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Henzinger et al.: What's decidable about hybrid automata?

Journal of Computer and System Sciences, 57:94-124, 1998

Abraham - Hybrid Systems 2/25



m The special class of timed automata with TCTL is decidable, thus
model checking is possible.

m What about other classes of hybrid systems?
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What is decidable about hybrid automata?

Two central problems for the analysis of hybrid automata:
m Reachability: Given to sets of states R and R/, is a state in R’
reachable from a state in R? (safety)
m Language inclusion: Is the set of traces doable from states from R
contained in a given trace set? (lifeness)
Both problems are decidable in certain special cases, and undecidable in
certain general cases.
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What is decidable about hybrid automata?

A particularly interesting class:
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What is decidable about hybrid automata?

A particularly interesting class:

m all conditions, effects, and flows are described by rectagular sets.

m A set R C R" is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose endpoints are rational.

m The set of rectangular sets in R™ is denoted R".
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Rectangular automaton

A rectangular automaton A is a tuple
H = (Loc, Var, Con,Lab,Edge, Act, Inv, Init) with

m finite set of locations Loc,

m finite set of real-valued variables Var = {x1,...,z,},

m a function Con : Loc — 2V%" assigning controlled variables to locations,
m finite set of synchronization labels Lab,

m finite set of edges Edge C Loc x Lab x R™ x R™ x 211} « Loc,

m a flow function Act : Loc — R™,

® an invariant function Inv : Loc — R",

m initial states Init : Loc — R™.

Rectangular automaton with e-moves: Lab contains € (also denoted by 7).
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State space

m States: 0 = (I, %) € (Loc x R™) with Z € Inv(l)
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State space

States: 0 = (I,%) € (Loc x R™) with Z € Inv(l)
State space: ¥ C Loc x R"™ is the set of all states

Is the state space rectangular?
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State space

States: 0 = (I,%) € (Loc x R™) with Z € Inv(l)
State space: ¥ C Loc x R"™ is the set of all states
Is the state space rectangular?

Do the initial states build a rectangular set?

May we use conjunctions to specify the invariants?
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Rectangular automaton

m Flows: first time derivatives of the flow trajectories in location [ € Loc
are within Act(l)

m Jumps: e = (I, a, pre, post, jump,l’) € Edge may move control from
location [ to location I’ starting from a valuation in pre, changing the
value of each variable to a nondeterministically chosen value from
post; (the projection of post to the ith dimension), such that the
values of the variables z; ¢ jump are unchanged.
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Operational semantics
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Operational semantics

(1, a, pre, post, jump,l’) € Edge
Zepre T €post Vigjumpx, =1z, T €Inv(l') Rule piscrete

(1,2) % (', 1)
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Operational semantics

(1, a, pre, post, jump,l’) € Edge
Zepre T €post Viéjumpai=u1xz; & € Inv(l') Rule piscrete

(1,2) % (', 1)

(t=0AZ=T)V(t>0A @ —T)/t € Act(l)) & € Inv(l)

7 Rule Time
(1,7) = (1,2
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Operational semantics

(1, a, pre, post, jump,l’) € Edge
Zepre T €post Vigjumpx, =1z, T €Inv(l') Rule piscrete

(1,2) % (', 1)

(t=0AZ=T)V(t>0A @ —T)/t € Act(l)) & € Inv(l)

(1,35 1,7)

Rule Time

. t
m execution step: — = SuS
m path: 0g > 01 > 09...

m initial path: path o9 — 01 — 02... with o9 = (lo, 7o),
Ty € [nit(lg) N Im}(lo)

m reachability of a state: exists a run leading to the state
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Initialized rectangular automaton

/l}l -—_
Qe[1,3] c>20Nd<2—=d:=1

del-,-2) ‘

c<HNd<-3—c:=4

c>-3Nd<-2—c:€[-1,-2]

Definition?
Trajectories?
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Reverse automata

Rectangular automata are reversible.

Abraham - Hybrid Systems 11 / 25



m If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.

m A timed automaton is a rectangular automaton with deterministic
jumps (defined later) such that every variable is a clock.
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m If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.

m A timed automaton is a rectangular automaton with deterministic
jumps (defined later) such that every variable is a clock.

What do the restrictions actually mean? (Rectangularity is preserved)
This class lies at the boundary of decidability.
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Decidability

The reachability problem is decidable for initialized rectangular automata:

Abraham - Hybrid Systems 13 /25



Decidability

The reachability problem is decidable for initialized rectangular automata:

Definition

A rectangular automaton A is initialized, if for every edge
(1, a, pre, post, jump,l’) in the edge set of A, and every variable index
i €{1,...,n} with Act(l); # Act(l');, we have that i € jump.
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Decidability

The reachability problem is decidable for initialized rectangular automata:

A rectangular automaton A is initialized, if for every edge
(1, a, pre, post, jump,l’) in the edge set of A, and every variable index
i €{1,...,n} with Act(l); # Act(l');, we have that i € jump.

The language inclusion problem is decidable for initialized rectangular
automata with bounded nondeterminism:

A rectangular automaton A has bounded nondeterminism, if

m all initial and flow sets are bounded, and

m for every edge e and every index ¢ in the jump set of e, the interval
post; of e is bounded.
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Decidability

The reachability problem is decidable for initialized rectangular automata:

A rectangular automaton A is initialized, if for every edge
(1, a, pre, post, jump,l’) in the edge set of A, and every variable index
i €{1,...,n} with Act(l); # Act(l');, we have that i € jump.

The language inclusion problem is decidable for initialized rectangular
automata with bounded nondeterminism:

A rectangular automaton A has bounded nondeterminism, if

m all initial and flow sets are bounded, and

m for every edge e and every index ¢ in the jump set of e, the interval
post; of e is bounded.

Both problems becomes undecidable if one of the restrictions is relaxed.
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Initialized rectangular automaton

c>20Nd<2—d:=1
a

c<HhANd<-3—c:=4

c>-3Nd<-2—c:€[-1,-2]

d<-5—d:=-4

This rectangular automaton is initialized and has bounded nondeterminism.
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Decidability results

Lemma
The reachability problem for initialized rectangular automata is complete
for PSPACE.

Lemma

The language inclusion problem for initialized rectangular automata with
bounded nondeterminism is complete for PSPACE.
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Decidability results

Lemma
The reachability problem for initialized rectangular automata is complete
for PSPACE.

The language inclusion problem for initialized rectangular automata with
bounded nondeterminism is complete for PSPACE.

Timed automaton

T
Initialized stopwatch automaton
T
Initialized singular automaton
/]\

Initialized rectangular automaton
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A timed automaton is a rectangular automaton with deterministic jumps,
i.e.,
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A timed automaton is a rectangular automaton with deterministic jumps,
i.e.,

m [nit(l) is empty or a singleton for each [ € Loc,

m for each edge, post; is a single value for each i € jump,
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A timed automaton is a rectangular automaton with deterministic jumps,
i.e.,

m [nit(l) is empty or a singleton for each [ € Loc,

m for each edge, post; is a single value for each i € jump,

and every variable is a clock, i.e.,

m Act(l)(z) = [1,1] for all locations I and variables x.
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A timed automaton is a rectangular automaton with deterministic jumps,
i.e.,

m [nit(l) is empty or a singleton for each [ € Loc,

m for each edge, post; is a single value for each i € jump,

and every variable is a clock, i.e.,

m Act(l)(z) = [1,1] for all locations I and variables x.

Lemma

The reachability and the language inclusion problems for timed automata
are complete for PSPACE.
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Decidability results

Timed automaton

/]\

Initialized stopwatch automaton
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m A stopwatch is a variable with derivatives 0 or 1 only.

m A stopwatch automaton is a rectangular automaton with deterministic
jumps and stopwatch variables only.

m Initialized stopwatch automata can be polynomially encoded by timed
automata.

The reachability and the language inclusion problems for initialized
stopwatch automata are complete for PSPACE.

However, the reachability problem for non-initialized stopwatch automata is
undecidable.
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Proof idea:

Notice, that a timed automaton is a stopwatch automaton such that every
variable is a clock.

Assume that C'is an n-dimensional initialized stopwatch automaton with
e-moves. Let ko be the set of rational constants used in the definition of
C,and let kK = ko U{—-}.

We define an n-dimensional timed automaton D¢ with locations

Locp,, = Loc, x k1™ Each location (I, f) of D¢ consists of a location [
of C' and a function f: {1,...,n} — k_. Each state ¢ = ((I, f), %) of D¢
represents the state a(q) = (I,9) of C, where y; = z; if f(i) = —, and

yi = 1) if £3) # —

Intuitively, if the ith stopwatch of C'is running (slope 1), then its value is
tracked by the value of the ith clock of D¢; if the ith stopwatch is halted
(slope 0) at value k € k¢, then this value is remembered by the current
location of D¢.
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Decidability results

Timed automaton

/I\

Initialized stopwatch automaton

T

Initialized singular automaton
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m A variable x; is a finite-slope variable if flow(l); is a singleton in all
locations [.

m A singular automaton is a rectangular automaton with deterministic
jumps such that every variable of the automaton is a finite-slope
variable.

m Initialized singular automata can be rescaled to initialized stopwatch
automata.

Lemma

The reachability and the language inclusion problems for initialized singular
automata are complete for PSPACE.
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Proof idea: Let B be an n-dimensional initialized singular automaton with
e-moves. We define an n-dimensional initialized stopwatch automaton Cg
with the same location set, edge set, and label set as B.

Each state ¢ = (I, &) of Cp corresponds to the state 3(q) = (I, 3(Z)) of B
with 3 : R™ — R" defined as follows:

For each location [ of B, if Actp(l) =II" ki, k;], then

ﬁ(xl,...,a:n) = (l1-$1,...,ln‘xn) with [; = k; if k; 750, and [; =1 if
k’i = O;

[ can be viewed as a rescaling of the state space. All conditions in the
automaton B occur accordingly rescaled in Cp.

We have:

m The reachable set of Reach(B) of B is (Reach(Cg)).
m Lang(B) = Lang(Cp)
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Decidability results

Timed automaton

T
Initialized stopwatch automaton
T
Initialized singular automaton
T

Initialized rectangular automaton
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Lemma

The reachability problem for initialized rectangular automata is complete
for PSPACE.

Lemma

The language inclusion problem for initialized rectangular automata with
bounded nondeterminism is complete for PSPACE.
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Proof idea: An n-dimensional initialized rectangular automaton A can be
translated into a (2n + 1)-dimensional initialized singular automaton B
with e-moves, such that B contains all reachability information about A.
The translation is similar to the subset construction for determinizing finite
automata.

The idea is to replace each variable ¢ of A by two finite-slope variables ¢
and ¢,: ¢ tracks the least possible value of ¢, and ¢, tracks the greatest
possible value of c.
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