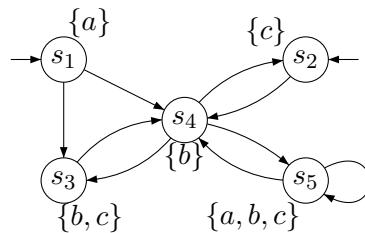


Principles of Model Checking

Exercise class 3


Linear temporal logic

Prof. Dr. Joost-Pieter Katoen, Dr. Taolue Chen, and Ir. Mark Timmer

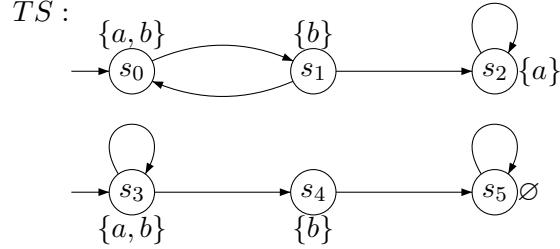
September, 28, 2012

Problem 1

Consider the following transition system TS over the set of atomic propositions $AP = \{a, b, c\}$:

Decide $TS \models \varphi_i$ for each of the LTL formulas φ_i below. Justify your answers! If $TS \not\models \varphi_i$, provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

(1) $\varphi_1 = \square \diamond c$	(3) $\varphi_3 = a \mathbb{U} \square(b \vee c)$
(2) $\varphi_2 = \bigcirc \neg c \rightarrow \bigcirc \bigcirc c$	(4) $\varphi_4 = (\bigcirc \bigcirc b) \mathbb{U}(b \vee c)$


Problem 2

Prove or disprove the following equivalences of LTL formulas:

(1) $\square \varphi \rightarrow \diamond \psi \equiv \varphi \mathbb{U}(\psi \vee \neg \varphi)$
(2) $\square \diamond \varphi \rightarrow \square \diamond \psi \equiv \square(\varphi \rightarrow \diamond \psi)$

Problem 3

Let $AP = \{a, b, c\}$. Consider the transition system TS over AP outlined below

and the LTL fairness assumption

$$fair = (\square \diamond (a \wedge b) \rightarrow \square \diamond \neg c) \wedge (\diamond \square (a \wedge b) \rightarrow \square \diamond \neg b)$$

1. Specify the fair paths of TS .
2. Decide for each of the following LTL formulas φ_i whether $TS \models_{fair} \varphi_i$:

$$\varphi_1 = \bigcirc \neg a \rightarrow \diamond \square a \quad \varphi_2 = b \mathsf{U} \square \neg b \quad \varphi_3 = b \mathsf{W} \square \neg b.$$

In case $TS \not\models_{fair} \varphi_i$, indicate a path $\pi \in \text{FairPaths}(TS)$ for which $\pi \not\models \varphi$ holds.

Problem 4

Consider the LTL-formula $\varphi = a \mathsf{U} \bigcirc a$ over the set of atomic propositions $AP = \{a\}$. Construct an equivalent GNBA \mathcal{G} (i.e. $\mathcal{L}_\omega(\mathcal{G}) = \text{Words}(\varphi)$) according to the algorithm given in the proof of Theorem 5.37.