
Modeling and analysis of hybrid systems
Algorithmic analysis for linear hybrid systems

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Ábrahám - Hybrid Systems 1 / 43

Literature

Alur et al.: The algorithmic analysis of hybrid systems

Theoretical Computer Science, 138(1):3–34, 1995

Ábrahám - Hybrid Systems 2 / 43

Linear hybrid automata

A linear term over the set Var of variables is a linear combination of
variables in Var with integer (rational) coefficients.
A linear formula over Var is a Boolean combination of (in)equalities
between linear terms over Var .
A hybrid system is time-deterministic iff for every location l ∈ Loc and
every valuation ν ∈ V there is at most one activity f ∈ Act(l) with
f(0) = ν. The activity f , then, is denoted by fl[ν], its component for
x ∈ Var by fxl [ν].

Ábrahám - Hybrid Systems 3 / 43

Linear hybrid automata

Linear hybrid automata are time-deterministic hybrid automata whose
definitions contain linear terms, only.

Activities Act(l) are given as sets of differential equations ẋ = kx, one
for each variable x ∈ Var , with kx an integer (rational) constant:

fxl [ν](t) = ν(x) + kx · t.

Invariants Inv(l) are defined by linear formulae ψ over Var :

ν ∈ Inv(l) iff ν |= ψ

For all edges, the transision relation is defined by a guarded set of
nondeterministic assignments:

ψ ⇒ {x := [αx, βx] | x ∈ Var},

where the quard ψ is a linear formula and αx, βx are linear terms:

(ν, ν ′) ∈ µ iff ν |= ψ ∧ ∀x ∈ Var . ν(αx) ≤ ν ′(x) ≤ ν(βx).

Ábrahám - Hybrid Systems 4 / 43

Water-level monitor

l0
ẋ = 1
ẏ = 1
y ≤ 10

x = 0

∧y = 1

l1
ẋ = 1
ẏ = 1
x ≤ 2

l2
ẋ = 1
ẏ = −2
y ≥ 5

l3
ẋ = 1
ẏ = −2
x ≤ 2

y = 10→ x := 0

x = 2

y = 5→ x := 0

x = 2

Ábrahám - Hybrid Systems 5 / 43

Leaking gas burner

l1
ẋ = 1
ẏ = 1
ż = 1
x ≤ 1

x = 0 ∧ y = 0 ∧ z = 0

l2
ẋ = 1
ẏ = 1
ż = 0

x := 0

30 ≤ x→ x := 0

Ábrahám - Hybrid Systems 6 / 43

Reminder: Semantics of hybrid systems

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete

f ∈ Act(l) f(0) = ν f(t) = ν ′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

Ábrahám - Hybrid Systems 7 / 43

Time-deterministic systems

Definition
For time-deterministic hybrid systems we define the “time can progress”
predicate:

tcpl[ν](t) iff ∀0 ≤ t′ ≤ t. fl[ν](t′) ∈ Inv(l).

For time-deterministic systems we can rewrite the time-step rule to:

tcpl[ν](t)

(l, ν)
t→ (l, fl[ν](t))

Rule Time

Ábrahám - Hybrid Systems 8 / 43

Forward analysis

Ábrahám - Hybrid Systems 9 / 43

We define the forward time closure 〈P 〉↗l of P ⊆ V at l ∈ Loc as the
set of valuations reachable from P by letting time progress:

ν ′ ∈ 〈P 〉↗l iff ∃ν ∈ P. ∃t ∈ R≥0. tcpl[ν](t) ∧ ν ′ = fl[ν](t).

Extension to regions R = ∪l∈Loc(l, Rl):

〈R〉↗ = ∪l∈Loc(l, 〈Rl〉↗l).

We define the postcondition poste[P] of P with respect to an edge
e = (l, a, µ, l′) as the set of valuations reachable from P by e:

ν ′ ∈ poste[P] iff ∃ν ∈ P. (ν, ν ′) ∈ µ.

Extension to regions R = ∪l∈Loc(l, Rl):

post [R] = ∪e=(l,a,µ,l′)∈Edge(l′, poste[Rl]).

Ábrahám - Hybrid Systems 10 / 43

We define the forward time closure 〈P 〉↗l of P ⊆ V at l ∈ Loc as the
set of valuations reachable from P by letting time progress:

ν ′ ∈ 〈P 〉↗l iff ∃ν ∈ P. ∃t ∈ R≥0. tcpl[ν](t) ∧ ν ′ = fl[ν](t).

Extension to regions R = ∪l∈Loc(l, Rl):

〈R〉↗ = ∪l∈Loc(l, 〈Rl〉↗l).

We define the postcondition poste[P] of P with respect to an edge
e = (l, a, µ, l′) as the set of valuations reachable from P by e:

ν ′ ∈ poste[P] iff ∃ν ∈ P. (ν, ν ′) ∈ µ.

Extension to regions R = ∪l∈Loc(l, Rl):

post [R] = ∪e=(l,a,µ,l′)∈Edge(l′, poste[Rl]).

Ábrahám - Hybrid Systems 10 / 43

A symbolic run of the linear hybrid automaton A is a finite or infinite
sequence

π : (l0, P0) (l1, P1) . . . (li, Pi) . . .

of regions such that for all i ≥ 0 there is an edge ei from li to li+1 and

Pi+1 = postei [〈Pi〉
↗
li

].

Correspondence between runs and symbolic runs?
Given a region I ⊆ Σ, the reachable region (I 7→∗) ⊆ Σ of I is the set
of all states that are reachable from states in I:

σ ∈ (I 7→∗) iff ∃σ′ ∈ I. σ′ →∗ σ.

Ábrahám - Hybrid Systems 11 / 43

Lemma
Let I = ∪l∈Loc(l, Il) be a region of the linear hybrid automaton A. The
reachable region (I, 7→∗) = ∪l∈Loc(l, Rl) is the least fixpoint of the
equation

X = 〈I ∪ post [X]〉↗

or, equivalently, for all locations l ∈ Loc, the set Rl of valuations is the
least fixpoint of the set of equations

Xl = 〈Il ∪
⋃

e=(l′,a,µ,l)∈Edge

poste[Xl′]〉↗l .

Lemma
For all linear hybrid automata, if P ⊆ V is a linear set of valuations, then
for all l ∈ Loc and e ∈ Edge, both 〈P 〉↗l and poste[P] are linear sets of
valuations.

Ábrahám - Hybrid Systems 12 / 43

Example: Leaking gas burner

Ábrahám - Hybrid Systems 13 / 43

Backward analysis

Ábrahám - Hybrid Systems 14 / 43

We define the backward time closure 〈P 〉↙l of P ⊆ V at l ∈ Loc as
the set of valuations from which it is possible to reach a valuation in
P by letting time progress:

ν ′ ∈ 〈P 〉↙l iff ∃ν ∈ P. ∃t ∈ R≥0. tcpl[ν
′](t) ∧ ν = fl[ν

′](t).

Extension to regions R = ∪l∈Loc(l, Rl):

〈R〉↙ = ∪l∈Loc(l, 〈Rl〉↙l).

We define the precondition pree[P] of P with respect to an edge
e = (l, a, µ, l′) as the set of valuations from which it is possible to
reach a valuation from P by e:

ν ′ ∈ pree[P] iff ∃ν ∈ P. (ν ′, ν) ∈ µ.

Extension to regions R = ∪l∈Loc(l, Rl):

pre[R] = ∪e=(l′,a,µ,l)∈Edge(l′, pree[Rl]).

Ábrahám - Hybrid Systems 15 / 43

Given a region R ⊆ Σ, the initial region (7→∗ R) ⊆ Σ of R is the set
of all states from which a state in R is reachable:

σ ∈ (7→∗ R) iff ∃σ′ ∈ R. σ →∗ σ′.

Ábrahám - Hybrid Systems 16 / 43

Lemma
Let R = ∪l∈Loc(l, Rl) be a region of the linear hybrid automaton A. The
initial region I = ∪l∈Loc(l, Il) is the least fixpoint of the equation

X = 〈R ∪ pre[X]〉↙

or, equivalently, for all locations l ∈ Loc, the set Il of valuations is the
least fixpoint of the set of equations

Xl = 〈Rl ∪
⋃

e=(l,a,µ,l′)∈Edge

pree[Xl′]〉↙l .

Lemma
For all linear hybrid automata, if P ⊆ V is a linear set of valuations, then
for all l ∈ Loc and e ∈ Edge, both 〈P 〉↙l and pree[P] are linear sets of
valuations.

Ábrahám - Hybrid Systems 17 / 43

Example: Leaking gas burner

Ábrahám - Hybrid Systems 18 / 43

Approximate analysis

Ábrahám - Hybrid Systems 19 / 43

If the (forward or backward) iterative techniques does not converge, we can
compute upper approximations of the sets

(I 7→∗) of states which are reachable from the initial states I (forward
analysis)
(7→∗ R) of states from which the region R is reachable (backward
analysis)

Two approaches:
Convex hull
Widening

Ábrahám - Hybrid Systems 20 / 43

Convex hull

Instead of computing the union of sets, compute the convex hull, i.e., the
least convex polyhedron containing the operands of the union.

x

y

0

1

2

3

4

1 2 3 4

Ábrahám - Hybrid Systems 21 / 43

Widening

To enforce the convergence of iterations, we can apply a widening
technique.
Basic idea: extrapolate the limit of a sequence of polyhedra (occurring in
the non-terminating fixpoint computation), in such a way that an upper
limit be always reached within a finite number of iterations.
Apply the widening for at least one location in each loop of the graph of
the hybrid system.

x

y

0

1

2

3

4

1 2 3 4
Ábrahám - Hybrid Systems 22 / 43

Minimization

Ábrahám - Hybrid Systems 23 / 43

Since the reachability problem for linear hybrid automata is
undecidable, we cannot give a complete algorithm for computing a
finite abstraction (bisimulation), like in the case of timed automata.
Thus it is not a surprise, that reachability analysis does not always
reach a fixpoint.
To increase the chance to success, we can extend (e.g., forward)
reachability analysis with a minimization analysis.
Given an initial condition and a safety specification, we could try to
construct a partitioning of the state space, by

specifying an initial partitioning into “good” and “bad” states
(according to the specification), and
refining this partitioning according to (forward) reachability until we
can draw conclusions wrt. to the validity of the specification.

To explain it more exactly, first we need some formalisms...

Ábrahám - Hybrid Systems 24 / 43

Definition
The next relation 7→ on regions is defined by

R 7→ R′ iff ∃σ ∈ R. ∃σ′ ∈ R. σ → σ′.

R’R

Ábrahám - Hybrid Systems 25 / 43

Definition
Let π be a partition of the state space Σ. A region R ∈ π is called stable
iff for all R′ ∈ π,

R 7→ R′ implies ∀σ ∈ R. {σ} 7→ R′.

R’R

Ábrahám - Hybrid Systems 26 / 43

Definition
split[π](R) :={

{R′, R \ R′} if ∃R′′ ∈ π. R′ = pre[< R′′ >↙] ∩R ∧R′ 6= R,
{R} otherwise.

R’

R−R’ R’’R’’R

Ábrahám - Hybrid Systems 27 / 43

A partition π is a bisimulation iff every region R ∈ π is stable.
The partition π respects the region RF iff for every region R ∈ π,
either R ⊆ RF or R ∩RF = ∅.
Idea: The partitioning must respect the specification, and must be
stable for the regions reachable from regions containing some initial
states.
The specification holds iff in this abstraction there is no region
containing a “bad” state and reachable from a region containing some
initial state.
In the following let I be the initial states and RF be the “bad” states.

Ábrahám - Hybrid Systems 28 / 43

π := {RF ,Σ \ RF }; α := {R|R ∩ I 6= ∅}; β := ∅;
while α 6= β do

choose R ∈ (α \ β); α′ := split[π](R);

if α′ = {R} then

β := β ∪ {R};
α := α ∪ {R′ ∈ π | R 7→ R′};

else

α := (α \ {R}) ∪ {R′ | R′ ∈ α′ ∧R′ ∩ I 6= ∅};
β := β \ {R′ ∈ π | R′ 7→ R};
π := (π \ {R}) ∪ α′;

fi

od

return there is R ∈ α such that R ⊆ RF ;

Ábrahám - Hybrid Systems 29 / 43

Lemma
The procedure returns TRUE iff I 7→∗ RF .

If the regions RF and I are linear, all regions that are constructed by
the procedure are linear.
The algorithm terminates iff the coarsest bisimulation has only a finite
number of equivalence classes.

Ábrahám - Hybrid Systems 30 / 43

Water-level monitor

l0
ẋ = 1
ẏ = 1
y ≤ 10

x = 0

∧y = 1

l1
ẋ = 1
ẏ = 1
x ≤ 2

l2
ẋ = 1
ẏ = −2
y ≥ 5

l3
ẋ = 1
ẏ = −2
x ≤ 2

y = 10→ x := 0

x = 2

y = 5→ x := 0

x = 2

Ábrahám - Hybrid Systems 31 / 43

I = (ps = 0 ∧ x = 0 ∧ y = 1)
RF = (y < 1 ∧ y > 12)

Initial partitioning: π1 = {

R00 = (pc = 0 ∧ 1 ≤ y ≤ 12), R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R10 = (pc = 1 ∧ 1 ≤ y ≤ 12), R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12), R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12), R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R00}, β = ∅.

Ábrahám - Hybrid Systems 32 / 43

Initial partitioning: π1 = {

R00 = (pc = 0 ∧ 1 ≤ y ≤ 12), R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R10 = (pc = 1 ∧ 1 ≤ y ≤ 12), R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12), R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12), R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R00}, β = ∅.
Choose R = R00 :
split[π1](R00) = {(pc = 0 ∧ 1 ≤ y ≤ 10), (pc = 0 ∧ 10 < y ≤ 12)}.
New partitioning: π2 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10),
R001 = (pc = 0 ∧ 10 < y ≤ 12), R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R10 = (pc = 1 ∧ 1 ≤ y ≤ 12), R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12), R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12), R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000}, β = ∅.
Ábrahám - Hybrid Systems 33 / 43

Current partitioning: π2 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10),
R001 = (pc = 0 ∧ 10 < y ≤ 12), R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R10 = (pc = 1 ∧ 1 ≤ y ≤ 12), R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12), R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12), R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000}, β = ∅.
Choose R = R000 : stable.

New partitioning: π2, α = {R000, R001, R10}, β = {R000}.
Choose R = R001 : stable.

New partitioning: π2, α = {R000, R001, R10}, β = {R000, R001}.

Ábrahám - Hybrid Systems 34 / 43

Current partitioning: π2 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10),
R001 = (pc = 0 ∧ 10 < y ≤ 12), R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R10 = (pc = 1 ∧ 1 ≤ y ≤ 12), R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12), R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12), R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000, R001, R10}, β = {R000, R001}.
Choose R = R10 : split[π2](R10) =
{(pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 12), (pc = 1 ∧ x > 2 ∧ 1 ≤ y ≤ 12)}
New partitioning: π3 = {

. . .
R100 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 12),
R101 = (pc = 1 ∧ x > 2 ∧ 1 ≤ y ≤ 12), . . .
. . .

α = {R000, R001}, β = {R001}.
Ábrahám - Hybrid Systems 35 / 43

Current partitioning: π3 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10),
R001 = (pc = 0 ∧ 10 < y ≤ 12),
R100 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 12),
R101 = (pc = 1 ∧ x > 2 ∧ 1 ≤ y ≤ 12),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12),
R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000, R001}, β = {R001}.
Choose R = R000 : stable
New partitioning: π3, α = {R000, R001, R100}, β = {R001, R000}.

Ábrahám - Hybrid Systems 36 / 43

Current partitioning: π3 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10),
R001 = (pc = 0 ∧ 10 < y ≤ 12),
R100 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 12),
R101 = (pc = 1 ∧ x > 2 ∧ 1 ≤ y ≤ 12),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12),
R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000, R001, R100}, β = {R001, R000}.
Choose R = R100 : stable
New partitioning: π3,
α = {R000, R001, R100, R101, R20}, β = {R001, R000, R100}.

Ábrahám - Hybrid Systems 37 / 43

Current partitioning: π3 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10),
R001 = (pc = 0 ∧ 10 < y ≤ 12),
R100 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 12),
R101 = (pc = 1 ∧ x > 2 ∧ 1 ≤ y ≤ 12),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12),
R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000, R001, R100, R101, R20}, β = {R001, R000, R100}.
Choose R = R101 : stable
New partitioning: π3,
α = {R000, R001, R100, R101, R20}, β = {R001, R000, R100, R101}.

Ábrahám - Hybrid Systems 38 / 43

Current partitioning: π3 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10),
R001 = (pc = 0 ∧ 10 < y ≤ 12),
R100 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 12),
R101 = (pc = 1 ∧ x > 2 ∧ 1 ≤ y ≤ 12),
R20 = (pc = 2 ∧ 1 ≤ y ≤ 12),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12),
R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000, R001, R100, R101, R20}, β = {R001, R000, R100, R101}.
Choose R = R20 :
split[π3](R20) = {(pc = 2 ∧ 5 ≤ y ≤ 12), (pc = 2 ∧ 1 ≤ y < 5)}
New partitioning: π4 =
{. . . R200 = (pc = 2 ∧ 5 ≤ y ≤ 12),R201 = (pc = 2 ∧ 1 ≤ y < 5), . . .}
α = {R000, R001, R100, R101}, β = {R001, R000, R101}.

Ábrahám - Hybrid Systems 39 / 43

Current partitioning: π4 = {

R000 = (pc = 0 ∧ 1 ≤ y ≤ 10), R001 = (pc = 0 ∧ 10 < y ≤ 12),
R100 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 12),
R101 = (pc = 1 ∧ x > 2 ∧ 1 ≤ y ≤ 12),
R200 = (pc = 2 ∧ 5 ≤ y ≤ 12), R201 = (pc = 2 ∧ 1 ≤ y < 5),
R30 = (pc = 3 ∧ 1 ≤ y ≤ 12),
R01 = (pc = 0 ∧ (y < 1 ∨ y > 12)),
R11 = (pc = 1 ∧ (y < 1 ∨ y > 12)),
R21 = (pc = 2 ∧ (y < 1 ∨ y > 12)),
R31 = (pc = 3 ∧ (y < 1 ∨ y > 12))}

α = {R000, R001, R100, R101}, β = {R001, R000, R101}.
Choose R = R100 : split[π4](R100) = {(pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 3 ≤ y ≤
12 ∧ 3 ≤ y − x ≤ 12), (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y < 3 ∧ 1 ≤ y − x < 3)}
New partitioning:
π5 = {. . . R1000 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 3 ≤ y ≤ 12 ∧ 3 ≤ y − x ≤
12), R1001 = (pc = 1 ∧ 0 ≤ x ≤ 2 ∧ 1 ≤ y < 3 ∧ 1 ≤ y − x < 3), . . .}

Ábrahám - Hybrid Systems 40 / 43

R000, R1000, R200, R201 are stable →
α = {R000, R001, R1000, R200, R201, R30},
β = {R000, R001, R1000, R200, R201}.

Just 5 steps more and we are ready, with no bad states in α!

Ábrahám - Hybrid Systems 41 / 43

Aside from linear hybrid automata, a common approach to obtaining
bisimulations has been to utilize an algorithm which refines an initial
partition of the state space until it becomes compatible with the system
dynamics and the property to be preserved.
Using this approach, there are three main issues that must be resolved:

1 When does the algorithm terminate after a finite number of iterations?
2 When does the resulting partition consists of a finite number of

equivalence classes?
3 Are all the steps of the algorithm constructive?

Resolving all three issues results in a decidable problem.

Ábrahám - Hybrid Systems 42 / 43

1 When does the algorithm terminate after a finite number of iterations?
2 When does the resulting partition consists of a finite number of

equivalence classes?
3 Are all the steps of the algorithm constructive?

Attacking the first two issues has been solved either by providing a
bisimulation (timed automata), or by transforming the problem to one for
which a bisimulation is known to exist (rectangular automata).
The third issue is typically tackled using quantifier elimination techniques
from mathematical logic.

Ábrahám - Hybrid Systems 43 / 43

	Section1

