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Problem 1

1. To say that there exists a path on which eventually a holds and in the
next state after that, —a holds, we could not simply write 3¢ (aAO—a).
After all,()—a is a path formula, while the A operator expects two state
formulas. Hence, we need to prefix ()—a by either 3 or V. Since there
only has to be one path such that at some point a and then —a, we
use 3 and get 3C(a A IO —a).

Since we need to express the property that says that there exists a
path on which for every state s the above holds, we obtain

3033 (a A 30 —a)

2. We can express that ¢ holds as long as b does not hold by the for-
mula ¢Wb. Note that cUb would require b to eventually hold; this is
something stronger than what we want.

To say that a is true and all paths satisfy the above, we easily write
a A Y (cWhb). Finally, since we only need one state in which this holds,
we can existentially range over all paths and require the above to even-
tually hold in some state:

30 (a A V(WD)



Problem 2

For each of the CTL state formulas ®;, we have to compute
Sat(®;)) ={s € S|skE P}
From this, we can decide T'S = ®; by checking I C Sat(®;).
o &) =V(aUb) v 3O (VOb)

We follow the bottom-up construction of the satisfaction sets:
Sat(b) = {s2, 53,54}
Sat( b) = {s4}
Sat(30O (YOb)) = {s0, s4}
Sat(a) = {s1,s2}
Sat(V(aUb)) = {s1, s2, 83,54}
Sat(V(aUb)vAD(VOD)) = {s1, s2, S3, 84 }U{s0, S4} = {80, 51, S2, S3, 54}
Since all initial states are in Sa#(®1), indeed T'S = ®;.
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Alternatively, we could for instance argue directly that sy = ®; since
it has a path m = sos that satisfies O(VOb), and that s3 = @1, since
all paths from sg start with b and hence satisfy (aUb).

o Oy =V0OV(aUb)
First note that

s = ®y <= Vm € Paths(s). m = 0OV(aUbd)
<= Vr € Paths(s). Vi > 0. 7[i] = V(aUd)
<= Vr € Paths(s). Vi > 0. V7' € Paths(r[i]). 7' | aUb

We consider the state sg and the path 7" = spsy. According to
the equivalence above, for sy = @ to hold, all the suffixes of 7
should satisfy aUb. Choose i = 0, and take 7’ = #”. Clearly,
7' £ aUb, and therefore sg = ®o. So, so & Sat(Ps).

Since we do have sy € I, we find that I € Sat(®2), and thus
that T'S l# q)g.

(As all states except for s can reach sg, it can be seen that
they are also not in Sat(®2). Hence, Sat(®2) = {s4}.)



Problem 3

We prove that there is no equivalent LTL-formula for the CTL-formula
O =VC(an3IOa)
We omit all path quantifiers from @, obtaining the LTL-formula

¢ =0(aAOa)

We now prove that ® # ¢. Then, by Theorem 6.18 indeed there is no
equivalent LTL-formula for ®.
To see that ® # ¢, consider the following transition system T'S:

{a} =

We have T'S Wt ¢, due to the path spsy. It never sees two consecutive
a-states.

On the other hand, we do have T'S |=crr, ®. After all, there are only
two types of paths to consider: s§ and 33 s7. Both eventually reach a state
such that a A 30 a, namely sq. To see why sq satisfies a A 30 a, note that
indeed a € L(sp) and there is a path sosy from sg that satisfies Oa.

Since T'S eyt ¢ and T'S e, @, indeed @ # .

Problem 4

(a) Determine Sat(®;) and Sat(¥;) (without fairness).

We compute Sat(®1) = Sat(b A —a) using Algorithm 14 on page 348,
i.e., by recursion on the subformulas. We thus first obtain

Sat(a) = {so, s5} Sat(b) = {so, s2, 3}
Next, applying the rule for negation, we obtain
Sat(—a) = S\ Sat(a) = S\ {so, s5} = {s1, 2, S3, 54}
Finally,

Sat(P1) = Sat(b A —a) = Sat(b) N Sat(—a)

= {80) 52, 53} N {815 52,83, 84} = {825 53}



Next, we compute Sat(Vq) = Sat(3(bU (a A =b))). First, using Sat(a)
and Sat(b) from above, we find

Sat(—b) = S\ Sat(b) = S\ {so0, s2,s3} = {51, 54, S5}
Sat(a A =b) = Sat(a) N Sat(—=b) = {so, s5} N {s1, 4,55} = {s5}

Finally, using a smallest fixed point computation, we obtain

Sat(Vq) = Sat(3(bU (a A b)) = {so, s2, S5}

Determine Satsfeir(30 true).

To compute Satgfq-(30 true), we need to establish for each state s €
if there is a fair path starting from s. By Lemma 6.40, this means we
need to check if there is a cycle through s that either visits no states
from Sat(P;) or visits at least one state from Sat(Vy).

First note that cycles through s3 always visit s3 and possibly
also s4. Since s3 is in Sat(®1) and neither ss nor sy is in Sat(¥y),
such cycles cannot be fair. A similar argument can be given for cycles
through s4. Hence, s3 and s4 have no outgoing fair paths, and thus
they are not in Satgfq;(30 true).

From s5 there is a cycle (s5s2)*, which contains at least one state
from Sat(¥1). From sy, we can use the cycle (s285)%. From sp, the
cycle (s1509)¥ contains a state from Sat(V1), and from sy we can use
the cycle (sgs1)“. Hence, all these states have a fair path, and thus

are in Satyfqir(30 true)

In conclusion, Satssr(30 true) = {s, 51, 52, 55}

Determine Satsfair(P).

To compute Satpair(P) = Satyfeir(VOVOa) using Algorithm 17 on page
364, first note that

VOvVOa = —30(=V<¢a) = —3(true U =V<Oa) = —3(true U 30-a) .

We begin by computing Satgfq;(30—a). To this end we first have to
find the strongly connected components in G[—a] which realize sfair-
Note that the component consisting of s3 and s4 is the only strongly
connected component in G[—a]. However, this component does not
realize sfair, as we saw above. Hence, Satspir(30—a) = @ and thus
also Satgfeir(3(true U30—a)) = @. Hence, we can conclude that

Satsfair(q)) = Satsfair(_‘zl(true UJ0-a)) =S



