

Principles of Model Checking

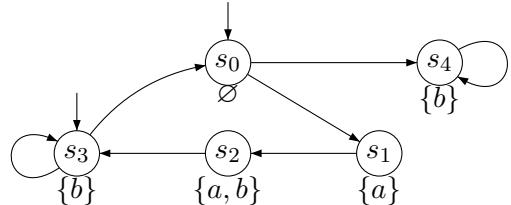
Exercise class 4

Computation tree logic

Prof. Dr. Joost-Pieter Katoen, Dr. Taolue Chen, and Ir. Mark Timmer

October, 5, 2012

Problem 1


Express the following properties as CTL formulas over $AP = \{a, b, c\}$ and provide a justification. For more complicated formulas, also comment on their subformulas!

1. There exists a path on which for every state s the following property holds: there exists a path which starts in s and on which eventually a holds and in the next state after that, $\neg a$ holds.
2. There exists a state s for which it holds: a is true and on all paths starting from s , c holds as long as b does not hold. (You may use \mathbb{W} .)

Problem 2

Consider the following CTL formulas and the transition system TS outlined on the right:

$$\begin{aligned}\Phi_1 &= \forall(a \mathbb{U} b) \vee \exists \bigcirc (\forall \square b) \\ \Phi_2 &= \forall \square \forall(a \mathbb{U} b)\end{aligned}$$

Give the satisfaction sets $Sat(\Phi_i)$ and decide whether $TS \models \Phi_i$ holds.

Problem 3

We consider the incomparable expressiveness of CTL and LTL. Using Theorem 6.18, prove that there does not exist an equivalent LTL-formula for the CTL-formula $\Phi = \forall \lozenge(a \wedge \exists \bigcirc a)$.

Problem 4

If time permits, make Exercise 6.21 from the book.