Modeling and analysis of hybrid systems

Approximation of reachable state sets

Prof. Dr. Erika Abraham

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen

SS 2010

Abraham - Hybrid Systems 1/18



Alongkrit Chutinan and Bruce H. Krogh:
Computing Polyhedral Approximations to Flow Pipes for Dynamic Systems
In Proceedings of the 37rd IEEE Conference on Decision and Control, 1998

Olaf Stursberg and Bruce H. Krogh:

Efficient Representation and Computation of Reachable Sets for Hybrid
Systems

Hybrid Systems: Computation and Control, LNCS 2623, pp. 482-497, 2003

Abraham - Hybrid Systems 2/18



We had a look at state set approximations by
m convex polyhedra,
m orthogonal polyhedra, and
m oriented rectangular hull,
and at the basic operations
m testing for membership,
B intersection, and
E union

on these.
Thus we can

m approximate state sets and

m compute with them.

How is all this used in the reachability analysis procedure?
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General reachability procedure

Input: Set Init of initial states.

Algorithm:
R"Y := Init;
R:=0;
while (R #£ (){

R = RU R"™Y;

Rhew . (Rnew)\R;

Output: Set R of reachable states.

‘What is “Reach”?‘
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What is “Reach’?

For hybrid systems, independently of the exact definition of “Reach”, it will
involve the following computations:

Given a state set R, compute

m the set of states reachable from R by a flow (i.e., time transisiton),
and

m the set of states reachable from R by a jump (i.e., discrete transition).

Computing the jump successors, i.e., the flow pipe, of a set can be done
with the operations we already introduced.

The harder part is computing the flow successors. So let's start with that...
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Approximating a flow pipe

Consider a dynamical system with state equation

i = fa(t)):

We assume f to be Lipschitz continuous so that for every initial state x
there is a unique solution x(¢, ) to the state equation.
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Approximating a flow pipe

Consider a dynamical system with state equation

i = fa(t)):

We assume f to be Lipschitz continuous so that for every initial state x
there is a unique solution x(¢, ) to the state equation.

The set of reachable states at time ¢ from a set of initial states X is
defined as

Ri(Xo) = {xy | Fwo € Xo. x5 = x(t,x0)}.

The set of reachable states, the flow pipe, from X in the time interval
[t1,t2] is defined as

Rty t2](X0) = Usepty 1o Re(Xo).

We describe a solution which approximates the flow pipe by a sequence of
convex polytopes.
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Definition (Convex polytope)

Let POLY (C,d) denote the convex polytope defined by the pair
(C,d) € R™*"™ x R™ according to

POLY (C,d) = {z | Cx < d}.
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in P that cannot be written as a strict convex combination of any
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Definition (Convex polytope)

Let POLY (C,d) denote the convex polytope defined by the pair
(C,d) € R™*"™ x R™ according to

POLY (C,d) = {z | Cx < d}.

m Each row of C is the normal vector to the ith face of the polytope.

m A polytope P has a finite number of vertices V(P), which are points
in P that cannot be written as a strict convex combination of any
other two points in P.

m Given a finite set of points I, the convex hull CH(T") of T is the
smallest convex set that contains I".
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Problem statement for polyhedral approximation of flow pipes

Given
m a set X of initial states which is a polytope, and

m a final time ¢,

compute a polyhedral approximation ﬁ[o,tf}(Xo) to the flow pipe
Ro,;1(Xo) such that

Rio,t;)(X0) € Rio,t,)(Xo)-
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Flow pipe segmentation

Since a single convex polyhedra would strongly overapproximate the flow
pipe, we compute a sequence of convex polyhedra, each approximating a
flow pipe segment.

150
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Segmented flow pipe approximation

Let the time interval [0, %] be divided into 0 < N € N time segments

[O,tl], [tl,tg], e, [thl,tf]

with t; =7 - tﬁf
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Segmented flow pipe approximation

Let the time interval [0, %] be divided into 0 < N € N time segments
[O, tl], [tl, tg], e, [thl,tf]
. ot
with ¢; =i - .
We generate an approximation ﬁ[tl,tg](XO) for each flow pipe segment:

R[tl,tg](XO> < 7%[7517752]()(0)-
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Segmented flow pipe approximation

Let the time interval [0, %] be divided into 0 < N € N time segments
[0,t1], [t1,t2], -, [tnN—1,tf]
with t; =7 - tﬁf
We generate an approximation ﬁ[tl,tg](XO) for each flow pipe segment:
Rit1 42)(X0) € Rty 12)(X0)-

The complete flow pipe approximation is the union of the approximation of
all N pipe segments:

Riot(X0) S Rpoz(Xo) = | Ry 1 (Xo0)
k=1,...N
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Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tx_1, tx]
(k€ {1,...,N}) consists of the following steps:
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Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tx_1, tx]
(k€ {1,...,N}) consists of the following steps:
m Evolve vertices: Compute the set of points reachable from the vertices
of Xp in time t;_1 and in time ¢;.

V

b
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Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tx_1, tx]
(k€ {1,...,N}) consists of the following steps:
m Evolve vertices: Compute the set of points reachable from the vertices
of Xp in time t;_1 and in time ¢;.
m Determine hull: Compute the convex hull of those points.
m Bloat hull: Enlarge the hull until it contains all points of the flow pipe
segment.

V

b
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1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we

begin with taking sample points at times ¢;_; and ¢, from the trajectories
emanating from the vertices of Xj.
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1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we
begin with taking sample points at times ¢;_; and ¢, from the trajectories
emanating from the vertices of Xj.

In particular, we compute the sets V;, | (Xo) and V;, (Xo) where

Vi(Xo) = {z(t,0) [ v e V(Xo)}.
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1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we

begin with taking sample points at times ¢;_; and ¢, from the trajectories
emanating from the vertices of Xj.

In particular, we compute the sets V;, | (Xo) and V;, (Xo) where
Vi(Xo) = {z(t,0) [ v e V(Xo)}.

Each point in the above sets can be obtained

m by analytic solution of the state equation and computing the value, or
m by simulation.
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2. Determine hull

We use the evolved vertices in V;, _,(Xo) and V}, (Xo) to form a convex

hull which serves as an initial approximation to the flow pipe segment
Ritr_1.1)(Xo), denoted by

P, (Xo) = CH(Vy,_, (Xo) U Vi, (Xo)).
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2. Determine hull

We use the evolved vertices in V;, _,(Xo) and V}, (Xo) to form a convex

hull which serves as an initial approximation to the flow pipe segment
Ritr_1.1)(Xo), denoted by

P, (Xo) = CH(Vy,_, (Xo) U Vi, (Xo)).

Note that @, , ;,1(Xo) may not contain the whole flow pipe segment
Rite 1,62 (Xo0)-
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2. Determine hull

We use the evolved vertices in V;, _,(Xo) and V}, (Xo) to form a convex
hull which serves as an initial approximation to the flow pipe segment
Rity_1,t,](X0), denoted by

P, (Xo) = CH(Vy,_, (Xo) U Vi, (Xo)).

Note that @, , ;,1(Xo) may not contain the whole flow pipe segment
Rite 1,62 (Xo0)-

Let (Cp,ds) be the matrix-vector pair defining the convex hull, i.e.,

(b[tk—lvtk}(XO) = POLY(Cded@)-
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3. Bloat hull

m The normal vector on each face of the polytope points outward.
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3. Bloat hull

m The normal vector on each face of the polytope points outward.

m We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.
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3. Bloat hull

m The normal vector on each face of the polytope points outward.

m We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.

m Given: POLY (Cy,ds).
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3. Bloat hull

m The normal vector on each face of the polytope points outward.

m We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.

m Given: POLY (Cy,ds).
m We want: Ry, 1, (Xo) C POLY (Ca,|d)).
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3. Bloat hull

m We compute d as the solution to the following optimization problem:
mc}n volume[POLY (Cy, d)] (1)
s.t. R[tk—lvtk] (X()) g POLY(C(I), d)
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3. Bloat hull

m We compute d as the solution to the following optimization problem:
mc}n volume[POLY (Cy, d)] (1)
s.t. R[tkfl,tk](XO) g POLY(C(I),d)

m The ith component d} of the optimum d* can be found by solving

max cgpx s.t.x € R[tk_l,tk}(XO)' (2)

T
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3. Bloat hull

m We compute d as the solution to the following optimization problem:
mc}n volume[POLY (Cy, d)] (1)
s.t. R[tkfl,tk](XO) g POLY(C(I),d)

m The ith component d} of the optimum d* can be found by solving

max clr  stoaxc Rity_ 1.t (Xo0)- (2)
m or, equivalently,
max ¢! x(t, zo) s.t. xg € Xo, t € [tp—_1,tx]- (3)

xo,t
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3. Bloat hull

m We compute d as the solution to the following optimization problem:
mc}n volume[POLY (Cy, d)] (1)
s.t. R[tkfl,tk](XO) g POLY(C(I),d)

m The ith component d} of the optimum d* can be found by solving

max cgpx s.t.x € R[tk_l,tk}(XO)' (2)

T

m or, equivalently,

max cFa(t, zo) s.t. xg € Xo, t € [tp—_1,tx]- (3)
xo,t
m Solution (z§,t") to 3 —

Solution z(t*, x{) to2 —

Solution df = clz(t*,z}) to 1.
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m Van der Pol equation:
.CfCl = X9
By = —0.2(2 — 1)y — z1.

m Intial set: Xy = {(z1,22) | 0.8 <z1 <1Azy=0}.
m Time: ¢ty = 10.
m Segments: 20
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Other geometries for approximation

m Van der Pol equation with a third variable being a clock.

m Approximation
with convex polyhedra and with oriented rectangular hull:

N .V gy “ e //\/ i : »
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Partitioning the initial set

Var der Pol system with initial set Xo = {(x1,22) | 5 < 1 <45Az9 = 0}.
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