

Modeling and analysis of hybrid systems

Oriented rectangular hulls

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

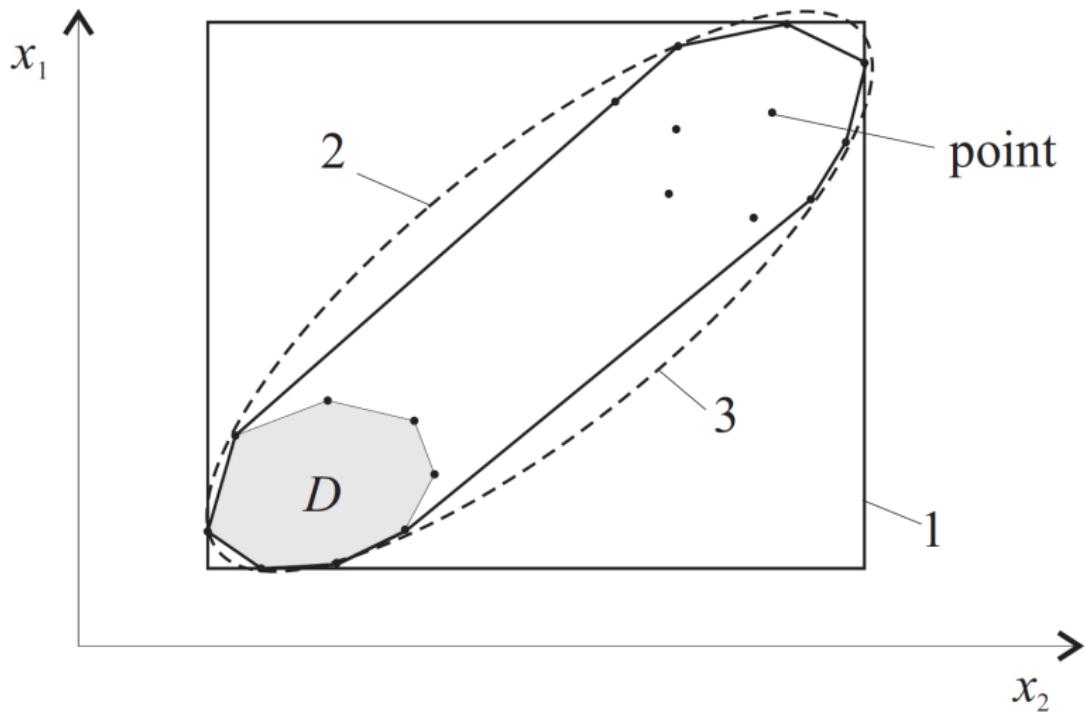
Literatur

Olaf Stursberg and Bruce H. Krogh:

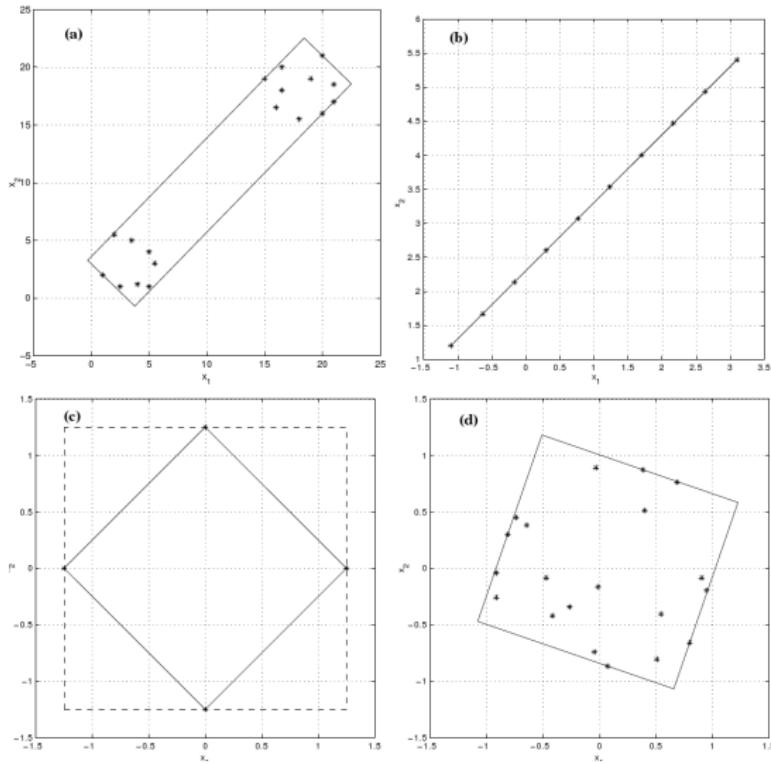
Efficient Representation and Computation of Reachable Sets for Hybrid Systems

Hybrid Systems: Computation and Control, LNCS 2623, pp. 482-497, 2003

Motivation



Oriented rectangular hull



Principal component analysis

Principal component analysis (PCA)

- transforms some given data
- to a new coordinate system such that
- the greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component),
- the second greatest variance on the second coordinate, and so on.

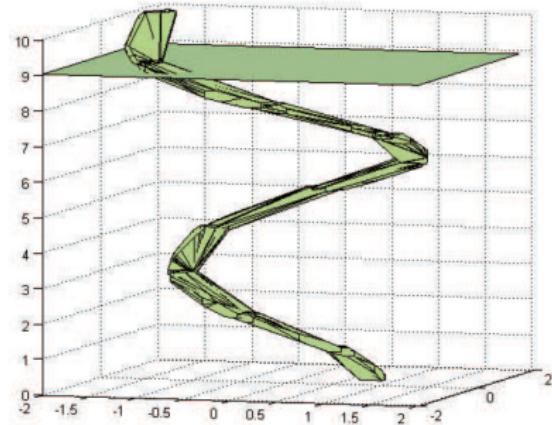
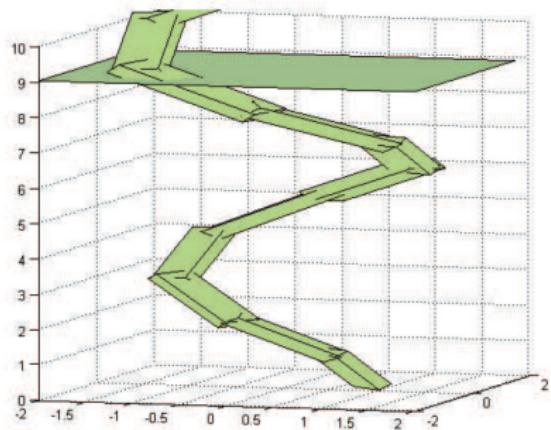
Principal component analysis

Principal component analysis (PCA)

- transforms some given data
- to a new coordinate system such that
- the greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component),
- the second greatest variance on the second coordinate, and so on.

PCA involves the calculation of the **eigenvalue decomposition of a data covariance matrix** (or singular value decomposition of a data matrix), after mean centering the data for each attribute.

Oriented rectangular hulls in reachability computation



Given a vector of sample points $X = (x^1, \dots, x^p)$ with $x^i \in \mathbb{R}^n$, its arithmetic mean is

$$x^m = \frac{1}{p} \sum_{i=1}^p x_i.$$

Given a vector of sample points $X = (x^1, \dots, x^p)$ with $x^i \in \mathbb{R}^n$, its arithmetic mean is

$$x^m = \frac{1}{p} \sum_{i=1}^p x_i.$$

We translate the samples such that their arithmetic mean becomes 0:

$$\bar{X} = \{\bar{x}^1, \dots, \bar{x}^p\}, \quad \bar{x}^i = x^i - x^m \text{ f.a. } i \in \{1, \dots, p\}.$$

Given a vector of sample points $X = (x^1, \dots, x^p)$ with $x^i \in \mathbb{R}^n$, its arithmetic mean is

$$x^m = \frac{1}{p} \sum_{i=1}^p x_i.$$

We translate the samples such that their arithmetic mean becomes 0:

$$\bar{X} = \{\bar{x}^1, \dots, \bar{x}^p\}, \quad \bar{x}^i = x^i - x^m \text{ f.a. } i \in \{1, \dots, p\}.$$

In matrix form:

$$\bar{X} = (\bar{x}^1, \dots, \bar{x}^p) = \begin{pmatrix} \bar{x}_1^1 & \cdot & \cdot & \cdot & \bar{x}_1^p \\ \cdot & \cdot & & & \cdot \\ \cdot & & \cdot & & \cdot \\ \cdot & & & \cdot & \cdot \\ \bar{x}_n^1 & \cdot & \cdot & \cdot & \bar{x}_n^p \end{pmatrix}.$$

Example

- $X = \{(0, 0), (0, 2), (2, 0), (2, 2), (2, 1), (4, 1), (2, 3), (4, 3)\}$

Example

- $X = \{(0, 0), (0, 2), (2, 0), (2, 2), (2, 1), (4, 1), (2, 3), (4, 3)\}$
- $x^m = \frac{1}{8} \cdot \sum_{i=1}^8 x^i = \frac{1}{8} \cdot (16, 12) = (2, 1.5)$

Example

- $X = \{(0, 0), (0, 2), (2, 0), (2, 2), (2, 1), (4, 1), (2, 3), (4, 3)\}$
- $x^m = \frac{1}{8} \cdot \sum_{i=1}^8 x^i = \frac{1}{8} \cdot (16, 12) = (2, 1.5)$
- $\bar{X} = \{(-2, -1.5), (-2, 0.5), (0, -1.5), (0, 0.5), (0, -0.5), (2, -0.5), (0, 1.5), (2, 1.5)\}$

Example

- $X = \{(0,0), (0,2), (2,0), (2,2), (2,1), (4,1), (2,3), (4,3)\}$
- $x^m = \frac{1}{8} \cdot \sum_{i=1}^8 x^i = \frac{1}{8} \cdot (16, 12) = (2, 1.5)$
- $\bar{X} = \{(-2, -1.5), (-2, 0.5), (0, -1.5), (0, 0.5), (0, -0.5), (2, -0.5), (0, 1.5), (2, 1.5)\}$
- In matrix form:

$$\bar{X} = \begin{pmatrix} -2 & -2 & 0 & 0 & 0 & 2 & 0 & 2 \\ -1.5 & 0.5 & -1.5 & 0.5 & -0.5 & -0.5 & 1.5 & 1.5 \end{pmatrix}$$

For

$$\bar{X} = (x^1, \dots, x^p) = \begin{pmatrix} \bar{x}_1^1 & \cdot & \cdot & \cdot & \bar{x}_1^p \\ \cdot & \cdot & & & \cdot \\ \cdot & & \cdot & & \cdot \\ \cdot & & & \cdot & \cdot \\ \bar{x}_n^1 & \cdot & \cdot & \cdot & \bar{x}_n^p \end{pmatrix}$$

we define the sample covariance matrix

$$\text{Cov}(\bar{X}) = \begin{pmatrix} \text{Cov}(\bar{x}_1, \bar{x}_1) & \cdot & \cdot & \cdot & \text{Cov}(\bar{x}_1, \bar{x}_n) \\ \cdot & \cdot & & & \cdot \\ \cdot & & \cdot & & \cdot \\ \cdot & & & \cdot & \cdot \\ \text{Cov}(\bar{x}_n, \bar{x}_1) & \cdot & \cdot & \cdot & \text{Cov}(\bar{x}_n, \bar{x}_n) \end{pmatrix}$$

with

$$\text{Cov}(\bar{x}_i, \bar{x}_j) = \frac{1}{p-1} \sum_{k=1}^p \bar{x}_i^k \cdot \bar{x}_j^k$$

for all $0 \leq i, j \leq n$.

Example

- In matrix form:

$$\bar{X} = \begin{pmatrix} -2 & -2 & 0 & 0 & 0 & 2 & 0 & 2 \\ -1.5 & 0.5 & -1.5 & 0.5 & -0.5 & -0.5 & 1.5 & 1.5 \end{pmatrix}$$

Example

- In matrix form:

$$\bar{X} = \begin{pmatrix} -2 & -2 & 0 & 0 & 0 & 2 & 0 & 2 \\ -1.5 & 0.5 & -1.5 & 0.5 & -0.5 & -0.5 & 1.5 & 1.5 \end{pmatrix}$$

- $\text{Cov}(\bar{x}_1, \bar{x}_1) = \frac{1}{7} \sum_{k=1}^8 \bar{x}_1^k \cdot \bar{x}_1^k = \frac{1}{7}(4 + 4 + 4 + 4) = \frac{16}{7}$

Example

- In matrix form:

$$\bar{X} = \begin{pmatrix} -2 & -2 & 0 & 0 & 0 & 2 & 0 & 2 \\ -1.5 & 0.5 & -1.5 & 0.5 & -0.5 & -0.5 & 1.5 & 1.5 \end{pmatrix}$$

- $\text{Cov}(\bar{x}_1, \bar{x}_1) = \frac{1}{7} \sum_{k=1}^8 \bar{x}_1^k \cdot \bar{x}_1^k = \frac{1}{7}(4 + 4 + 4 + 4) = \frac{16}{7}$
- $\text{Cov}(\bar{x}_1, \bar{x}_2) = \text{Cov}(\bar{x}_2, \bar{x}_1) = \frac{1}{7} \sum_{k=1}^8 \bar{x}_1^k \cdot \bar{x}_2^k = \frac{1}{7}(3 - 1 - 1 + 3) = \frac{4}{7}$

Example

- In matrix form:

$$\bar{X} = \begin{pmatrix} -2 & -2 & 0 & 0 & 0 & 2 & 0 & 2 \\ -1.5 & 0.5 & -1.5 & 0.5 & -0.5 & -0.5 & 1.5 & 1.5 \end{pmatrix}$$

- $\text{Cov}(\bar{x}_1, \bar{x}_1) = \frac{1}{7} \sum_{k=1}^8 \bar{x}_1^k \cdot \bar{x}_1^k = \frac{1}{7}(4 + 4 + 4 + 4) = \frac{16}{7}$
- $\text{Cov}(\bar{x}_1, \bar{x}_2) = \text{Cov}(\bar{x}_2, \bar{x}_1) = \frac{1}{7} \sum_{k=1}^8 \bar{x}_1^k \cdot \bar{x}_2^k = \frac{1}{7}(3 - 1 - 1 + 3) = \frac{4}{7}$
- $\text{Cov}(\bar{x}_2, \bar{x}_2) = \frac{1}{7} \sum_{k=1}^8 \bar{x}_2^k \cdot \bar{x}_2^k = \frac{1}{7}((-1.5)^2 + 0.5^2 + (-1.5)^2 + 0.5^2 + (-0.5)^2 + (-0.5)^2 + 1.5^2 + 1.5^2) = \frac{10}{7}$

Example

$$\text{Cov}(\bar{X}) = \begin{pmatrix} \frac{16}{7} & \frac{4}{7} \\ \frac{4}{7} & \frac{10}{7} \end{pmatrix}$$

Eigenvector and eigenvalue

Given a square matrix A , an eigenvalue λ and its associated eigenvector \mathbf{v} are, by definition, a pair obeying the relation

$$A\mathbf{v} = \lambda\mathbf{v}.$$

Equivalently,

$$(A - \lambda I)\mathbf{v} = 0$$

where I is the identity matrix, implying

$$\det(A - \lambda I) = 0.$$

Principal component analysis

- Each non-zero **eigenvalue** of the covariance matrix indicates the portion of the variance that is correlated with each **eigenvector**.

Principal component analysis

- Each non-zero eigenvalue of the covariance matrix indicates the portion of the variance that is correlated with each eigenvector.
- Given a set of points in Euclidean space, the first principal component (the eigenvector with the largest eigenvalue) corresponds to a line that passes through the mean and minimizes sum squared error with those points.

Principal component analysis

- Each non-zero eigenvalue of the covariance matrix indicates the portion of the variance that is correlated with each eigenvector.
- Given a set of points in Euclidean space, the first principal component (the eigenvector with the largest eigenvalue) corresponds to a line that passes through the mean and minimizes sum squared error with those points.
- The second principal component corresponds to the same concept after all correlation with the first principal component has been subtracted out from the points.

Principal component analysis

- Each non-zero eigenvalue of the covariance matrix indicates the portion of the variance that is correlated with each eigenvector.
- Given a set of points in Euclidean space, the first principal component (the eigenvector with the largest eigenvalue) corresponds to a line that passes through the mean and minimizes sum squared error with those points.
- The second principal component corresponds to the same concept after all correlation with the first principal component has been subtracted out from the points.
- Thus, the sum of all the eigenvalues is equal to the sum squared distance of the points with their mean. PCA essentially rotates the set of points around their mean in order to align with the first few principal components. This moves as much of the variance as possible (using a linear transformation) into the first few dimensions.

Example

$$\text{Cov}(\bar{X}) = \begin{pmatrix} \frac{16}{7} & \frac{4}{7} \\ \frac{4}{7} & \frac{10}{7} \end{pmatrix}$$

Eigenvalue computation for 2×2 matrices

The eigenvalues of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be obtained by the characteristic polynomial

$$\det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc)$$

with solutions

$$\lambda = \frac{a + d}{2} \pm \sqrt{\frac{(a + d)^2}{4} + bc - ad} = \frac{a + d}{2} \pm \frac{\sqrt{4bc + (a - d)^2}}{2}.$$

Example

$$\text{Cov}(\bar{X}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \frac{16}{7} & \frac{4}{7} \\ \frac{4}{7} & \frac{10}{7} \end{pmatrix}$$

$$\lambda = \frac{a+d}{2} \pm \frac{\sqrt{4bc + (a-d)^2}}{2} = \frac{13}{7} \pm \frac{5}{7}$$

$$\lambda_1 = \frac{18}{7}$$

$$\lambda_2 = \frac{8}{7}$$

