

Modeling and analysis of hybrid systems

Approximation of reachable state sets

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Alongkrit Chutinan and Bruce H. Krogh:

Computing Polyhedral Approximations to Flow Pipes for Dynamic Systems
In Proceedings of the 37rd IEEE Conference on Decision and Control, 1998

Olaf Stursberg and Bruce H. Krogh:

Efficient Representation and Computation of Reachable Sets for Hybrid
Systems

Hybrid Systems: Computation and Control, LNCS 2623, pp. 482-497, 2003

We had a look at state set approximations by

- convex polyhedra,
- orthogonal polyhedra, and
- oriented rectangular hull,

and at the basic operations

- testing for membership,
- intersection, and
- union

on these.

Thus we can

- approximate state sets and
- compute with them.

How is all this used in the reachability analysis procedure?

General reachability procedure

Input: Set Init of initial states.

Algorithm:

$R^{\text{new}} := \text{Init};$

$R := \emptyset;$

while ($R^{\text{new}} \neq \emptyset$) {

$R := R \cup R^{\text{new}};$

$R^{\text{new}} := \boxed{\text{Reach}}(R^{\text{new}}) \setminus R;$

}

Output: Set R of reachable states.

What is “Reach”?

What is “Reach”?

For **hybrid systems**, independently of the exact definition of “Reach”, it will involve the following computations:

Given a state set R , compute

- the set of states reachable from R by a **flow** (i.e., time transition), and
- the set of states reachable from R by a **jump** (i.e., discrete transition).

Computing the jump successors, i.e., the flow pipe, of a set can be done with the operations we already introduced.

The harder part is computing the flow successors. So let's start with that...

Approximating a flow pipe

Consider a dynamical system with **state equation**

$$\dot{x} = f(x(t)).$$

We assume f to be **Lipschitz continuous** so that for every initial state x_0 there is a unique solution $x(t, x_0)$ to the state equation.

Approximating a flow pipe

Consider a dynamical system with state equation

$$\dot{x} = f(x(t)).$$

We assume f to be Lipschitz continuous so that for every initial state x_0 there is a unique solution $x(t, x_0)$ to the state equation.

The set of reachable states at time t from a set of initial states X_0 is defined as

$$\mathcal{R}_t(X_0) = \{x_f \mid \exists x_0 \in X_0. x_f = x(t, x_0)\}.$$

Approximating a flow pipe

Consider a dynamical system with **state equation**

$$\dot{x} = f(x(t)).$$

We assume f to be **Lipschitz continuous** so that for every initial state x_0 there is a unique solution $x(t, x_0)$ to the state equation.

The set of **reachable states at time t** from a set of initial states X_0 is defined as

$$\mathcal{R}_t(X_0) = \{x_f \mid \exists x_0 \in X_0. x_f = x(t, x_0)\}.$$

The set of reachable states, the **flow pipe**, from X_0 in the time interval $[t_1, t_2]$ is defined as

$$\mathcal{R}_{[t_1, t_2]}(X_0) = \cup_{t \in [t_1, t_2]} \mathcal{R}_t(X_0).$$

Approximating a flow pipe

Consider a dynamical system with **state equation**

$$\dot{x} = f(x(t)).$$

We assume f to be **Lipschitz continuous** so that for every initial state x_0 there is a unique solution $x(t, x_0)$ to the state equation.

The set of **reachable states at time t** from a set of initial states X_0 is defined as

$$\mathcal{R}_t(X_0) = \{x_f \mid \exists x_0 \in X_0. x_f = x(t, x_0)\}.$$

The set of reachable states, the **flow pipe**, from X_0 in the time interval $[t_1, t_2]$ is defined as

$$\mathcal{R}_{[t_1, t_2]}(X_0) = \cup_{t \in [t_1, t_2]} \mathcal{R}_t(X_0).$$

We describe a solution which approximates the flow pipe by a sequence of **convex polytopes**.

Definition (Convex polytope)

Let $POLY(C, d)$ denote the convex polytope defined by the pair $(C, d) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m$ according to

$$POLY(C, d) = \{x \mid Cx \leq d\}.$$

Definition (Convex polytope)

Let $POLY(C, d)$ denote the convex polytope defined by the pair $(C, d) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m$ according to

$$POLY(C, d) = \{x \mid Cx \leq d\}.$$

- Each row of C is the **normal vector** to the i th face of the polytope.

Definition (Convex polytope)

Let $POLY(C, d)$ denote the convex polytope defined by the pair $(C, d) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m$ according to

$$POLY(C, d) = \{x \mid Cx \leq d\}.$$

- Each row of C is the **normal vector** to the i th face of the polytope.
- A polytope P has a finite number of **vertices** $V(P)$, which are points in P that cannot be written as a strict convex combination of any other two points in P .

Definition (Convex polytope)

Let $POLY(C, d)$ denote the convex polytope defined by the pair $(C, d) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m$ according to

$$POLY(C, d) = \{x \mid Cx \leq d\}.$$

- Each row of C is the **normal vector** to the i th face of the polytope.
- A polytope P has a finite number of **vertices** $V(P)$, which are points in P that cannot be written as a strict convex combination of any other two points in P .
- Given a finite set of points Γ , the **convex hull** $CH(\Gamma)$ of Γ is the smallest convex set that contains Γ .

Problem statement for polyhedral approximation of flow pipes

Given

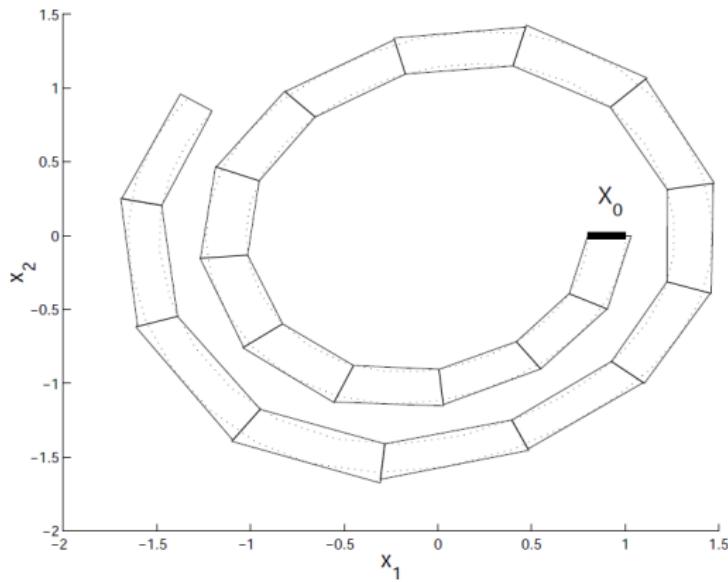
- a set X_0 of **initial states** which is a polytope, and
- a **final time** t_f ,

compute a **polyhedral approximation** $\hat{\mathcal{R}}_{[0,t_f]}(X_0)$ to the flow pipe $\mathcal{R}_{[0,t_f]}(X_0)$ such that

$$\mathcal{R}_{[0,t_f]}(X_0) \subseteq \hat{\mathcal{R}}_{[0,t_f]}(X_0).$$

Flow pipe segmentation

Since a single convex polyhedra would strongly overapproximate the flow pipe, we compute a **sequence of convex polyhedra**, each approximating a **flow pipe segment**.



Segmented flow pipe approximation

Let the time interval $[0, t_f]$ be divided into $0 < N \in \mathbb{N}$ time segments

$$[0, t_1], [t_1, t_2], \dots, [t_{N-1}, t_f]$$

with $t_i = i \cdot \frac{t_f}{N}$.

Segmented flow pipe approximation

Let the time interval $[0, t_f]$ be divided into $0 < N \in \mathbb{N}$ time segments

$$[0, t_1], [t_1, t_2], \dots, [t_{N-1}, t_f]$$

with $t_i = i \cdot \frac{t_f}{N}$.

We generate an approximation $\hat{\mathcal{R}}_{[t_1, t_2]}(X_0)$ for each flow pipe segment:

$$\mathcal{R}_{[t_1, t_2]}(X_0) \subseteq \hat{\mathcal{R}}_{[t_1, t_2]}(X_0).$$

Segmented flow pipe approximation

Let the time interval $[0, t_f]$ be divided into $0 < N \in \mathbb{N}$ time segments

$$[0, t_1], [t_1, t_2], \dots, [t_{N-1}, t_f]$$

with $t_i = i \cdot \frac{t_f}{N}$.

We generate an approximation $\hat{\mathcal{R}}_{[t_1, t_2]}(X_0)$ for each flow pipe segment:

$$\mathcal{R}_{[t_1, t_2]}(X_0) \subseteq \hat{\mathcal{R}}_{[t_1, t_2]}(X_0).$$

The complete flow pipe approximation is the union of the approximation of all N pipe segments:

$$\mathcal{R}_{[0, t_f]}(X_0) \subseteq \hat{\mathcal{R}}_{[0, t_f]}(X_0) = \bigcup_{k=1, \dots, N} \hat{\mathcal{R}}_{[t_{k-1}, t_k]}(X_0)$$

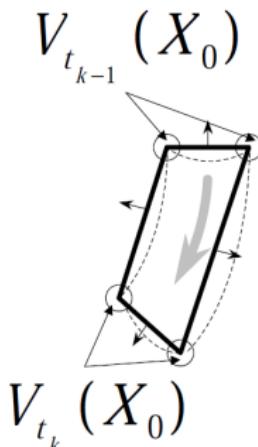
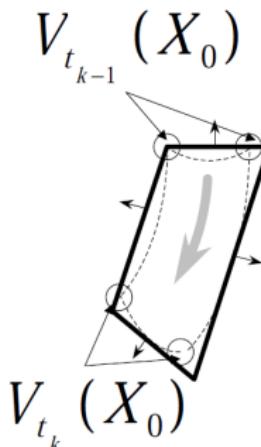
Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment $[t_{k-1}, t_k]$ ($k \in \{1, \dots, N\}$) consists of the following steps:

Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment $[t_{k-1}, t_k]$ ($k \in \{1, \dots, N\}$) consists of the following steps:

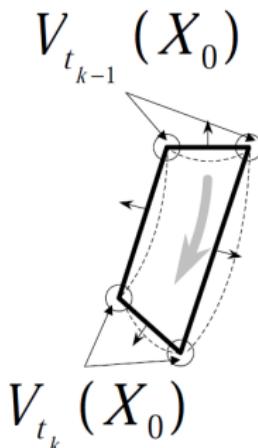
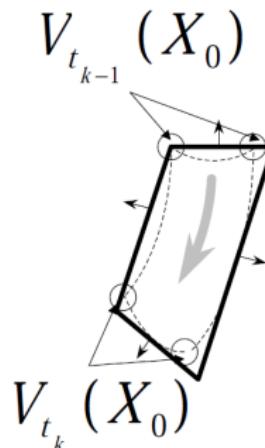
- **Evolve vertices:** Compute the set of points reachable from the vertices of X_0 in time t_{i-1} and in time t_i .



Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment $[t_{k-1}, t_k]$ ($k \in \{1, \dots, N\}$) consists of the following steps:

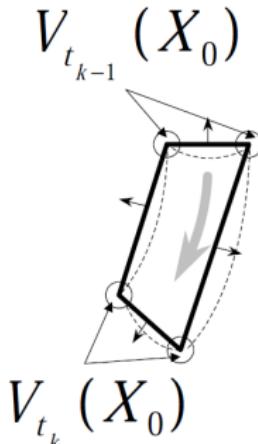
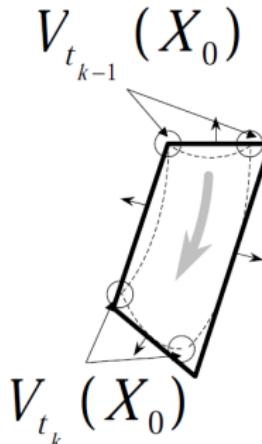
- **Evolve vertices:** Compute the set of points reachable from the vertices of X_0 in time t_{i-1} and in time t_i .
- **Determine hull:** Compute the convex hull of those points.



Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment $[t_{k-1}, t_k]$ ($k \in \{1, \dots, N\}$) consists of the following steps:

- **Evolve vertices:** Compute the set of points reachable from the vertices of X_0 in time t_{i-1} and in time t_i .
- **Determine hull:** Compute the convex hull of those points.
- **Bloat hull:** Enlarge the hull until it contains all points of the flow pipe segment.



1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we begin with taking sample points at times t_{k-1} and t_k from the trajectories emanating from the vertices of X_0 .

1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we begin with taking sample points at times t_{k-1} and t_k from the trajectories emanating from the vertices of X_0 .

In particular, we compute the sets $V_{t_{k-1}}(X_0)$ and $V_{t_k}(X_0)$ where

$$V_t(X_0) = \{x(t, v) \mid v \in V(X_0)\}.$$

1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we begin with taking sample points at times t_{k-1} and t_k from the trajectories emanating from the vertices of X_0 .

In particular, we compute the sets $V_{t_{k-1}}(X_0)$ and $V_{t_k}(X_0)$ where

$$V_t(X_0) = \{x(t, v) \mid v \in V(X_0)\}.$$

Each point in the above sets can be obtained

- by analytic solution of the state equation and computing the value, or
- by simulation.

2. Determine hull

We use the evolved vertices in $V_{t_{k-1}}(X_0)$ and $V_{t_k}(X_0)$ to form a **convex hull** which serves as an **initial approximation** to the flow pipe segment $\mathcal{R}_{[t_{k-1}, t_k]}(X_0)$, denoted by

$$\Phi_{[t_{k-1}, t_k]}(X_0) = CH(V_{t_{k-1}}(X_0) \cup V_{t_k}(X_0)).$$

2. Determine hull

We use the evolved vertices in $V_{t_{k-1}}(X_0)$ and $V_{t_k}(X_0)$ to form a **convex hull** which serves as an **initial approximation** to the flow pipe segment $\mathcal{R}_{[t_{k-1}, t_k]}(X_0)$, denoted by

$$\Phi_{[t_{k-1}, t_k]}(X_0) = CH(V_{t_{k-1}}(X_0) \cup V_{t_k}(X_0)).$$

Note that $\Phi_{[t_{k-1}, t_k]}(X_0)$ may not contain the whole flow pipe segment $\mathcal{R}_{[t_{k-1}, t_k]}(X_0)$.

2. Determine hull

We use the evolved vertices in $V_{t_{k-1}}(X_0)$ and $V_{t_k}(X_0)$ to form a **convex hull** which serves as an **initial approximation** to the flow pipe segment $\mathcal{R}_{[t_{k-1}, t_k]}(X_0)$, denoted by

$$\Phi_{[t_{k-1}, t_k]}(X_0) = CH(V_{t_{k-1}}(X_0) \cup V_{t_k}(X_0)).$$

Note that $\Phi_{[t_{k-1}, t_k]}(X_0)$ may not contain the whole flow pipe segment $\mathcal{R}_{[t_{k-1}, t_k]}(X_0)$.

Let (C_Φ, d_Φ) be the matrix-vector pair defining the convex hull, i.e.,

$$\Phi_{[t_{k-1}, t_k]}(X_0) = POLY(C_\Phi, d_\Phi).$$

3. Bloat hull

- The **normal vector** on each face of the polytope points outward.

3. Bloat hull

- The **normal vector** on each face of the polytope points outward.
- We use the normal vectors to the faces of this convex hull as a set of direction vectors to **bloat the convex set** until it contains the whole flow pipe segment.

3. Bloat hull

- The **normal vector** on each face of the polytope points outward.
- We use the normal vectors to the faces of this convex hull as a set of direction vectors to **bloat the convex set** until it contains the whole flow pipe segment.
- Given: $POLY(C_\Phi, d_\Phi)$.

3. Bloat hull

- The **normal vector** on each face of the polytope points outward.
- We use the normal vectors to the faces of this convex hull as a set of direction vectors to **bloat the convex set** until it contains the whole flow pipe segment.
- Given: $POLY(C_\Phi, d_\Phi)$.
- We want: $\mathcal{R}_{[t_{k-1}, t_k]}(X_0) \subseteq POLY(C_\Phi, \boxed{d})$.

3. Bloat hull

- We compute d as the solution to the following optimization problem:

$$\begin{aligned} \min_d \quad & \text{volume}[\text{POLY}(C_\Phi, d)] \\ \text{s.t.} \quad & \mathcal{R}_{[t_{k-1}, t_k]}(X_0) \subseteq \text{POLY}(C_\Phi, d). \end{aligned} \tag{1}$$

3. Bloat hull

- We compute d as the solution to the following optimization problem:

$$\begin{aligned} \min_d \quad & \text{volume}[\text{POLY}(C_\Phi, d)] \\ \text{s.t.} \quad & \mathcal{R}_{[t_{k-1}, t_k]}(X_0) \subseteq \text{POLY}(C_\Phi, d). \end{aligned} \quad (1)$$

- The i th component d_i^* of the optimum d^* can be found by solving

$$\max_x \quad c_i^T x \quad \text{s.t. } x \in \mathcal{R}_{[t_{k-1}, t_k]}(X_0). \quad (2)$$

3. Bloat hull

- We compute d as the solution to the following optimization problem:

$$\begin{aligned} \min_d \quad & \text{volume}[\text{POLY}(C_\Phi, d)] \\ \text{s.t.} \quad & \mathcal{R}_{[t_{k-1}, t_k]}(X_0) \subseteq \text{POLY}(C_\Phi, d). \end{aligned} \quad (1)$$

- The i th component d_i^* of the optimum d^* can be found by solving

$$\max_x \ c_i^T x \quad \text{s.t. } x \in \mathcal{R}_{[t_{k-1}, t_k]}(X_0). \quad (2)$$

- or, equivalently,

$$\max_{x_0, t} \ c_i^T x(t, x_0) \quad \text{s.t. } x_0 \in X_0, \ t \in [t_{k-1}, t_k]. \quad (3)$$

3. Bloat hull

- We compute d as the solution to the following optimization problem:

$$\begin{aligned} \min_d \quad & \text{volume}[\text{POLY}(C_\Phi, d)] \\ \text{s.t.} \quad & \mathcal{R}_{[t_{k-1}, t_k]}(X_0) \subseteq \text{POLY}(C_\Phi, d). \end{aligned} \quad (1)$$

- The i th component d_i^* of the optimum d^* can be found by solving

$$\max_x \ c_i^T x \quad \text{s.t. } x \in \mathcal{R}_{[t_{k-1}, t_k]}(X_0). \quad (2)$$

- or, equivalently,

$$\max_{x_0, t} \ c_i^T x(t, x_0) \quad \text{s.t. } x_0 \in X_0, \ t \in [t_{k-1}, t_k]. \quad (3)$$

- Solution (x_0^*, t^*) to 3 \rightarrow

Solution $x(t^*, x_0^*)$ to 2 \rightarrow

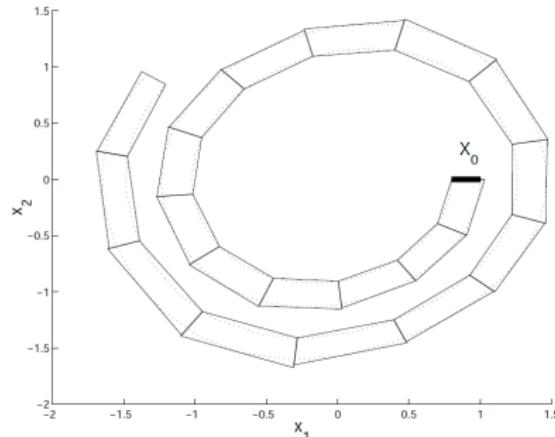
Solution $d_i^* = c_i^T x(t^*, x_0^*)$ to 1.

Example

- Van der Pol equation:

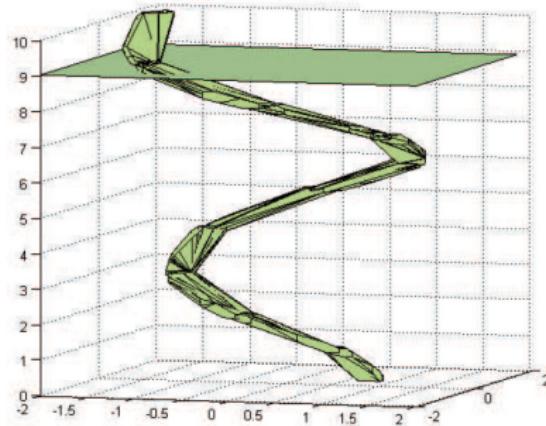
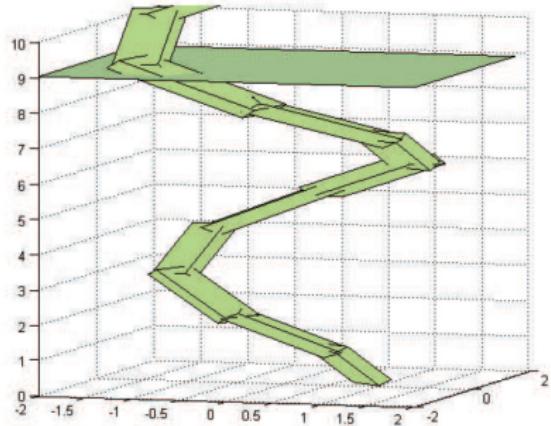
$$\begin{aligned}\dot{x}_1 &= x_2 \\ \dot{x}_2 &= -0.2(x_1^2 - 1)x_2 - x_1.\end{aligned}$$

- Initial set: $X_0 = \{(x_1, x_2) \mid 0.8 \leq x_1 \leq 1 \wedge x_2 = 0\}$.
- Time: $t_f = 10$.
- Segments: 20



Other geometries for approximation

- Van der Pol equation with a third variable being a clock.
- Approximation
 - with convex polyhedra and
 - with oriented rectangular hull:



Partitioning the initial set

Var der Pol system with initial set $X_0 = \{(x_1, x_2) \mid 5 \leq x_1 \leq 45 \wedge x_2 = 0\}$.

