Modeling and analysis of hybrid systems

Model checking timed automata

Prof. Dr. Erika Abraham

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Abraham - Hybrid Systems 1/33

TCTL model checking

Input: timed automaton 7, TCTL formula 1
Output: the answer to the question if 7 = ¢

Eliminate the timing parameters from 1, resulting in t;
Make a finite abstraction of the state space
Construct abstract ’Eransition system RTS with

T |= o iff RTS |= .
Apply CTL model checking to check whether RTS |= 4);
Return the model checking result.

Abraham - Hybrid Systems 2/33

TCTL model checking

Input: timed automaton 7, TCTL formula 1
Output: the answer to the question if 7 = ¢

Eliminate the timing parameters from 1, resulting in t;
Make a finite abstraction of the state space
Construct abstract ’Eransition system RTS with

T |= o iff RTS |= .
Apply CTL model checking to check whether RTS |= 4);
Return the model checking result.

Abraham - Hybrid Systems 3/33

1. Eliminating timing parameters

Let 7 be a timed automaton with clock set C and atomic propositions AP.

Let 7/ = T @z result from T by adding a fresh clock which never gets
reset.

Abraham - Hybrid Systems 4 /33

1. Eliminating timing parameters

Let 7 be a timed automaton with clock set C and atomic propositions AP.
Let 7/ = T @z result from T by adding a fresh clock which never gets
reset.

For any state o of 7 it holds that

Abraham - Hybrid Systems 4 /33

1. Eliminating timing parameters

Let 7 be a timed automaton with clock set C and atomic propositions AP.
Let 7/ = T @z result from T by adding a fresh clock which never gets
reset.

For any state o of 7 it holds that

o Ercre (Y1 U’) iff
reset(z) ino Ercre 3((1Vr) U ((z€J)A2).

Abraham - Hybrid Systems 4 /33

1. Eliminating timing parameters

Let 7 be a timed automaton with clock set C and atomic propositions AP.

Let 7/ = T @z result from T by adding a fresh clock which never gets
reset.

For any state o of 7 it holds that

o Ercre (Y1 U’) iff
reset(z) ino Ercre 3((1Vr) U ((z€J)A2).

o Frere V(¢ U’) iff
reset(z) ino FEr1cere V((1 V) U ((z€J)ANa).

Abraham - Hybrid Systems 4 /33

1. Eliminating timing parameters

Let 7 be a timed automaton with clock set C and atomic propositions AP.

Let 7/ = T @z result from T by adding a fresh clock which never gets
reset.

For any state o of 7 it holds that

o Ercre (Y1 U’) iff
reset(z) ino Ercre 3((1Vr) U ((z€J)A2).
o Ercre V(1 U’ o) iff

reset(z) ino FEr1cere V((1 V) U ((z€J)ANa).
o):TCTL E|f§2¢1 iff reset(z) ino):TCTL ELF((Z < 2) VAN 1/11)

Abraham - Hybrid Systems 4 /33

1. Eliminating timing parameters

Let 7 be a timed automaton with clock set C and atomic propositions AP.
Let 7/ = T @z result from T by adding a fresh clock which never gets
reset.

For any state o of 7 it holds that

o Ercre (Y1 U’) iff
reset(z) ino Ercre 3((1Vr) U ((z€J)A2).
o Ercre V(1 U’ o) iff

reset(z) ino FEr1cere V((1 V) U ((z€J)ANa).
o):TCTL E|f§2¢1 iff reset(z) ino):TCTL ELF((Z < 2) A\ 1/11)
o):TCTL E|g§2¢1 iff reset(z) ino l:TCTL Hg((z < 2) — 1/)1)

Abraham - Hybrid Systems 4 /33

TCTL model checking

Input: timed automaton 7, TCTL formula 1
Output: the answer to the question if 7 = ¢

Eliminate the timing parameters from 1, resulting in t;
Make a finite abstraction of the state space
Construct abstract ’Eransition system RTS with

T |= o iff RTS |= .
Apply CTL model checking to check whether RTS |= 4);
Return the model checking result.

Abraham - Hybrid Systems 5 /33

Keywords:
Finite abstraction
Equivalence relation, equivalence classes
Bisimulation

And what does it mean in our context?

Abraham - Hybrid Systems 6 /33

2. Finite state space abstraction

We search for an equivalence relation = on states, such that equivalent

states satisfy the same (sub)formulae ¢’ occurring in the timed automaton
T or in the specification :

oo = (U)zz// iff U'}:W).

Since the set of such (sub)formulae is finite, we strive for a finite number
of equivalence classes.

Abraham - Hybrid Systems 7/ 33

Bisimulation for two LSTSs

Definition
Let LSTS1 = (21, Laby, Edge;, Initl), LSTSy = (22, Labsy, Edges, [nitg)
be two state transition systems, AP a set of atomic propositions, and
Ly :3; — 247 and Ly : 35 — 247 labeling functions over AP.
A bisimulation for (LSTS1, LSTS52) is an equivalence relation ~C ¥; x ¥,
such that for all o1 ~ o9

L(O’l) = L(O’Q)

for all o € ¥1 with 01 % o/ there exists oy € ¥y such that o9 % o,

and o} ~ d).

Abraham - Hybrid Systems 8 /33

Bisimulation for a single LSTS

Let LSTS = (X, Lab, Edge, Init) be a state transition system, AP a set of
atomic propositions, and L : ¥ — 247 a labeling function over AP.
A bisimulation for LSTS is an equivalence relation ~C X x ¥ such that for

all o1 = o9
L(Ul) = L(O’g)
for all o € ¥ with o % o/ there exists o, € ¥ such that oy % o)
and o = o).

Abraham - Hybrid Systems 9/33

Time abstract bisimulation

Definition
Let 7 = (Loc,C, Lab, Edge, Inv, Init) be a timed automaton, AP a set of
atomic propositions, and L : ¥ — 247,
A time abstract bisimulation on T is an equivalence relation ~C ¥ x X
such that for all o1, 09 € ¥ satisfying 01 = o9

m L(o1) = L(o2)

m for all o} € ¥ with o1 % o/ there is a 0y € ¥ such that o3 % o and

o} = o},
m for all o € ¥ with o 2 o, there is a o € ¥ such that 3 3 ¢ and

o} = d}.

Abraham - Hybrid Systems 10 / 33

Bisimulation

Lemma

Assume a timed automaton T with state space X3, and a bisimulation
~CYxXonT.

Then for all 0,0’ € ¥ with o =~ o’ we have that for each path
08B0 BB ...

of T there exists a path
o Dol Bol

of T such that for all i

mo; =0,
m o =q) ifa; € Lab and

B o, € R>g otherwise.

Abraham - Hybrid Systems 11 / 33

2. Finite state space abstraction

Now, back to timed automata. How could such a bisimulation look like?

Since, in general,
m the atomic propositions assigned to and
m the paths starting at

different locations in T are different, only states (I,) and (I, v') satisfying
I =1’ should be equivalent.

Abraham - Hybrid Systems 12 / 33

2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.
Notation:

m Integral part of r € R: [r] = max{ceN|c<r}
m Fractional part of r € R: frac(r) =r — |r|
For clock constraints x < ¢ with ¢ € N we have:

vEx<c e vE)<c & |v(r)] <ec
For clock constraints x < ¢ with ¢ € N we have:
vEz<c & va)<c & @) <ev (@) = e frac(v(z) = 0).
l.e., only states (I,v) and (I,1) satisfying
lv(z)] = [V (z)] and frac(v(z)) = 0 iff frac(v/(z)) =0

for all € C should be equivalent.

Abraham - Hybrid Systems 13 / 33

2. Finite state space abstraction

Problem: It would generate infinitely many equivalence classes!

Let ¢, be the largest constant which a clock = is compared to in 7 or in).
Then there is no observation which could distinguish between the x-values
in (I,v) and (I,V) if v(x) > ¢, and V/(2) > ¢,

l.e., only states (I,v) and (I, 1) satisfying

(v(z) > ce ANV (2) >) V
([v(x)] = [V(2)] A frac(v(z)) =0 iff frac(v'(z)) = 0)

for all € C should be equivalent.

Abraham - Hybrid Systems 14 / 33

2. Finite state space abstraction

o0
& <
[l
SUAIN

r=3

y=2
Yy K —
A // 1<y<2
2 N“N”U“““
TT 7T b T =

0<y<l1

0 -

Abraham - Hybrid Systems 15 / 33

2. Finite state space abstraction

As the following example illustrates, we must make a further refinement of

the abstraction, since it does not distinguish between states satisfying
different formulae.

Abraham - Hybrid Systems 16 / 33

2. Finite state space abstraction

Abraham - Hybrid Systems 17 / 33

2. Finite state space abstraction

What we need is a refinement taking the order of the fractional parts of the

clock values into account. However, again only for values below the largest
constants to which the clocks get compared.

l.e., only states (I,v) and (I, 1) satisfying

(v(@), V() > co A(y),V/(y) > €2) Vv
(fTaC(V(x)) <frac(v(y)) iff frac(v'(z)) < frac(v'(y)) A
frac(v(z)) = frac(v(y)) iff frac(v'(z)) = frac(v/(y)) A
frac(v(x)) > frac(v(y)) iff frac(V'(z)) > frac(V'(y)))

for all 2,y € C should be equivalent.
Because of symmetry the following is also sufficient:

(v(z), V' (z) > ce Av(y), V' (y) >¢y) V
(frac(v(z)) < frac(v(y)) iff frac(v'(z)) < frac(v'(y)))
for all 2,y € C should be equivalent.

Abrahadm - Hybrid Systems 18 / 33

2. Finite state space abstraction

Abraham - Hybrid Systems 19 / 33

2. Finite state space abstraction

Definition
For a timed automaton 7 and a TCTL formula ¢, both over a clock set C,

we define the clock equivalence relation =C 3 x ¥ by (I,v) = (I',V') iff
=1 and

m for all z € C, either v(x) > ¢, AV (z) > ¢y or
lw(@)] = [V ()] A (frac(v(z)) =0 iff frac(v/(z)) =0)
m for all 2,y € C if v(z),V(z) < ¢z and v(y), V' (y) < ¢, then
frac(v(z)) < frac(v(y)) iff frac(v'(z)) < frac(v'(y)).

The clock region of an evaluation v € Vis theset [v] = {v/ € V | v = '},
The clock region of a state o = (I,v) € X is the set
o] ={(l,v) e X | v =V}

Abraham - Hybrid Systems 20 / 33

2. Finite state space abstraction

Clock equivalence is a bisimulation over AP' = AP U ACC(T)UACC(¢).

Abraham - Hybrid Systems 21 /33

TCTL model checking

Input: timed automaton 7, TCTL formula 1
Output: the answer to the question if 7 = ¢

Eliminate the timing parameters from 1, resulting in t;
Make a finite abtraction of the state space
Construct abstract ’Eransition system RTS with

T |= o iff RTS = 4.
Apply CTL model checking to check whether RTS |= 4);
Return the model checking result.

Abraham - Hybrid Systems 22 /33

3. The abstract transition system

We have defined regions as abstract states,
now we connect them by abstract transitions.

Two kinds of transitions:
time and discrete

Abraham - Hybrid Systems 23 /33

3. The abstract transition system

The clock region roc = {v € V | Vo € C. v(x) > ¢, } is called unbounded.
Let 7,7’ be two clock regions. The region 7’ is the successor clock region of
r, denoted by ' = succ(r), if either

mr =1 =ry,or

B F£re, r#r, and for all v € r:
dd€Rsg. (v+der AVOLSd <d. v+d erur).

The successor state region is defined as succ((l,7)) = (I, succ(r)).

Abraham - Hybrid Systems 24 / 33

a x> 2, reset(x)

Abraham - Hybrid Systems 25 /33

j{ o x> 2, reset(x)

3F02 2 =0
412 11
10 T T T T T T
3 A o A
’ O) O &GO o
8 6
2¢- S o
4
1 3
0 2
ot 1 2

Abraham - Hybrid Systems 26 / 33

x> 2:a, reset(x) T

T T T T T
l l l l l

~

rz=0 0<z<l1 =1 l<zx<?2 r =2 x> 2
z=0 0<z<1 z=1 1<z<2 z=2 z>2
fr(@) = fr(y) || fr(@) = frQy) || fr(z) = fry) || fr(z) = fr(y) || fr(z) = fr(y)

Abraham - Hybrid Systems 27 / 33

3. The abstract transition system

Definition

Let 7 = (Loc,C, Lab, Edge, Inv, Init) be a non-zeno timelock-free timed
automaton with an atomic proposition set AP and a labeling function L,
and let ¢ be an unbounded TCTL formula over C and AP.

The region transition system of 7 for 1) is a labelled state transition system
RTS(T,v) = (¥, Lab’, Edge’, Init") with atomic propositions AP’ and a
labeling function L' such that

m Y the finite set of all state regions

m Init’ = {[o] | o € Init}

m AP = AP U ACC(T)U ACC (%)

m L((I,r)=L(1)U{ge AP\AP | r E g}

and

Abraham - Hybrid Systems 28 / 33

3. The abstract transition system

(l7 a, (gv 0)7 l/) € Edge
riEg ' =reset(C) inr ' |EInv(l') Rule piscrete
(l7 T) i (l/’ T,)

r = Inv(l) succ(r) E Inv(l)

I Rule Tipe
(I,r) = (I, suce(r))

Abraham - Hybrid Systems 29 / 33

3. The abstract transition system

For non-zeno T and m = sy — $1 — ... an initial, infinite path of T :
m jf 7 is time-convergent, then there is an index j and a state region
(I,r) such that s; € (I,r) for all i > j.
m if there is a state region (l,r) with r # ro and an index j such that
si € (I,r) for all i > j then 7 is time-convergent.

Lemma

For a non-zeno timed automaton T and a TCLT formula 1):

T Erern ¢ iff RTS(T,) Ecor ¥

Abraham - Hybrid Systems 30 /33

TCTL model checking

Input: timed automaton 7, TCTL formula 1
Output: the answer to the question if 7 = ¢

Eliminate the timing parameters from 1, resulting in t;
Make a finite abstraction of the state space
Construct abstract ’Eransition system RTS with
T |= o iff RTS |= .
Apply CTL model checking to check whether RTS = ¥;

Return the model checking result.

Abraham - Hybrid Systems 31 /33

TCTL model checking

The procedure is quite similar to CTL model checking for finite automata.

One difference:

m Handling nested time bounds in TCTL formulae

Abraham - Hybrid Systems 32 /33

TCTL model checking

Input: timed automaton 7, TCTL formula 1
Output: the answer to the question if 7 = ¢

Eliminate the timing parameters from 1, resulting in t;
Make a finite abstraction of the state space

Construct abstract ’Eransition system RTS

T E ¢ iff RTS
Apply CTL model checking to check whether RTS |= 4);
Return the model checking result.

Abraham - Hybrid Systems 33 /33

