
Modeling and analysis of hybrid systems
What’s decidable about hybrid automata?

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Ábrahám - Hybrid Systems 1 / 25



Literature

Henzinger et al.: What’s decidable about hybrid automata?

Journal of Computer and System Sciences, 57:94–124, 1998

Ábrahám - Hybrid Systems 2 / 25



Motivation

The special class of timed automata with TCTL is decidable, thus
model checking is possible.
What about other classes of hybrid systems?
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What is decidable about hybrid automata?

Two central problems for the analysis of hybrid automata:
Reachability: Given to sets of states R and R′, is a state in R′

reachable from a state in R? (safety)
Language inclusion: Is the set of traces doable from states from R
contained in a given trace set? (lifeness)

Both problems are decidable in certain special cases, and undecidable in
certain general cases.
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What is decidable about hybrid automata?

A particularly interesting class:

all conditions, effects, and flows are described by rectagular sets.

Definition

A set R ⊂ Rn is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose endpoints are rational.
The set of rectangular sets in Rn is denoted Rn.
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Rectangular automaton

Definition
A rectangular automaton A is a tuple
H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var = {x1, . . . , xn},
a function Con : Loc → 2Var assigning controlled variables to locations,
finite set of synchronization labels Lab,
finite set of edges Edge ⊆ Loc × Lab ×Rn ×Rn × 2{1,...,n} × Loc,
a flow function Act : Loc → Rn,
an invariant function Inv : Loc → Rn,
initial states Init : Loc → Rn.

Rectangular automaton with ε-moves: Lab contains ε (also denoted by τ).
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State space

States: σ = (l, ~x) ∈ (Loc × Rn) with ~x ∈ Inv(l)

State space: Σ ⊆ Loc × Rn is the set of all states
Is the state space rectangular?
Do the initial states build a rectangular set?
May we use conjunctions to specify the invariants?
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Rectangular automaton

Flows: first time derivatives of the flow trajectories in location l ∈ Loc
are within Act(l)

Jumps: e = (l, a, pre, post , jump, l′) ∈ Edge may move control from
location l to location l′ starting from a valuation in pre, changing the
value of each variable to a nondeterministically chosen value from
post i (the projection of post to the ith dimension), such that the
values of the variables xi /∈ jump are unchanged.
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Operational semantics

(l, a, pre, post, jump, l′) ∈ Edge

~x ∈ pre ~x′ ∈ post ∀i /∈ jump.x′i = xi ~x′ ∈ Inv(l′)

(l, ~x)
a→ (l′, ~x′)

Rule Discrete

(t = 0 ∧ ~x = ~x′) ∨ (t > 0 ∧ (~x′ − ~x)/t ∈ Act(l)) ~x′ ∈ Inv(l)

(l, ~x)
t→ (l, ~x′)

Rule Time

execution step: → =
a→ ∪ t→

path: σ0 → σ1 → σ2 . . .

initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0),
~x0 ∈ Init(l0) ∩ Inv(l0)

reachability of a state: exists a run leading to the state
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Initialized rectangular automaton

v1
ċ ∈ [1, 3]
ḋ ∈ [−3,−2]

c := 0

d := 0

v4
ċ ∈ [1, 3]
ḋ ∈ [1, 2]

v3
ċ ∈ [−4,−2]
ḋ ∈ [1, 2]

v2
ċ ∈ [−4,−2]
ḋ ∈ [−3,−2]

a

c ≥ 0 ∧ d ≤ 2→ d := 1

b

c ≥ −3 ∧ d ≤ −2→ c :∈ [−1,−2]

c

d ≤ −5→ d := −4

d

c ≤ 5 ∧ d ≤ −3→ c := 4

Definition?
Trajectories?
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Reverse automata

Rectangular automata are reversible.
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Remarks

If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.
A timed automaton is a rectangular automaton with deterministic
jumps (defined later) such that every variable is a clock.

What do the restrictions actually mean? (Rectangularity is preserved)
This class lies at the boundary of decidability.
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Decidability

The reachability problem is decidable for initialized rectangular automata:

Definition
A rectangular automaton A is initialized, if for every edge
(l, a, pre, post , jump, l′) in the edge set of A, and every variable index
i ∈ {1, . . . , n} with Act(l)i 6= Act(l′)i, we have that i ∈ jump.

The language inclusion problem is decidable for initialized rectangular
automata with bounded nondeterminism:

Definition
A rectangular automaton A has bounded nondeterminism, if

all initial and flow sets are bounded, and
for every edge e and every index i in the jump set of e, the interval
post i of e is bounded.

Both problems becomes undecidable if one of the restrictions is relaxed.
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Initialized rectangular automaton

v1
ċ ∈ [1, 3]
ḋ ∈ [−3,−2]

c := 0

d := 0

v4
ċ ∈ [1, 3]
ḋ ∈ [1, 2]

v3
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ḋ ∈ [1, 2]

v2
ċ ∈ [−4,−2]
ḋ ∈ [−3,−2]

a

c ≥ 0 ∧ d ≤ 2→ d := 1

b

c ≥ −3 ∧ d ≤ −2→ c :∈ [−1,−2]

c

d ≤ −5→ d := −4

d

c ≤ 5 ∧ d ≤ −3→ c := 4

This rectangular automaton is initialized and has bounded nondeterminism.
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Decidability results

Lemma
The reachability problem for initialized rectangular automata is complete
for PSPACE.

Lemma
The language inclusion problem for initialized rectangular automata with
bounded nondeterminism is complete for PSPACE.

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton
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A timed automaton is a rectangular automaton with deterministic jumps,
i.e.,

Init(l) is empty or a singleton for each l ∈ Loc,
for each edge, posti is a single value for each i ∈ jump,

and every variable is a clock, i.e.,
Act(l)(x) = [1, 1] for all locations l and variables x.

Lemma
The reachability and the language inclusion problems for timed automata
are complete for PSPACE.
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Decidability results

Timed automaton
↑

Initialized stopwatch automaton
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A stopwatch is a variable with derivatives 0 or 1 only.
A stopwatch automaton is a rectangular automaton with deterministic
jumps and stopwatch variables only.
Initialized stopwatch automata can be polynomially encoded by timed
automata.

Lemma
The reachability and the language inclusion problems for initialized
stopwatch automata are complete for PSPACE.

However, the reachability problem for non-initialized stopwatch automata is
undecidable.
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Proof idea:
Notice, that a timed automaton is a stopwatch automaton such that every
variable is a clock.
Assume that C is an n-dimensional initialized stopwatch automaton with
ε-moves. Let κC be the set of rational constants used in the definition of
C, and let κ− = κC ∪ {−}.
We define an n-dimensional timed automaton DC with locations
LocDC

= Locc × κ1,...,n− . Each location (l, f) of DC consists of a location l
of C and a function f : {1, . . . , n} → κ−. Each state q = ((l, f), ~x) of DC

represents the state α(q) = (l, ~y) of C, where yi = xi if f(i) = −, and
yi = f(i) if f(i) 6= −.
Intuitively, if the ith stopwatch of C is running (slope 1), then its value is
tracked by the value of the ith clock of DC ; if the ith stopwatch is halted
(slope 0) at value k ∈ κC , then this value is remembered by the current
location of DC .
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Decidability results

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
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A variable xi is a finite-slope variable if flow(l)i is a singleton in all
locations l.
A singular automaton is a rectangular automaton with deterministic
jumps such that every variable of the automaton is a finite-slope
variable.
Initialized singular automata can be rescaled to initialized stopwatch
automata.

Lemma
The reachability and the language inclusion problems for initialized singular
automata are complete for PSPACE.
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Proof idea: Let B be an n-dimensional initialized singular automaton with
ε-moves. We define an n-dimensional initialized stopwatch automaton CB

with the same location set, edge set, and label set as B.
Each state q = (l, ~x) of CB corresponds to the state β(q) = (l, β(~x)) of B
with β : Rn → Rn defined as follows:
For each location l of B, if ActB(l) = Πn

i=1[ki, ki], then
β(x1, . . . , xn) = (l1 · x1, . . . , ln · xn) with li = ki if ki 6= 0, and li = 1 if
ki = 0;
β can be viewed as a rescaling of the state space. All conditions in the
automaton B occur accordingly rescaled in CB.
We have:

The reachable set of Reach(B) of B is β(Reach(CB)).
Lang(B) = Lang(CB)

Ábrahám - Hybrid Systems 22 / 25



Decidability results

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton
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Lemma
The reachability problem for initialized rectangular automata is complete
for PSPACE.

Lemma
The language inclusion problem for initialized rectangular automata with
bounded nondeterminism is complete for PSPACE.
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Proof idea: An n-dimensional initialized rectangular automaton A can be
translated into a (2n+ 1)-dimensional initialized singular automaton B
with ε-moves, such that B contains all reachability information about A.
The translation is similar to the subset construction for determinizing finite
automata.
The idea is to replace each variable c of A by two finite-slope variables cl
and cu: cl tracks the least possible value of c, and cu tracks the greatest
possible value of c.
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