
Principles of Model Checking

Solutions to exercise class 4

Computation tree logic

Prof. Dr. Joost-Pieter Katoen, Dr. Taolue Chen,

Dr. Jeroen Ketema, and Ir. Mark Timmer

October, 5, 2012

Problem 1

1. To say that there exists a path on which eventually a holds and in the
next state after that, ¬a holds, we could not simply write ∃✸(a∧©¬a).
After all,©¬a is a path formula, while the ∧ operator expects two state
formulas. Hence, we need to prefix©¬a by either ∃ or ∀. Since there
only has to be one path such that at some point a and then ¬a, we
use ∃ and get ∃✸(a ∧ ∃© ¬a).

Since we need to express the property that says that there exists a
path on which for every state s the above holds, we obtain

∃✷∃✸(a ∧ ∃© ¬a)

2. We can express that c holds as long as b does not hold by the for-
mula cWb. Note that cUb would require b to eventually hold; this is
something stronger than what we want.

To say that a is true and all paths satisfy the above, we easily write
a ∧ ∀(cWb). Finally, since we only need one state in which this holds,
we can existentially range over all paths and require the above to even-
tually hold in some state:

∃✸(a ∧ ∀(cWb))

1

Problem 2

For each of the CTL state formulas Φi, we have to compute

Sat(Φi) = {s ∈ S | s |= Φi}

From this, we can decide TS |= Φi by checking I ⊆ Sat(Φi).

• Φ1 = ∀(aUb) ∨ ∃© (∀✷b)

We follow the bottom-up construction of the satisfaction sets:

∗ Sat(b) = {s2, s3, s4}

∗ Sat(∀✷b) = {s4}

∗ Sat(∃© (∀✷b)) = {s0, s4}

∗ Sat(a) = {s1, s2}

∗ Sat(∀(aUb)) = {s1, s2, s3, s4}

∗ Sat(∀(aUb)∨∃©(∀✷b)) = {s1, s2, s3, s4}∪{s0, s4} = {s0, s1, s2, s3, s4}

Since all initial states are in Sat(Φ1), indeed TS |= Φi.

Alternatively, we could for instance argue directly that s0 |= Φ1 since
it has a path π = s0s

ω

4 that satisfies©(∀✷b), and that s3 |= Φ1, since
all paths from s3 start with b and hence satisfy (aUb).

• Φ2 = ∀✷∀(aUb)

First note that

s |= Φ2 ⇐⇒ ∀π ∈ Paths(s). π |= ✷∀(aUb)

⇐⇒ ∀π ∈ Paths(s). ∀i ≥ 0. π[i] |= ∀(aUb)

⇐⇒ ∀π ∈ Paths(s). ∀i ≥ 0. ∀π′ ∈ Paths(π[i]). π′ |= aUb

We consider the state s0 and the path π′′ = s0s
ω

4 . According to
the equivalence above, for s0 |= Φ2 to hold, all the suffixes of π′′

should satisfy aUb. Choose i = 0, and take π′ = π′′. Clearly,
π′ 6|= aUb, and therefore s0 6|= Φ2. So, s0 6∈ Sat(Φ2).

Since we do have s0 ∈ I, we find that I 6⊆ Sat(Φ2), and thus
that TS 6|= Φ2.

(As all states except for s4 can reach s0, it can be seen that
they are also not in Sat(Φ2). Hence, Sat(Φ2) = {s4}.)

2

Problem 3

We prove that there is no equivalent LTL-formula for the CTL-formula

Φ = ∀✸(a ∧ ∃© a)

We omit all path quantifiers from Φ, obtaining the LTL-formula

ϕ = ✸(a ∧©a)

We now prove that Φ 6≡ ϕ. Then, by Theorem 6.18 indeed there is no
equivalent LTL-formula for Φ.

To see that Φ 6≡ ϕ, consider the following transition system TS:

s0

{a}

s1
∅

We have TS 6|=LTL ϕ, due to the path s0s
ω

1 . It never sees two consecutive
a-states.

On the other hand, we do have TS |=CTL Φ. After all, there are only
two types of paths to consider: sω0 and s+

0
sω1 . Both eventually reach a state

such that a ∧ ∃© a, namely s0. To see why s0 satisfies a ∧ ∃© a, note that
indeed a ∈ L(s0) and there is a path s0s

ω

1 from s0 that satisfies©a.
Since TS 6|=LTL ϕ and TS |=CTL Φ, indeed Φ 6≡ ϕ.

Problem 4

(a) Determine Sat(Φ1) and Sat(Ψ1) (without fairness).

We compute Sat(Φ1) = Sat(b ∧ ¬a) using Algorithm 14 on page 348,
i.e., by recursion on the subformulas. We thus first obtain

Sat(a) = {s0, s5} Sat(b) = {s0, s2, s3}

Next, applying the rule for negation, we obtain

Sat(¬a) = S \ Sat(a) = S \ {s0, s5} = {s1, s2, s3, s4}

Finally,

Sat(Φ1) = Sat(b ∧ ¬a) = Sat(b) ∩ Sat(¬a)

= {s0, s2, s3} ∩ {s1, s2, s3, s4} = {s2, s3}

3

Next, we compute Sat(Ψ1) = Sat(∃(bU (a ∧ ¬b))). First, using Sat(a)
and Sat(b) from above, we find

Sat(¬b) = S \ Sat(b) = S \ {s0, s2, s3} = {s1, s4, s5}

Sat(a ∧ ¬b) = Sat(a) ∩ Sat(¬b) = {s0, s5} ∩ {s1, s4, s5} = {s5}

Finally, using a smallest fixed point computation, we obtain

Sat(Ψ1) = Sat(∃(bU (a ∧ ¬b))) = {s0, s2, s5}

(b) Determine Satsfair(∃✷ true).

To compute Satsfair(∃✷ true), we need to establish for each state s ∈ S

if there is a fair path starting from s. By Lemma 6.40, this means we
need to check if there is a cycle through s that either visits no states
from Sat(Φ1) or visits at least one state from Sat(Ψ1).

First note that cycles through s3 always visit s3 and possibly
also s4. Since s3 is in Sat(Φ1) and neither s3 nor s4 is in Sat(Ψ1),
such cycles cannot be fair. A similar argument can be given for cycles
through s4. Hence, s3 and s4 have no outgoing fair paths, and thus
they are not in Satsfair(∃✷ true).

From s5 there is a cycle (s5s2)
ω, which contains at least one state

from Sat(Ψ1). From s2, we can use the cycle (s2s5)
ω. From s1, the

cycle (s1s0)
ω contains a state from Sat(Ψ1), and from s0 we can use

the cycle (s0s1)
ω. Hence, all these states have a fair path, and thus

are in Satsfair(∃✷ true)

In conclusion, Satsfair(∃✷ true) = {s0, s1, s2, s5}.

(c) Determine Satsfair(Φ).

To compute Satsfair(Φ) = Satsfair(∀✷∀✸a) using Algorithm 17 on page
364, first note that

∀✷∀✸a ≡ ¬∃✸(¬∀✸a) ≡ ¬∃(trueU¬∀✸a) ≡ ¬∃(trueU ∃✷¬a) .

We begin by computing Satsfair(∃✷¬a). To this end we first have to
find the strongly connected components in G[¬a] which realize sfair.
Note that the component consisting of s3 and s4 is the only strongly
connected component in G[¬a]. However, this component does not
realize sfair, as we saw above. Hence, Satsfair(∃✷¬a) = ∅ and thus
also Satsfair(∃(true U ∃✷¬a)) = ∅. Hence, we can conclude that

Satsfair(Φ) = Satsfair(¬∃(trueU ∃✷¬a)) = S

4

