, or $a_1 = a \notin Lab_2$ and $a_2 = \tau$, or $a_1 = \tau$ and $a_2 = a \notin Lab_1$, and
 - $\mu = \mu_1 \cap \mu_2$.

Simplified railroad crossing

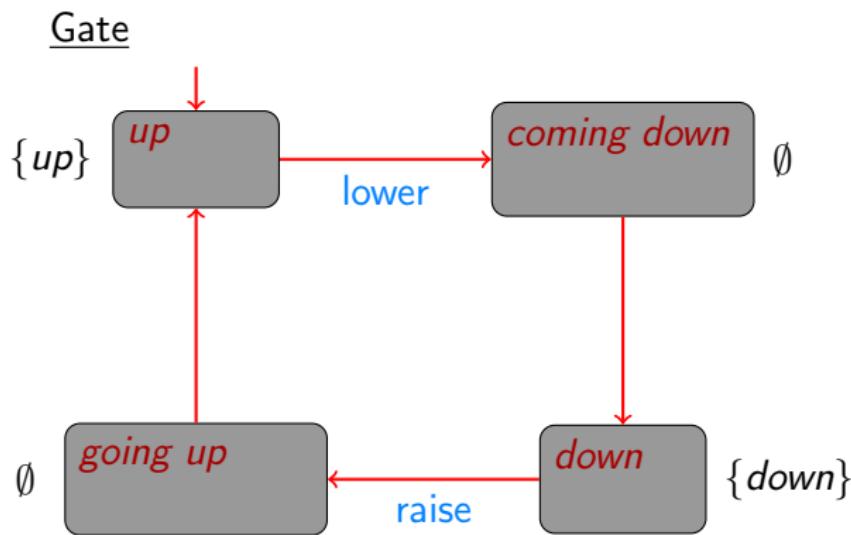


Simplified railroad crossing

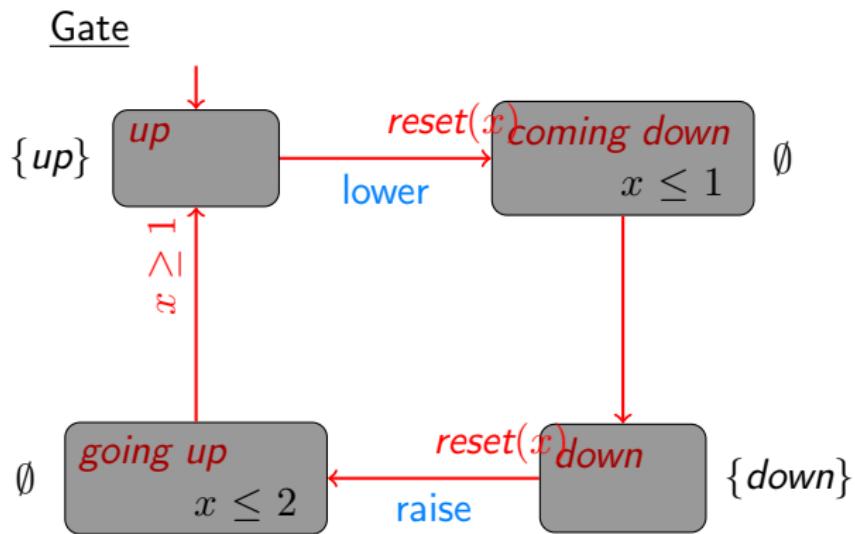
Controller



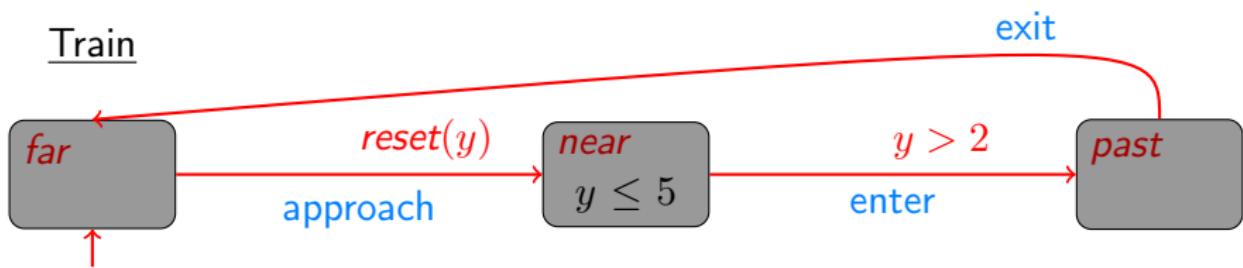
Simplified railroad crossing



Simplified railroad crossing with time component



Simplified railroad crossing with time component



Simplified railroad crossing with time component

Controller

