

Modeling and analysis of hybrid systems

Propositional and temporal logics

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Propositional Logic

- Abstract syntax:

$$\varphi ::= a \mid (\varphi \wedge \varphi) \mid (\neg \varphi)$$

with $a \in AP$.

- Syntactic sugar: *true*, *false*, \vee , \rightarrow , \leftrightarrow , ...
- Omit parentheses when no confusion
- Semantics:

$$\begin{array}{ll} \sigma \models a & \text{iff } a \in L(\sigma), \\ \sigma \models (\varphi_1 \wedge \varphi_2) & \text{iff } \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2, \\ \sigma \models (\neg \varphi) & \text{iff } \sigma \not\models \varphi. \end{array}$$

Temporal Logics

Assume

- a labeled state transition system $\mathcal{LSTS} = (\Sigma, \text{Lab}, \text{Edge}, \text{Init})$,
- a set of atomic propositions AP , and
- a labeling function $L : \Sigma \rightarrow 2^{AP}$.

LTL Syntax

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths in the computation tree.

- Abstract syntax:

$$\varphi ::= a \mid (\varphi \wedge \varphi) \mid (\neg \varphi) \mid (\mathcal{X} \varphi) \mid (\varphi \mathcal{U} \varphi)$$

where $a \in AP$.

- Syntactic sugar: \mathcal{F} (“finally” or “eventually”), \mathcal{G} (“globally”), etc.
- We often omit parentheses when no confusion.

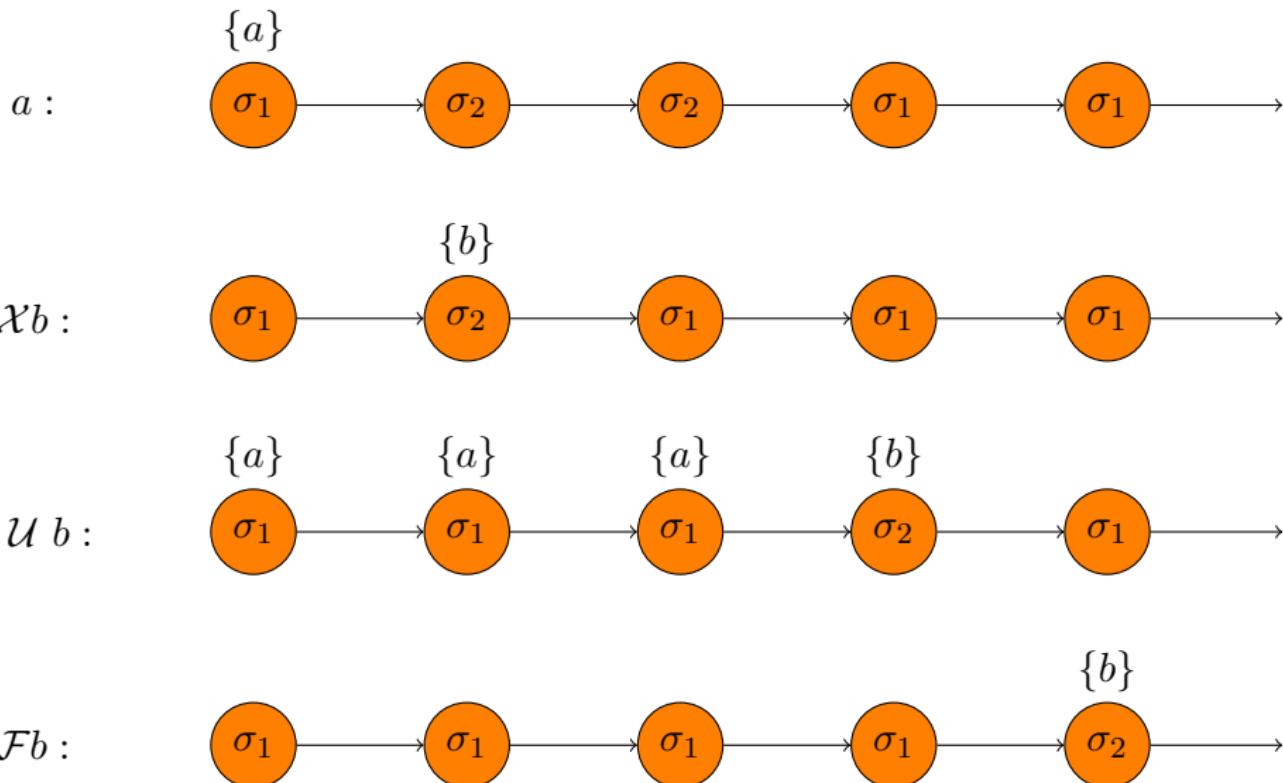
LTL Semantics

For path $\pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \dots$ let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \rightarrow \sigma_{i+1} \rightarrow \dots$

$$\begin{aligned}\pi \models a &\quad \text{iff } a \in L(\pi(0)), \\ \pi \models \varphi_1 \wedge \varphi_2 &\quad \text{iff } \pi \models \varphi_1 \text{ and } \pi \models \varphi_2, \\ \pi \models \neg\varphi &\quad \text{iff } \pi \not\models \varphi, \\ \pi \models \mathcal{X}\varphi &\quad \text{iff } \pi^1 \models \varphi, \\ \pi \models \varphi_1 \mathcal{U} \varphi_2 &\quad \text{iff } \exists j \geq 0. \pi^j \models \varphi_2 \wedge \forall 0 \leq i < j. \pi^i \models \varphi_1.\end{aligned}$$

$\mathcal{LSTS} \models \varphi$ iff $\pi \models \varphi$ for all paths π of \mathcal{LSTS} .

Example



CTL syntax

CTL *state formulae*:

$$\psi ::= a \mid (\psi \wedge \psi) \mid (\neg\psi) \mid (\exists\varphi) \mid (\forall\varphi)$$

with $a \in AP$ and φ are CTL path formulae.

CTL *path formulae*:

$$\varphi ::= \mathcal{X}\psi \mid \psi \mathcal{U} \psi$$

where ψ are CTL state formulae.

CTL formulae are CTL state formulae. We omit parentheses when causing no confusion.

CTL semantics

$\sigma \models a$	<i>iff</i> $a \in L(\sigma)$
$\sigma \models \psi_1 \wedge \psi_2$	<i>iff</i> $\sigma \models \psi_1$ <i>and</i> $\sigma \models \psi_2$
$\sigma \models \neg\psi$	<i>iff</i> $\sigma \not\models \psi$
$\sigma \models \exists\varphi$	<i>iff</i> $\pi \models \varphi$ <i>for some</i> $\pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \dots$ <i>with</i> $\sigma_0 = \sigma$
$\sigma \models \forall\varphi$	<i>iff</i> $\pi \models \varphi$ <i>for all</i> $\pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \dots$ <i>with</i> $\sigma_0 = \sigma$
$\pi \models \mathcal{X}\psi$	<i>iff</i> $\pi(1) \models \psi$
$\pi \models \psi_1 \mathcal{U} \psi_2$	<i>iff</i> <i>exists</i> $0 \leq j$ <i>with</i> $\pi(j) \models \psi_2$ <i>and</i> $\pi(i) \models \psi_1$ <i>for all</i> $0 \leq i < j$.

CTL*

syntax $CTL^* state formulae$:

$$\psi ::= a \mid (\psi \wedge \psi) \mid (\neg \psi) \mid (\exists \varphi)$$

with $a \in AP$ and φ are CTL^* path formulae.

$CTL^* path formulae$:

$$\varphi ::= \psi \mid (\varphi \wedge \varphi) \mid (\neg \varphi) \mid (\mathcal{X} \varphi) \mid (\varphi \mathcal{U} \varphi)$$

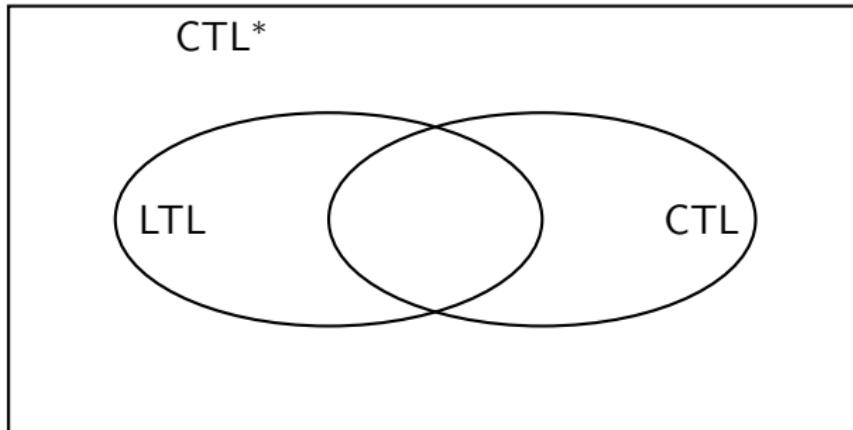
where ψ are CTL^* state formulae.

$CTL^* formulae$ are CTL^* state formulae. We often omit parentheses.

CTL* semantics

$\sigma \models a$	iff $a \in L(\sigma)$
$\sigma \models \psi_1 \wedge \psi_2$	iff $\sigma \models \psi_1$ and $\sigma \models \psi_2$
$\sigma \models \neg\psi$	iff $\sigma \not\models \psi$
$\sigma \models \exists\varphi$	iff $\pi \models \varphi$ for some $\pi = \sigma_0 \rightarrow \sigma_1 \rightarrow \dots$ with $\sigma_0 = \sigma$
$\pi \models \psi$	iff $\pi(0) \models \psi$
$\pi \models \varphi_1 \wedge \varphi_2$	iff $\pi \models \varphi_1$ and $\pi \models \varphi_2$
$\pi \models \neg\varphi$	iff $\pi \not\models \varphi$
$\pi \models \mathcal{X}\varphi$	iff $\pi^1 \models \varphi$
$\pi \models \varphi_1 \mathcal{U} \varphi_2$	iff exists $0 \leq j$ with $\pi^j \models \varphi_2$ and $\pi^i \models \varphi_1$ for all $0 \leq i < j$.

The relation of LTL, CTL, and CTL*



- The LTL formula $\mathcal{F}\mathcal{G}a$ is not expressible in CTL.
- The CTL formula $\forall\mathcal{F}\forall\mathcal{G}a$ is not expressible in LTL.

CTL Model Checking

Given a state transition system and a CTL formula ψ , CTL model checking labels the states recursively with the sub-formulae of ψ inside-out.

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1 and ψ_2 , we label a state with $\psi_1 \wedge \psi_2$ iff the state is labeled with both ψ_1 and ψ_2 .
- Given the labeling for ψ , we label a state with $\neg\psi$ iff the state is not labeled with ψ .

CTL Model Checking

- Given the labeling for ψ , we label a state with $\exists \mathcal{X} \psi$ iff there is a successor state labeled with ψ .
- Given the labeling for ψ_1 and ψ_2 , we
 - label all with ψ_2 labeled states additionally with $\exists \psi_1 \mathcal{U} \psi_2$, and
 - label all states that have the label ψ_1 and have a successor state with the label $\exists \psi_1 \mathcal{U} \psi_2$ also with $\exists \psi_1 \mathcal{U} \psi_2$ iteratively until a fixed point is reached.
- Given the labeling for ψ , we label a state with $\forall \mathcal{X} \psi$ iff all successor states are labeled with ψ .
- Given the labeling for ψ_1 and ψ_2 , we
 - label all with ψ_2 labeled states additionally with $\forall \psi_1 \mathcal{U} \psi_2$, and
 - label all states that have the label ψ_1 and all of their successor states have the label $\forall \psi_1 \mathcal{U} \psi_2$ also with $\forall \psi_1 \mathcal{U} \psi_2$ iteratively until a fixed point is reached.

Discrete-Time LTL

$$\mathcal{X}^k \varphi =$$

$$\begin{cases} \varphi & \text{if } k = 0 \\ \mathcal{X} \mathcal{X}^{k-1} \varphi & \text{else.} \end{cases}$$

$$\varphi_1 \mathcal{U}^{[k_1, k_2]} \varphi_2 =$$

$$\begin{cases} \varphi_1 \mathcal{U} \varphi_2 & \text{for } [k_1, k_2] = [0, \infty] \\ \varphi_2 & \text{for } [k_1, k_2] = [0, 0] \\ \varphi_1 \wedge \mathcal{X}(\varphi_1 \mathcal{U}^{[k_1-1, k_2-1]} \varphi_2) & \text{for } k_1 > 0 \\ \varphi_2 \vee (\varphi_1 \wedge \mathcal{X}(\varphi_1 \mathcal{U}^{[0, k_2-1]} \varphi_2)) & \text{for } k_1 = 0, k_2 > 0 \end{cases}$$

Discrete-Time CTL

$$\exists \mathcal{X}^k \psi =$$

$$\begin{cases} \psi & \text{if } k = 0 \\ \exists \mathcal{X} \exists \mathcal{X}^{k-1} \psi & \text{else.} \end{cases}$$

$$\exists \psi_1 \mathcal{U}^{[k_1, k_2]} \psi_2 =$$

$$\begin{cases} \exists \psi_1 \mathcal{U} \psi_2 & \text{for } [k_1, k_2] = [0, \infty] \\ \psi_2 & \text{for } [k_1, k_2] = [0, 0] \\ \psi_1 \wedge \exists \mathcal{X} \exists (\psi_1 \mathcal{U}^{[k_1-1, k_2-1]} \psi_2) & \text{for } k_1 > 0 \\ \psi_2 \vee (\psi_1 \wedge \exists \mathcal{X} \exists (\psi_1 \mathcal{U}^{[0, k_2-1]} \psi_2)) & \text{for } k_1 = 0, k_2 > 0 \end{cases}$$

Syntactic sugar

We also write

- $\mathcal{U}^{\leq k}$ instead of $\mathcal{U}^{[0,k]}$,
- $\mathcal{U}^{\geq k}$ for $\mathcal{U}^{[k,\infty]}$,
- $\mathcal{U}^{=k}$ for $\mathcal{U}^{[k,k]}$, and
- \mathcal{U} for $\mathcal{U}^{[0,\infty]}$.

Example

The discrete-time LTL formula $a \mathcal{U}^{[2,3]} b$ is defined as

$$a \wedge \mathcal{X}(a \wedge \mathcal{X}(b \vee (a \wedge \mathcal{X}b))).$$

It is satisfied by paths of the following form:

Discrete-Time Model Checking

As the discrete-time temporal operators are defined as syntactic sugar, LTL model checking can be applied to check the validity of discrete-time LTL formulae for state transition systems.