

Principles of Model Checking

Exercise class 2

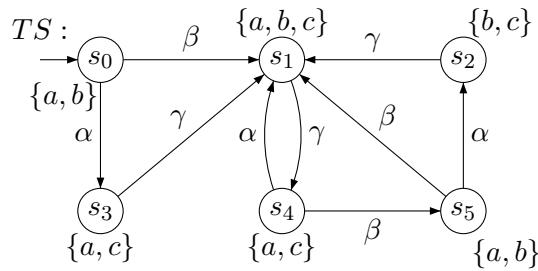
Verification of regular linear time properties

Prof. Dr. Joost-Pieter Katoen, Dr. Taolue Chen, and Ir. Mark Timmer

September, 21, 2012

Problem 1

Consider the following transition system TS



and the regular safety property

$P_{safe} =$ “always if a is valid and $b \wedge \neg c$ was valid somewhere before,
then neither a nor b does hold thereafter at least until c holds”

As an example, we have:

$$\begin{aligned}
 \{b\} \oslash \{a, b\} \{a, b, c\} &\in pref(P_{safe}) \\
 \{a, b\} \{a, b\} \oslash \{b, c\} &\in pref(P_{safe}) \\
 \{b\} \{a, c\} \{a\} \{a, b, c\} &\in BadPref(P_{safe}) \\
 \{b\} \{a, c\} \{a, c\} \{a\} &\in BadPref(P_{safe})
 \end{aligned}$$

1. Draw an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
2. Decide whether $TS \models P_{safe}$, using the $TS \otimes \mathcal{A}$ construction. Provide a counterexample if $TS \not\models P_{safe}$.

Problem 2

For each of the ω -regular languages below, give a nondeterministic Büchi automaton accepting it.

1. $L_1 = \{\sigma \in \{A, B\}^\omega \mid \sigma \text{ contains } ABA \text{ infinitely often, but } AA \text{ only finitely often}\}$
2. $L_2 = \mathcal{L}_\omega((AB + C)^*((AA + B)C)^\omega + (A^*C)^\omega)$

Hint: nondeterministic Büchi automata can have multiple initial states.

Problem 3

Let \mathcal{A}_1 and \mathcal{A}_2 be NBA over the same alphabet Σ . Prove (without using GNBAs) that there exists an NBA \mathcal{A} such that

$$\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}_1) \cap \mathcal{L}_\omega(\mathcal{A}_2).$$