Modeling and analysis of hybrid systems

Timed automata

Prof. Dr. Erika Abraham

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Abraham - Hybrid Systems 1/31

Christel Baier and Joost-Pieter Katoen:
Principles of Model Checking

Abraham - Hybrid Systems 2/31

Motivation

Abraham - Hybrid Systems 3/31

Motivation

Correctness in time-critical systems not only depends on the logical result
of the computation but also on the time at which the results are produced.

Thus if we model such systems, we also need to model the time.
The first choice in modeling: discrete or continuous time?

Abraham - Hybrid Systems 4 /31

Discrete-time systems

conceptually simple

each action lasts for a single time unit (tick)

action « lasts k > 0 time units ~ k — 1 ticks followed by «
leads to large transition systems

minimal time between two actions is a multiple of the tick

logic: CTL or LTL extended with syntactic sugar
(Xp) Op : ¢ holds after one tick
(XFp) OFp : ¢ holds after k ticks
(F<Fp) OSkp © o occurs within k ticks

We deal in this lecture with continuous-time models.

Abraham - Hybrid Systems 5/31

Timed automata

Abraham - Hybrid Systems 6 /31

Timed automata

m Measure time: finite set C of clocks x,v, 2, . ..

m Clocks increase their value implicitely as time progresses
m All clocks proceed at rate 1

m Limited clock access:

Reading: Clock constraints
g = x<c | z<c¢ | z>c
with ce N (c€ Q) and z € C.
Syntactic sugar: true, x € [c1,¢2), 1 <z <cy, T=g¢,...
ACC(C): set of atomic clock constraints over C
CC(C): set of clock constraints over C

Writing: Clock reset sets value to 0

r>c | ghg

Abraham - Hybrid Systems 7/31

Semantics of clock constraints

For a set C of clocks, z € C, v € Vi, c € N, and g,¢9' € CC(C), let
= C Ve xCC(C) be defined by

vEz<c iff v(x)
viEz<c iff v(z)
vExz>c iff v(z)>c
viExz>c iff v(z)
veEgng iff vEgandrvEd

Abraham - Hybrid Systems 8 /31

Semantics of clock access

m For a set C of clocks, v € V-, and ¢ € N we denote by v + ¢ the
valuation with (v + ¢)(z) = v(z) + ¢ for all z € C.

m For a valuation v € V> and a clock z € C we define reset 2 in v to be
the valuation which equals v except on x whose value is 0:

(reset = in v)(y) = { g(y) ngie# '

Abraham - Hybrid Systems 9/31

Semantics of clock access

m For a set C of clocks, v € V-, and ¢ € N we denote by v + ¢ the
valuation with (v + ¢)(z) = v(z) + ¢ for all z € C.

m For a valuation v € V> and a clock z € C we define reset 2 in v to be
the valuation which equals v except on x whose value is 0:

(reset = in v)(y) = { g(y) ngie# '

What does it mean?
mv+9
m reset x in (v +9)
m (reset x inv)+9
m reset x in (reset y in v)

Abraham - Hybrid Systems 9/31

Timed automata

A timed automaton is a special hybrid system:
m Variables are clocks to model real-time behaviour and express
real-time assumptions
m Edges are defined by

m source and target locations,

m a label,

m a guard: clock constraint specifying enabling,
m a set of clocks to be reset.

m Invariants are clock constraints.

Abraham - Hybrid Systems 10 / 31

Timed automaton

Definition (Syntax of timed automata)

A timed automaton T = (Loc, Clocks, Lab, Edge, Inv, Init) is a tuple with
m Loc is a finite set of locations,
m Clocks is a finite set of clocks,
m Lab is a finite set of synchronization labels,

m Edge C Loc x Lab x (CC(Clocks) x 2€9°%%) x Loc is a finite set of
edges,

m [nv : Loc — CC(Clocks) is a function assigning an invariant to each
location, and

m Init C X with v(z) =0 for all © € Clocks and all (I,v) € Init.

:g,C
We call the variables in Clocks clocks. We also use the notation ["< [’
to state that there exists an edge (I, a, (g,C),l") € Edge.

Note: (1) no explicite activities given (2) fixed logic for constraints

Abraham - Hybrid Systems 11 /31

Timed automaton

Analogously to Kripke structures, we can additionally define
m a set of atomic propositions AP and
m a labeling function L : Loc — 247

to model further system properties.

Abraham - Hybrid Systems 12 / 31

Operational semantics

(l,a,(g,R),l') € Edge
viEg VvV =reset Rinv v EInv(l') Rule piscrete
(Lv) = (V)

t>0 vV =v+t vV EInu(l)
(L) 5 (1)

Rule Time

. t
m execution step: — = LHus
m path: 0p > 01 > 09...

m run: path o9 — 01 — o2... with o9 = (lp, v0), lo € Init, vy(x) =0
f.a. x € C (and vy € Inv(lp))

m reachability of a state: exists a run leading to the state

Abraham - Hybrid Systems 13 /31

Examples:
m Simple example: guards and invariants
m Light switch
m Controller from the railroad crossing example
m Simplified railroad crossing
m Parallel composition for the simplified railroad crossing

Discussion: Timed (hybrid) automata vs. transition systems

Abraham - Hybrid Systems 14 / 31

Example: Timed Automaton

x > 2, reset(x)

Abraham - Hybrid Systems 15 / 31

Example: Timed Automaton

x > 2, reset(x)

Abraham - Hybrid Systems 16 / 31

Example: Timed Automaton

2 <z <3, reset(x)

Abraham - Hybrid Systems 17 / 31

exit

reset(y)
approach enter

reset(x)

reset(z)

reset(x) reset(z)

Abraham - Hybrid Systems 18 / 31

Time divergence, timelock, and zenoness

Zeno of Elea (c.490-c.430 BC)

Zeno's paradoxes: Achilles and the tortoise

“In a race, the quickest runner can never overtake the slowest, since the
pursuer must first reach the point whence the pursued started, so that the
slower must always hold a lead." —Aristotle, Physics VI:9, 239b15

m Not all paths of a timed automata represent realistic behaviour.

m Three essential phenomena: time divergence, timelock, zenoness.

Abraham - Hybrid Systems 19 / 31

Time divergence

For a timed automaton 7 = (Loc,C, Lab, Edge, Inv, Init). we define
EzecTime : (Lab URZ%) — R0 with

m EzecTime(a) =0 for a € Lab and
m EzecTime(d) = d for d € R=0.

Furthermore, for p = sg =3 51 =% s9 =3 ... we define

o
EzecTime(p) = Z EzecTime(a;).
=0

A path is time-divergent iff EzecTime(p) = 0o, and time-convergent
otherwise.

m Time-convergent paths are not realistic, and are not considered in the
semantics.
m Note: their existence cannot be avoided (in general).

Abraham - Hybrid Systems 20 /31

Timelock

Definition
For a state 0 € X let Pathsg;, (o) be the set of time-divergent paths

starting in s.
A state o € X contains a timelock iff Paths g, (c) = 0.
A timed automaton is timelock-free iff none of its reachable states contains

a timelock.

Timelocks are modeling flows and should be avoided.

Abraham - Hybrid Systems 21 /31

/enoness

Definition
An infinite path fragment 7 is zeno iff it is time-convergent and infinitely

many discrete actions are executed within 7.
A timed automaton is non-zeno iff no zeno path starts in an initial state.

m Zeno paths represent nonrealizable behaviour, since their execution
would require infinitely fast processors.

m Thus zeno paths are modeling flows and should be avoided.

m To check whether a timed automaton is non-zeno is algorithmically
difficult.

m Instead, sufficient conditions are considered that are simple to check,
e.g., by static analysis.

Abraham - Hybrid Systems 22 /31

Checking non-zenoness

Theorem (Sufficient condition for non-zenoness)

Let T be a timed automaton with clocks C such that for every control cycle

ai:91,C as:g2,C: AnignChn
lO 1:91 1l1 2:92 212”. 9§ ln

in T there exists a clock x € C such that
m z €C; forsome(< i <n, and

m for all evaluations v € V there exists d € N>Y with
v(xz) <d implies (v~ g; orv i~ Inv(l;))

for some 0 < j < n.

Then T is non-zeno.

Note: the above condition is compositional

Abraham - Hybrid Systems 23 /31

TCTL

Abraham - Hybrid Systems 24 /31

TCTL

m How to describe the behaviour of timed automata?
m Logic: TCTL, a real-time variant of CTL
m Syntax:

State formulae

Y oou= true | a | g | YAY | | Jo | Ve
Path formulae:
o u= U
with J C RZY is an interval with integer bounds (open right bound

may be c0).

Abraham - Hybrid Systems 25 /31

TCTL syntax

m Syntactic sugar:

Fly = truelU’
Gly = WFIw
vgly = 3FTw
ViU = P U gy
Fip = Fl0eoy
G = gy

m Note: no next-time operator

Abraham - Hybrid Systems 26 / 31

TCTL semantics

Definition (TCTL semantics)
Let 7 = (Loc,C, Lab, Edge, Inv, Init) be a timed automaton, AP a set of

atomic propositions, and L : Loc — 247 a state labeling function. The

function = assigns a truth value to each TCTL state and path formulae as
follows:

o [true

o FEa iff a€ L(o)

o Eg iff ol=g

o E—Y iff o &

o EY1 Ay iff o=y and o =)o

o Edp iff 7= ¢ for some w € Paths g, (o)
o EVop itf = ¢ for all m € Pathsg;,(0).

where 0 € ¥, a € AP, g € ACC(C), 1, ¥ and 15 are TCTL state

formulae, and ¢ is a TCTL path formula.

TCTL semantics

Meaning of U : a time-divergent path satisfies 1 U” 1)5 whenever at
some time point in J property ¥ holds and at all previous time instants
11 V 19 is satisfied.

Abraham - Hybrid Systems 28 / 31

TCTL semantics (cont.)

Definition (TCTL semantics)

For a time-divergent path 7 = 0g 23 o1 3 ... we define m = by U 1)y iff
m 3i > 0. 0; +d = 1 for some d € [0,d;] with

i—1
) di)+deJ, and
k=0

mVj<i. o0 +d): 1 V 1o for any d’ € [O,dj] with
j—1 i—1
O de)+d <O di)+d
k=0 k=0
where d; = EzecTime(«;).

Abraham - Hybrid Systems 29 /31

Satisfaction set

Definition
For a timed automaton 7 with clocks C and locations Loc, and a TCTL
state formula ¢ the satisfaction set Sat(1)) is defined by

Sat(y) = {s € X[s = ¢}.
T satisfies 1) iff) holds in all initial states:
T): P Iff\V/lo € Init. (lo, 1/0)): P

where vp(z) =0 for all z € C.

Abraham - Hybrid Systems 30 /31

TCTL vs. CTL

m TCTL formulae with intervals [0, c0) may be considered as CTL
formulae

m However, there is a difference due to time convergent paths

m TCTL ranges over time-divergent paths, whereas CTL over all paths!

Abraham - Hybrid Systems 31 /31

	Motivation
	Timed automata
	TCTL

