
Modeling and analysis of hybrid systems
Modeling

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Ábrahám - Hybrid Systems 1 / 35

Contents

1 Hybrid systems

2 Finite automata

3 Hybrid automata

Ábrahám - Hybrid Systems 2 / 35

Motivation

Dynamical system: evolution of the state over time
Classification based on state type:
continuous states from Rn (subclasses: linear/nonlinear)
discrete states from a countable set
hybrid both

Classification based on time:
continuous time t ∈ R, evolution of the state is described by

ordinary differential equations (ODEs)
ẋ = f(x, u)

discrete time k ∈ Z, evolution of the state is described by
difference equations xk+1 = f(xk, uk)

hybrid time the evolution is over continuous time, but
there are also discrete “instants” where some-
thing “special” happens

Ábrahám - Hybrid Systems 3 / 35

Example: Vending machine

insert coin
choose beverage
(coffee/tee)
wait for cup
take cup

Coin

Coffee

Tee

 Discrete space, discrete time

Ábrahám - Hybrid Systems 4 / 35

Example: Bouncing Ball

vertical position of the ball x1
velocity x2
continuous changes of position between bounces
discrete changes at bounce time

 Continuous space, hybrid time

Ábrahám - Hybrid Systems 5 / 35

Example: Thermostat

temperature x controlled by switching a heater
x regulated by thermostat:

68◦≤ x ≤ 70◦ “heater on”
80◦≤ x ≤ 82◦ “heater off”

Off

On

time

 Hybrid space, hybrid time

Ábrahám - Hybrid Systems 6 / 35

Example: Water Tank System

two constantly leaking tanks v1 and v2
hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

 Hybrid space, hybrid time

Ábrahám - Hybrid Systems 7 / 35

There are much more complex examples of hybrid systems...

Quelle: www.digi-help.com

Automobils, trains, etc.
Automated highway systems
Collision-avoidance and free flight for aircrafts
Biological cell growth and division

Ábrahám - Hybrid Systems 8 / 35

www.digi-help.com

Aims:
modeling
analysis
synthesis

Ábrahám - Hybrid Systems 9 / 35

Contents

1 Hybrid systems

2 Finite automata

3 Hybrid automata

Ábrahám - Hybrid Systems 10 / 35

Nondeterministic finite automaton

Definition
A nondeterministic finite automaton (NFA) A is a tuple
A = (Q,Σ,∆, q0, F) with

finite set of states Q,
finite alphabet Σ,
transition relation ∆ ⊆ Q× Σ×Q,
initital state q0 ∈ Q,
set of final (accepting) states F ⊆ Q.

Ábrahám - Hybrid Systems 11 / 35

Nondeterministic finite automaton

An execution q0 σ0 q1 σ1 . . . of the NFA A is a (finite or infinite)
sequence of states and inputs with q0 the initial state and
(qi, σi, qi+1) ∈ ∆.
The NFA A accepts a word σ0 σ1 . . . ∈ Σ∗ iff there is an execution
q0 σ0 q1 σ1 . . . visiting some finite states infinitely often.
The language L(A) ⊆ Σ∗ accepted by A is the set of accepted words.
Two NFA are equivalent iff they accept the same language.
An NFA may be blocking.
An NFA may be non-deterministic.

Ábrahám - Hybrid Systems 12 / 35

Deterministic finite automaton

Definition
A deterministic finite automaton (DFA) A is a tuple A = (Q,Σ,∆, q0, F)
with

finite set of states Q,
finite alphabet Σ,
transition function ∆ : Q× Σ→ Q,
initital state q0 ∈ Q,
set of final (accepting) states F ⊆ Q.

For every NFA there is a DFA that accepts the same language.
Language type: regular

Ábrahám - Hybrid Systems 13 / 35

Parallel composition

Definition
For two DFAs A1 = (Q1,Σ,∆1, q

1
0, F1) and A2 = (Q2,Σ,∆2, q

2
0, F2) we

define A1||A2 = (Q,Σ,∆, q0, F) with
Q = Q1 ×Q2,
∆((q1, q2), a) = (∆1(q1, a),∆2(q2, a)) for all (q1, q2) ∈ Q1 ×Q2 and
a ∈ Σ,
q0 = (q10, q

2
0),

F = F1 × F2.

Ábrahám - Hybrid Systems 14 / 35

Contents

1 Hybrid systems

2 Finite automata

3 Hybrid automata

Ábrahám - Hybrid Systems 15 / 35

Labeled state transition system

Definition
A labeled state transition system (LSTS) is a tuple
LST S = (Σ,Lab,Edge, Init) with

a (probably infinite) state set Σ,
a label set Lab,
a transition relation Edge ⊆ Σ× Lab × Σ,
non-empty set of initial states Init ⊆ Σ.

Ábrahám - Hybrid Systems 16 / 35

Labeled (state) transition system

Definition
A labeled transition system (LTS) is a tuple
LT S = (Loc,Var ,Lab,Edge, Init) with

finite set of locations Loc,
finite set of (typed) variables Var ,
finite set of synchronization labels Lab, τ ∈ Lab (stutter label)
finite set of edges Edge ⊆ Loc × Lab × 2V

2 × Loc (including stutter
transitions (l, τ, Id , l) for each location l ∈ Loc),
initial states Init ⊆ Σ.

with
valuations ν : Var → Domain, V is the set of valuations
state σ = (l, ν) ∈ Loc × V , Σ is the set of states

Ábrahám - Hybrid Systems 17 / 35

Semantics of LTS

Operational semantics has a single rule:

e = (l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ

(l, ν)
a→ (l′, ν ′)

system run (execution): σ0
a0→ σ1

a1→ σ2 . . . with σ0 ∈ Init

a state is called reachable iff there is a run leading to it

Ábrahám - Hybrid Systems 18 / 35

Example: modeling a simple while-program

Ábrahám - Hybrid Systems 19 / 35

Example revisited: Bouncing Ball

vertical position of the ball x1
velocity x2
continuous changes of position between bounces
discrete changes of bounce time

Ábrahám - Hybrid Systems 20 / 35

Example revisited: Thermostat

68◦≤ x ≤ 70◦ “heater on”
80◦≤ x ≤ 82◦ “heater off”

Ábrahám - Hybrid Systems 21 / 35

Example revisited: Water Tank System

two constantly leaking tanks v1 and v2
hose w refills exactly one tank at one point in time
w can switch between tanks instantaneously

Ábrahám - Hybrid Systems 22 / 35

Hybrid automaton

Definition
A hybrid automaton H is a tuple H = (Loc,Var ,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var ,
finite set of synchronization labels Lab, τ ∈ Lab (stutter label)
finite set of edges Edge ⊆ Loc × Lab × 2V

2 × Loc (including stutter
transitions (l, τ, Id, l) for each location l ∈ Loc),
Act is a function assigning a set of activities f : R+ → V to each location;
the activity sets are time-invariant, i.e., f ∈ Act(l) implies (f + t) ∈ Act(l),
where (f + t)(t′) = f(t+ t′) f.a. t′ ∈ R+,
a function Inv assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc,
initial states Init ⊆ Σ.

with

valuations ν : Var → R, V is the set of valuations
state (l, ν) ∈ Loc × V , Σ is the set of states
transitions: discrete and time

Ábrahám - Hybrid Systems 23 / 35

Semantics of hybrid automata

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

f ∈ Act(l) f(0) = ν f(t) = ν ′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

execution step: → =
a→ ∪ t→

run: σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init and ν0 ∈ Inv(l0)

reachability of a state: exists run leading to the state
activities are represented in form of differential equations

Ábrahám - Hybrid Systems 24 / 35

Example: Timed Automaton

q1

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 25 / 35

Example: Timed Automaton

q2
x ≤ 3

x ≥ 2, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 26 / 35

Example: Timed Automaton

q3

2 ≤ x ≤ 3, reset(x)

t

x

2

3

Ábrahám - Hybrid Systems 27 / 35

Parallel composition

Definition
Let H1 = (Loc1,Var ,Lab1,Edge1,Act1, Inv1, Init1) and
H2 = (Loc2,Var ,Lab2,Edge2,Act2, Inv2, Init2)

be two hybrid automata. The product
H1||H2 = (Loc1 × Loc2,Var ,Lab1 ∪ Lab2,Edge,Act , Inv , Init) is the
hybrid automaton with

Act(l1, l2) = Act1(l1) ∩Act2(l2) for all (l1, l2) ∈ Loc,
Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2) for all (l1, l2) ∈ Loc,
Init = {((l1, l2), ν)|(l1, ν) ∈ Init1, (l2, ν) ∈ Init2}, and
((l1, l2), a, µ, (l

′
1, l
′
2)) ∈ Edge iff

(l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2, and

either a1 = a2 = a, or a1 = a /∈ Lab2 and a2 = τ , or a1 = τ and
a2 = a /∈ Lab1, and
µ = µ1 ∩ µ2.

Ábrahám - Hybrid Systems 28 / 35

Simplified railroad crossing

Train

far near past

approach enter

exit

Ábrahám - Hybrid Systems 29 / 35

Simplified railroad crossing

Controller

0 1

23

approach

low
er

exit

ra
is
e

Ábrahám - Hybrid Systems 30 / 35

Simplified railroad crossing

Gate

up coming down

downgoing up

lower

raise

{up} ∅

{down}∅

Ábrahám - Hybrid Systems 31 / 35

Simplified railroad crossing with time component

Gate

up coming down
x ≤ 1

downgoing up
x ≤ 2

reset(x)

lower

reset(x)

raise

x
≥

1

{up} ∅

{down}∅

Ábrahám - Hybrid Systems 32 / 35

Simplified railroad crossing with time component

Train

far near
y ≤ 5

pastreset(y)

approach

y > 2

enter

exit

Ábrahám - Hybrid Systems 33 / 35

Simplified railroad crossing with time component

Controller

0 1
z ≤ 1

23
z ≤ 1

reset(z)

approach

z
=

1

low
er

exit
reset(z)

ra
is
e

Ábrahám - Hybrid Systems 34 / 35

far near
y ≤ 5

past
reset(y)

approach

y > 2

enter

exit

up coming down
x ≤ 1

downgoing up
x ≤ 2

reset(x)

lower

reset(x)

raise

x
≥

1

0 1
z ≤ 1

23
z ≤ 1

reset(z)

approach

z
=

1

low
er

reset(z)

exit

ra
is
e

Ábrahám - Hybrid Systems 35 / 35

	Hybrid systems
	Finite automata
	Hybrid automata

