Modeling and analysis of hybrid systems

Modeling

Prof. Dr. Erika Abraham

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Abraham - Hybrid Systems 1/35

Hybrid systems

Abraham - Hybrid Systems 2/35

m Dynamical system: evolution of the state over time

m Classification based on state type:
continuous ~~ states from R"™ (subclasses: linear/nonlinear)
discrete ~~ states from a countable set

hybrid ~> both

m Classification based on time:

continuous time ~» t € R, evolution of the state is described by
ordinary differential equations (ODEs)
&= f(z,u)

discrete time ~» k € Z, evolution of the state is described by
difference equations xy1 = f(xy, ug)

hybrid time ~> the evolution is over continuous time, but
there are also discrete “instants” where some-

thing “special” happens

Abraham - Hybrid Systems 3/35

Example: Vending machine

®m insert coin

m choose beverage
(coffee/tee)

m wait for cup

m take cup

~> Discrete space, discrete time

Abraham - Hybrid Systems 4 /35

Example: Bouncing Ball

m vertical position of the ball x;
m velocity o
m continuous changes of position between bounces

m discrete changes at bounce time

VAT

~> Continuous space, hybrid time

Abraham - Hybrid Systems 5/ 35

Example: Thermostat

m temperature x controlled by switching a heater
m z regulated by thermostat:

m 68°< z < 70° ~~ “heater on”
m 80°< z < 82° ~~ “heater off”

80
x 75 on
70 ‘ oocene Off

time

~ Hybrid space, hybrid time

Abraham - Hybrid Systems 6 /35

Example: Water Tank System

m two constantly leaking tanks v1 and v
m hose w refills exactly one tank at one point in time

m w can switch between tanks instantaneously

~~ Hybrid space, hybrid time

Abraham - Hybrid Systems 7/ 35

There are much more complex examples of hybrid systems...

Quelle: www.digi-help.com

m Automobils, trains, etc.

m Automated highway systems

m Collision-avoidance and free flight for aircrafts
m Biological cell growth and division

Abraham - Hybrid Systems 8 /35

www.digi-help.com

Aims:
m modeling
m analysis

m synthesis

Abraham - Hybrid Systems 9/35

Finite automata

Abraham - Hybrid Systems 10 / 35

Nondeterministic finite automaton

Definition
A nondeterministic finite automaton (NFA) A is a tuple
A= (Q, 3, A, qo0, F) with

m finite set of states (),

m finite alphabet X,

m transition relation A C Q x X x Q,

m initital state gy € Q,

m set of final (accepting) states F' C Q).

a
a -

Abraham - Hybrid Systems 11 / 35

e,o-

Nondeterministic finite automaton

m An execution gy 0 q1 071 ... of the NFA A is a (finite or infinite)
sequence of states and inputs with ¢ the initial state and

(qi) g3, Qi-i-l) € A
m The NFA A accepts a word og o1 ... € * iff there is an execution
qo 0o q1 01 ... visiting some finite states infinitely often.

The language L(A) C X* accepted by A is the set of accepted words.
Two NFA are equivalent iff they accept the same language.
An NFA may be blocking.

An NFA may be non-deterministic.

Abraham - Hybrid Systems 12 / 35

Deterministic finite automaton

A deterministic finite automaton (DFA) A is a tuple A = (Q, X, A, qo, F)
with

m finite set of states (),

finite alphabet X,

transition function A : Q x ¥ — Q,
initital state ¢g € @,

set of final (accepting) states F' C Q).

For every NFA there is a DFA that accepts the same language.

Language type: regular

Abraham - Hybrid Systems 13 / 35

Parallel composition

For two DFAs A; = (Q1,%, A1, ¢, F1) and Az = (Q2, 3, Ag, g3, F2) we
define A1HA2 = (Q,E,A,qo,F) with

B Q=0Q1xQs

® A((q1,92),a) = (A1(q1,a), A2(gz2,a)) for all (q1,42) € Q1 x Q2 and
a €y,

= g0 = (45, 43),
m F= F1 X F2.

Abraham - Hybrid Systems 14 / 35

Hybrid automata

Abraham - Hybrid Systems 15 / 35

Labeled state transition system

A labeled state transition system (LSTS) is a tuple
LSTS = (X, Lab, Edge, Init) with

m a (probably infinite) state set ¥,

m a label set Lab,

m a transition relation Edge C 3 x Lab x %,

m non-empty set of initial states Init C 3.

Abraham - Hybrid Systems 16 / 35

Labeled (state) transition system

A labeled transition system (LTS) is a tuple
LTS = (Loc, Var, Lab, Edge, Init) with
m finite set of locations Loc,
m finite set of (typed) variables Var,
m finite set of synchronization labels Lab, 7 € Lab (stutter label)

m finite set of edges Fdge C Loc X Lab X 2V* x Loc (including stutter
transitions (I, 7, Id,) for each location [€ Loc),

m initial states Init C X.

with
m valuations v : Var — Domain, V is the set of valuations
m state 0 = (I,v) € Loc x V, ¥ is the set of states

Abraham - Hybrid Systems 17 / 35

Semantics of LTS

Operational semantics has a single rule:

e=(l,a,p,l") € Edge (v,') € p

(Lv) S (I',v)

m system run (execution): og B o1 B gy... with oy € Init

m a state is called reachable iff there is a run leading to it

Abraham - Hybrid Systems 18 / 35

Example: modeling a simple while-program

Abraham - Hybrid Systems 19 / 35

Example revisited: Bouncing Ball

m vertical position of the ball 21
m velocity zo
m continuous changes of position between bounces

m discrete changes of bounce time

Abraham - Hybrid Systems 20 / 35

Example revisited: Thermostat

B 68°< x < 70° ~» “heater on”
B 30°< x < 82° ~» "heater off”

80
x 75
70 1/

"L L]

Abraham - Hybrid Systems 21 /35

Example revisited: Water Tank System

m two constantly leaking tanks v1 and vy
m hose w refills exactly one tank at one point in time

m w can switch between tanks instantaneously

1 >r1 ANz

/ivl >r1ANxy > 1o

Abraham - Hybrid Systems 22 /35

Hybrid automaton

A hybrid automaton H is a tuple H = (Loc, Var, Lab, Edge, Act, Inv, Init) with

finite set of locations Loc,

finite set of real-valued variables Var,

finite set of synchronization labels Lab, 7 € Lab (stutter label)

finite set of edges Edge C Loc x Lab x 2V* x Loc (including stutter

transitions (I, 7, Id,!) for each location [€ Loc),

m Act is a function assigning a set of activities f : Rt — V to each location;
the activity sets are time-invariant, i.e., f € Act(l) implies (f +t) € Act(l),
where (f +)(t') = f(t+t') f.a. t' € RT,

m a function Inv assigning an invariant Inv(l) C V to each location [€ Loc,

m initial states Init C X.

m valuations v : Var — R, V is the set of valuations
m state (I,v) € Loc x V, ¥ is the set of states
m transitions: discrete and time

Abraham - Hybrid Systems 23 /35

Semantics of hybrid automata

(l,a,u,l') € Edge (v,V') € pu V' € Inv(l')

Rule piscrete

(Lv) S (I,v)

feAal) fO)=v f)=+
t>0 YO<t<tf(t)e Inv(l)

Rule Time

(L,v) 5 (1,0)

. t
execution step: — = SHUuS

]
B run: o9 — o1 — 03... with o9 = (lp, o) € Init and vy € Inv(ly)
m reachability of a state: exists run leading to the state

]

activities are represented in form of differential equations

Abraham - Hybrid Systems 24 / 35

Example: Timed Automaton

x > 2, reset(x)

Abraham - Hybrid Systems 25 / 35

Example: Timed Automaton

x > 2, reset(x)

Abraham - Hybrid Systems 26 / 35

Example: Timed Automaton

2 <z <3, reset(x)

Abraham - Hybrid Systems 27 / 35

Parallel composition

Definition
Let #, = (Loc1, Var, Laby, Edge,, Acty, Invy, Init;) and
Ho = (Loca, Var, Labs, Edgey, Acto, Invs, Inits)
be two hybrid automata. The product
H1||He = (Locy X Loca, Var, Laby U Laby, Edge, Act, Inv, Init) is the
hybrid automaton with
[| Act(ll, lg) = Actl(ll) N ACtQ(lQ) for all (ll,lg) € Loc,
m [nv(ly,la) = Invi(l1) N Inva(le) for all (I1,l2) € Loc,
m [nit = {((l1,12),v)|(l1,v) € Inity, (l3,v) € Inits}, and
w (1, 12), a5, (1, 1)) € Bdge if
m (l1,a1,m1,l}) € Edgey and (l2, ag, 2, 15) € Edge,, and
m either ay = ay =a, or a1 = a ¢ Laby and ay =7, or a; = 7 and
as = a ¢ Laby, and
B = i1 N pa.

Abraham - Hybrid Systems 28 / 35

Simplified railroad crossing

Train exit

approach -

Abraham - Hybrid Systems 29 / 35

Simplified railroad crossing

Controller

Abraham - Hybrid Systems 30/ 35

Simplified railroad crossing

0 {down}

raise

Abraham - Hybrid Systems 31/35

Simplified railroad crossing with time component

Abraham - Hybrid Systems 32 /35

Simplified railroad crossing with time component

exit

Train

reset(y)

approach - enter

Abraham - Hybrid Systems 33/35

Simplified railroad crossing with time component

Controller

reset(z)

reset(z)

Abraham - Hybrid Systems 34 /35

exit

reset(y) y>2
approach enter
reset(x) reset(z)

reset(x) reset(z)

Abraham - Hybrid Systems 35 /35

	Hybrid systems
	Finite automata
	Hybrid automata

