

Principles of Model Checking

Exercise class 5

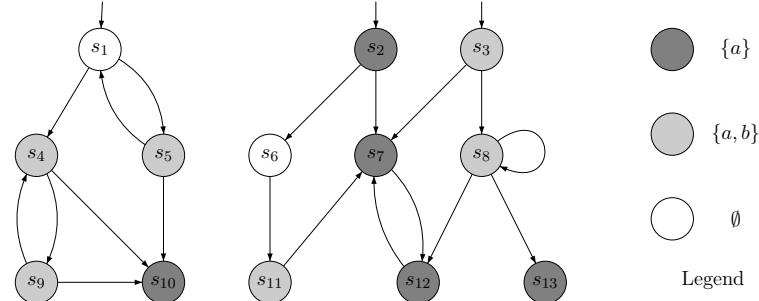
Abstraction

Prof. Dr. Joost-Pieter Katoen, Dr. Taolue Chen, and Ir. Mark Timmer

October, 12, 2012

Problem 1

Consider the transition system TS over $AP = \{a, b\}$ shown in the figure below:



Determine the bisimulation quotient system TS/\sim using the inefficient quotienting algorithm.

Problem 2

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system. The relations $\sim_n \subseteq S \times S$ are inductively defined by:

- $s_1 \sim_0 s_2$ iff $L(s_1) = L(s_2)$.
- $s_1 \sim_{n+1} s_2$ iff:
 - $L(s_1) = L(s_2)$,
 - for all $s'_1 \in Post(s_1)$ there exists a $s'_2 \in Post(s_2)$ with $s'_1 \sim_n s'_2$,
 - for all $s'_2 \in Post(s_2)$ there exists a $s'_1 \in Post(s_1)$ with $s'_1 \sim_n s'_2$.

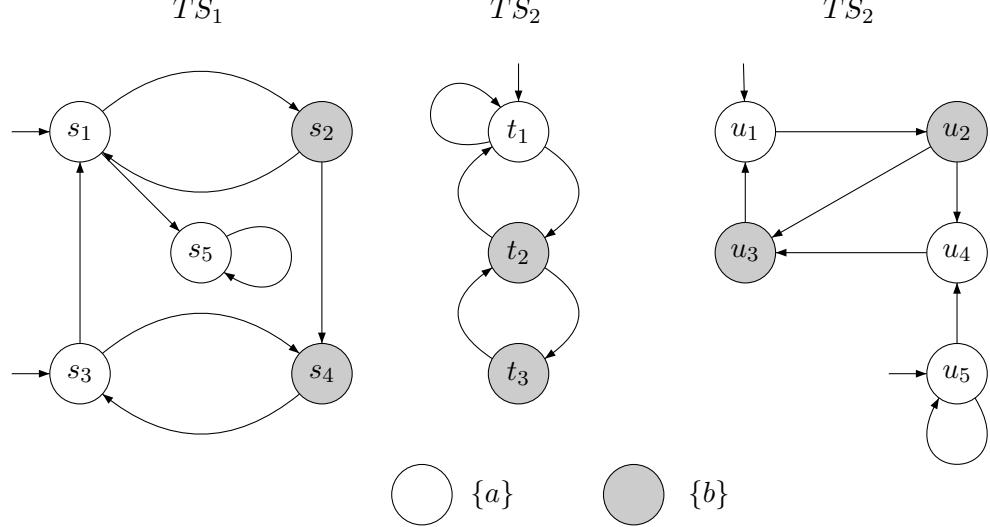
(i) Show that for *finite* TS it holds that $\sim_{TS} = \bigcap_{n \geq 0} \sim_n$, i.e.,

$$s_1 \sim_{TS} s_2 \text{ if and only if } s_1 \sim_n s_2 \text{ for all } n \geq 0$$

(ii) Does this also hold for infinite transition systems (provide either a proof or a counterexample)?

Problem 3

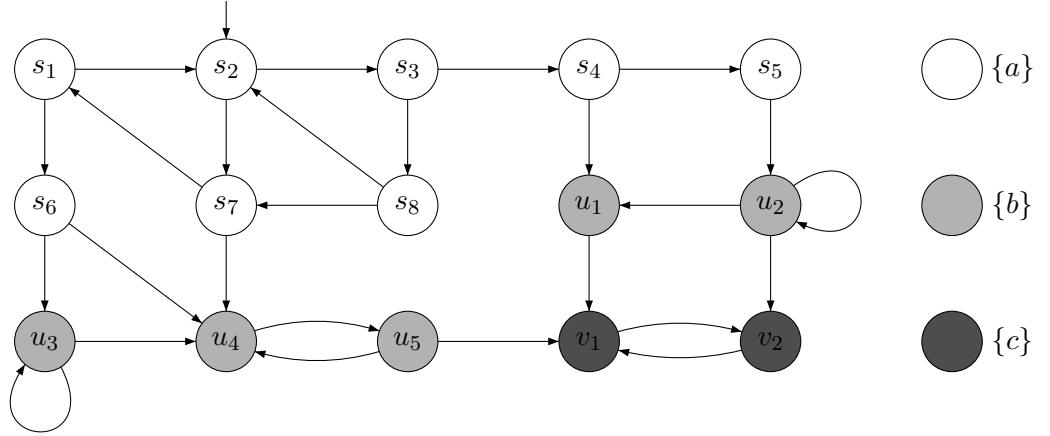
Consider the following transition systems:



For each $i, j \in \{1, 2, 3\}$, $i \neq j$, determine whether $TS_i \leq TS_j$ or $TS_i \not\leq TS_j$.

Problem 4

Consider the following transition system TS :



1. Give the divergence-sensitive expansion \overline{TS} .
2. Determine the divergence stutter bisimulation quotient \overline{TS}/\approx .
3. Give TS/\approx^{div} .