

Modeling and analysis of hybrid systems

Reachability analysis for hybrid automata

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

General forward reachability computation

Input: Set Init of initial states.

Algorithm:

```
 $R^{\text{new}} := \text{Init};$ 
 $R := \emptyset;$ 
 $\text{while } (R^{\text{new}} \neq \emptyset) \{$ 
     $R := R \cup R^{\text{new}};$ 
     $R^{\text{new}} := \text{Reach}(R^{\text{new}}) \setminus R;$ 
}
```

Output: Set R of reachable states.

Reachability computation

- When applied to hybrid automata, there is a problem with this procedure:
How to compute $\text{Reach}(P)$ for a set P ?

- When applied to hybrid automata, there is a problem with this procedure:

How to compute $\text{Reach}(P)$ for a set P ?

- Generally there are two kinds of approaches:

- 1 CEGAR (CounterExample-Guided Abstraction Refinement):

- Build a finite abstraction of the state space.
- Compute reachability for the abstract system.
- Spurious counterexamples → abstraction refinement.

- 2 Compute an over-approximation of $\text{Reach}(P)$ in the above procedure.

- When applied to hybrid automata, there is a problem with this procedure:

How to compute $\text{Reach}(P)$ for a set P ?

- Generally there are two kinds of approaches:

- 1 CEGAR (CounterExample-Guided Abstraction Refinement):

- Build a finite abstraction of the state space.
- Compute reachability for the abstract system.
- Spurious counterexamples → abstraction refinement.

- 2 Compute an over-approximation of $\text{Reach}(P)$ in the above procedure.

- We have seen an example for (1) for timed automata.
- We have seen another example for (1) in the last lecture with on-the-fly refinement during the fixed-point computation.
- Let us now have a closer look at (2).

Computing reachability

We need to solve two problems:

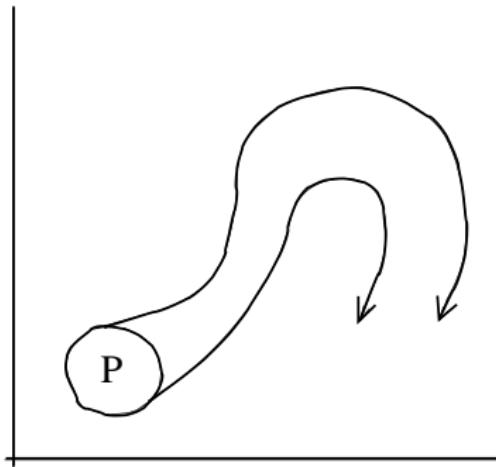
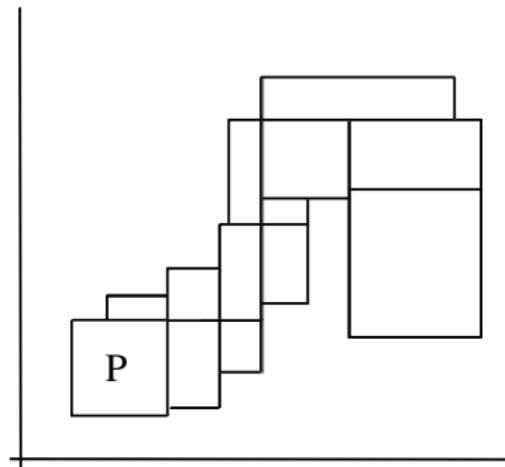
Continuous dynamics

Given a **dynamical system** defined by $\dot{x} = f(x)$, where x takes values from \mathbb{R}^d , and given $P \subseteq \mathbb{R}^d$, calculate (or over-approximate) the set of points in \mathbb{R}^d reached by **trajectories** (solutions) starting in P .

Discrete steps

Given a **discrete transition** of a hybrid system with state space \mathbb{R}^d , and given $P \subseteq \mathbb{R}^d$, calculate (or approximate) the set of points in \mathbb{R}^d reachable by taking the discrete transition starting in P .

Reachability approximation for hybrid automata



- The **geometry chosen to represent reachable sets** has a crucial effect on the efficiency of the whole procedure.
- Usually, the more complex the geometry,
 - 1 the more costly is the **storage** of the sets,
 - 2 the more difficult it is to **perform operations** like union and intersection, and
 - 3 the more elaborate is the **computation of new reachable** sets, but
 - 4 the better the **approximation** of the set of reachable states.
- Choosing the geometry has to be a **compromise** between these impacts.

Representation requirements

The **geometry** should allow **efficient computation** of the operations for

- membership relation,
- union,
- intersection,
- subtraction,
- test for emptiness.

Approaches:

- Convex polyhedra
- Orthogonal polyhedra
- Oriented rectangular hulls
- Zonotopes
- Ellipsoids,...