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Oriented rectangular hull
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Principal component analysis

Principal component analysis (PCA)
transforms some given data
to a new coordinate system such that
the greatest variance by any projection of the data comes to lie on the
first coordinate (called the first principal component),
the second greatest variance on the second coordinate, and so on.

PCA involves the calculation of the eigenvalue decomposition of a data
covariance matrix (or singular value decomposition of a data matrix), after
mean centering the data for each attribute.
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Oriented rectangular hulls in reachability computation
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Given a vector of sample points X = (x1, . . . , xp) with xi ∈ Rn, its
arithmetic mean is

xm =
1

p

p∑
i=1

xi.

We translate the samples such that their arithmetic mean becomes 0:

X̄ = {x̄1, . . . , x̄p}, x̄i = xi − xm f.a. i ∈ {1, . . . , p}.

In matrix form:

X̄ = (x1, . . . , xp) =


x̄11 · · · x̄p1
· · ·
· · ·
· · ·
x̄1n · · · x̄pn

 .
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Example

X = {(0, 0), (0, 2), (2, 0), (2, 2), (2, 1), (4, 1), (2, 3), (4, 3)}

xm = 1
8 ·
∑8

i=1 x
i = 1

8 · (16, 12) = (2, 1.5)

X̄ = {(−2,−1.5), (−2, 0.5), (0,−1.5), (0, 0.5),
(0,−0.5), (2,−0.5), (0, 1.5), (2, 1.5)}

In matrix form:

X̄ =

(
−2 −2 0 0 0 2 0 2
−1.5 0.5 −1.5 0.5 −0.5 −0.5 1.5 1.5

)
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For

X̄ = (x1, . . . , xp) =


x̄11 · · · x̄p1
· · ·
· · ·
· · ·
x̄1n · · · x̄pn


we define the sample covariance matrix

Cov(X̄) =


Cov(x̄1, x̄1) · · · Cov(x̄1, x̄n)

· · ·
· · ·
· · ·

Cov(x̄n, x̄1) · · · Cov(x̄n, x̄n)


with

Cov(x̄i, x̄j) =
1

p− 1

p∑
k=1

x̄ki · x̄kj

for all 0 ≤ i, j ≤ n.
Ábrahám - Hybrid Systems 9 / 17



Example

In matrix form:

X̄ =

(
−2 −2 0 0 0 2 0 2
−1.5 0.5 −1.5 0.5 −0.5 −0.5 1.5 1.5

)

Cov(x̄1, x̄1) =1
7

∑8
k=1 x̄

k
1 · x̄k1 = 1

7(4 + 4 + 4 + 4) = 16
7

Cov(x̄1, x̄2) = Cov(x̄2, x̄1) =1
7

∑8
k=1 x̄

k
1 · x̄k2 = 1

7(3− 1− 1 + 3) = 4
7

Cov(x̄2, x̄2) =1
7

∑8
k=1 x̄

k
2 · x̄k2 =

1
7((−1.5)2+0.52+(−1.5)2+0.52+(−0.5)2+(−0.5)2+1.52+1.52) = 10

7
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Example

Cov(X̄) =

(
16
7

4
7

4
7

10
7

)
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Eigenvector and eigenvalue

Given a square matrix A, an eigenvalue λ and its associated eigenvector v
are, by definition, a pair obeying the relation

Av = λv.

Equivalently,
(A− λI)v = 0

where I is the identity matrix, implying

det(A− λI) = 0.
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Principal component analysis

Each non-zero eigenvalue of the covariance matrix indicates the
portion of the variance that is correlated with each eigenvector.

Given a set of points in Euclidean space, the first principal component
(the eigenvector with the largest eigenvalue) corresponds to a line that
passes through the mean and minimizes sum squared error with those
points.
The second principal component corresponds to the same concept
after all correlation with the first principal component has been
subtracted out from the points.
Thus, the sum of all the eigenvalues is equal to the sum squared
distance of the points with their mean. PCA essentially rotates the set
of points around their mean in order to align with the first few
principal components. This moves as much of the variance as possible
(using a linear transformation) into the first few dimensions.
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Example

Cov(X̄) =
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16
7

4
7

4
7

10
7

)
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Eigenvalue computation for 2× 2 matrices

The eigenvalues of a 2× 2 matrix A =

[
a b
c d

]
can be obtained by the

characteristic polynomial

det

[
a− λ b
c d− λ

]
= (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc)

with solutions

λ =
a+ d

2
±
√

(a+ d)2

4
+ bc− ad =

a+ d

2
±
√

4bc+ (a− d)2

2
.
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Example

Cov(X̄) =

(
a b

c d

)
=

(
16
7

4
7

4
7

10
7

)

λ =
a+ d

2
±
√

4bc+ (a− d)2

2
=

13

7
± 5

7

λ1 =
18

7

λ2 =
8

7
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