
Transition Systems and Linear-Time Properties
Lecture #1 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 4, 2012

c© JPK

Model checking

• Automated model-based verification and debugging technique

– model of system = Kripke structure ≈ labeled transition system

– properties expressed in temporal logic like LTL or CTL

– provides counterexamples in case of property refutation

• Various striking examples

– Needham-Schroeder security protocol, storm surge barrier, C code

• 2008: Pioneers awarded prestigious ACM Turing Award

c© JPK 1

Course topics

• Transition systems and linear-time properties

– traces, safety, liveness, fairness

• Verifying regular linear-time properties

– omega-regular languages, Büchi automata, nested depth-first search

• LTL model checking

– syntax, semantics, automata, model-checking algorithm

• CTL model checking

– syntax, semantics, CTL versus LTL, model-checking algorithm

c© JPK 2

Course topics

• Abstraction

– stutter (bi)simulation, LTL/CTL equivalence, minimisation algorithms

• Partial-order reduction

– independence, ample sets, dynamic POR

• Probabilistic model checking

– Markov chains, reachability probabilities

c© JPK 3

Principles of Model Checking

Christel Baier

TU Dresden, Germany

Joost-Pieter Katoen

RWTH Aachen University, Germany,

and

University of Twente, the Netherlands

“This book offers one of the most comprehensive introductions to logic model checking techniques available

today. The authors have found a way to explain both basic concepts and foundational theory thoroughly and

in crystal clear prose. Highly recommended for anyone who wants to learn about this important new field, or

brush up on their knowledge of the current state of the art.”

(Gerard J. Holzmann, NASA JPL, Pasadena)

c© JPK 4

Content of this lecture

• Introduction

– why model checking?, how to model check?

• Transition systems

– paths, traces, program graphs

• Linear time properties

– safety, liveness, decomposition

• Fairness

– unconditional, strong and weak fairness

c© JPK 5

Content of this lecture

⇒ Introduction

– why model checking?, how to model check?

• Transition systems

– paths, traces, program graphs

• Linear time properties

– safety, liveness, decomposition

• Fairness

– unconditional, strong and weak fairness

c© JPK 6

Catching software bugs: the sooner, the better

Analysis Conceptual
Design

Programming Unit Testing Operation

0

Time (non-linear)

errors errors
detected

cost of
correction
per error

50%

40%

30%

20%

10%

0%

2.5

5

7.5

10

12.5

(in %)
introduced

(in %)

System Testing

(in 1,000 US $)

c© JPK 7

Milestones in formal verification

• Mathematical approach towards program correctness (Turing, 1949)

• Syntax-based technique for sequential programs (Hoare, 1969)

– for a given input, does a computer program generate the correct output?

– based on compositional proof rules expressed in predicate logic

• Syntax-based technique for concurrent programs (Pnueli, 1977)

– can handle properties referring to situations during the computation

– based on proof rules expressed in temporal logic

• Automated verification of concurrent programs (Emerson & Clarke, 1981)

– model-based instead of proof-rule based approach

– does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios

c© JPK 8

Model checking overview

most probable scenarios’’

‘‘not biased towards the

satisfied

insufficient
memory

counterexample Simulation location
error

system

violated +

Model Checking

requirements

Formalizing Modeling

system modelproperty
specification

c© JPK 9

The model checking process

• Modeling phase

– model the system under consideration

– as a first sanity check, perform some simulations

– formalise the property to be checked

• Running phase

– run the model checker to check the validity of the property in the model

• Analysis phase

– property satisfied? → check next property (if any)

– property violated? →
1. analyse generated counterexample by simulation

2. refine the model, design, or property . . . and repeat the entire procedure

– out of memory? → try to reduce the model and try again

c© JPK 10

Content of this lecture

• Introduction

– why model checking?, how to model check?

⇒ Transition systems

– paths, traces, program graphs

• Linear time properties

– safety, liveness, decomposition

• Fairness

– unconditional, strong and weak fairness

c© JPK 11

Transition systems

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State:

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the input bits

• Transition: (“state change”)

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input

c© JPK 12

Formal definition

A transition system TS is a tuple (S,Act,→, I,AP, L) where

• S is a set of states

• Act is a set of actions

• −→ ⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−→ s′ instead of
(
s, α, s′

) ∈ −→

c© JPK 13

Paths

• An infinite path fragment π is an infinite state sequence:

s0 s1 s2 . . . such that si ∈ Post(si−1) for all i > 0

• Notations for path fragment π = s0 s1 s2 . . .:

– first(π) = s0 = π[0]; let π[j] = sj denote the j-th state of π

– j-th prefix π[..j] = s0 s1 . . . sj and j-th suffix π[j..] = sj sj+1 . . .

• A path of TS is an initial, maximal path fragment

– a maximal path fragment cannot be prolonged

– a path fragment is initial if s0 ∈ I

• Paths(s) is the set of maximal path fragments π with first(π) = s

c© JPK 14

A mutual exclusion algorithm

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

c© JPK 15

Traces

• Actions are mainly used to model the (possibility of) interaction

– synchronous or asynchronous communication

• Here, focus on the states that are visited during executions

– the states themselves are not “observable”, but just their atomic propositions

• Traces are sequences of the form L(s0)L(s1)L(s2) . . .

– just register the (set of) atomic propositions that are valid along the execution

• For transition systems without terminal states:

– traces are infinite words over the alphabet 2AP, i.e., they are in
(
2AP

)ω

– we will (mostly) assume that there are no terminal states

c© JPK 16

Traces

• Let transition system TS = (S,Act,→, I,AP, L) without terminal states

• The trace of path fragment π = s0 s1 . . . is trace(π) = L(s0)L(s1) . . .

– the trace of π̂ = s0 s1 . . . sn is trace(π̂) = L(s0)L(s1) . . . L(sn).

• The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }

• Traces(s) = trace(Paths(s)) Traces(TS) =
⋃

s∈I Traces(s)

c© JPK 17

Example traces

Let AP = { crit1, crit2 }
Example path:

π = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉 →
〈n1, n2, y = 1〉 → 〈n1, w2, y = 1〉 → 〈n1, c2, y = 0〉 → . . .

The trace of this path is the infinite word:

trace(π) = ∅∅ { crit1 }∅∅ { crit2 }∅∅ { crit1 }∅∅ { crit2 } . . .

The trace of the finite path fragment:

π̂ = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈w1, w2, y = 1〉 →
〈w1, c2, y = 0〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉

is:
trace(π̂) = ∅∅∅ { crit2 }∅ { crit1 }

c© JPK 18

Program graphs: A beverage vending machine

“Abstract” transitions:

start true:coin−−−−−−→ select and start true:refill−−−−−−→ start

select nsprite>0 :sget−−−−−−−−−→ start and select nbeer>0 :bget−−−−−−−−→ start

select nsprite=0 ∧ nbeer=0 :ret coin−−−−−−−−−−−−−−−−−−→ start

Action Effect on variables

coin

ret coin

sget nsprite := nsprite − 1

bget nbeer := nbeer − 1

refill nsprite := max ; nbeer := max

c© JPK 19

Some preliminaries

• typed variables with a valuation that assigns values to variables

– e.g., η(x) = 17 and η(y) = −2

• the set of Boolean conditions over Var

– propositional logic formulas whose propositions are of the form “x ∈ D”

– (−3 < x � 5) ∧ (y = green) ∧ (x � 2·x′)

• effect of the actions is formalized by means of a mapping:

Effect : Act× Eval(Var) → Eval(Var)

– e.g., α ≡ x := y+5 and evaluation η(x) = 17 and η(y) = −2

– Effect(α, η)(x) = η(y) + 5 = 3, and Effect(α, η)(y) = η(y) = −2

c© JPK 20

Program graphs
A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,−→, Loc0, g0) where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act× Eval(Var) → Eval(Var) is the effect function

• −→ ⊆ Loc× Cond(Var)︸ ︷︷ ︸
Boolean conditions overVar

×Act× Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: � g:α−−→ �′ denotes
(
�, g, α, �′

) ∈ −→

c© JPK 21

Beverage vending machine

• Loc = { start , select } with Loc0 = { start }

• Act = { bget , sget , coin, ret coin, refill }

• Var = {nsprite, nbeer } with domain { 0, 1, . . . ,max }

•
Effect(coin, η) = η

Effect(ret coin, η) = η

Effect(sget, η) = η[nsprite := nsprite−1]

Effect(bget, η) = η[nbeer := nbeer−1]

Effect(refill , η) = [nsprite := max , nbeer := max]

• g0 = (nsprite = max ∧ nbeer = max)

c© JPK 22

From program graphs to transition systems

• Basic strategy: unfolding

– state = location (current control) � + data valuation η

– initial state = initial location satisfying the initial condition g0

• Propositions and labeling

– propositions: “at �” and “x ∈ D” for D ⊆ dom(x)

– 〈�, η〉 is labeled with “at �” and all conditions that hold in η

• � g:α−−−→ �′ and g holds in η then 〈�, η〉 α−−→〈�′,Effect(α, η)〉

c© JPK 23

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,−→, Loc0, g0)

over set Var of variables is the tuple (S,Act,−→, I,AP, L) where

• S = Loc× Eval(Var)

• −→⊆ S ×Act× S is defined by the rule:
� g:α−−−→ �′ ∧ η |= g

〈�, η〉 α−−→〈�′,Effect(α, η)〉

• I = {〈�, η〉 | � ∈ Loc0, η |= g0}

• AP = Loc ∪ Cond(Var) and L(〈�, η〉) = {�} ∪ {g ∈ Cond(Var) | η |= g}.
c© JPK 24

start

select

startstart

selectselect

start
startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coincoincoin

bget

sget

coincoin

sget

bget

spritebeer

bget

sget

bget

sget

coinret coin

refill

refill refill

c© JPK 25

Content of this lecture

• Introduction

– why model checking?, how to model check?

• Transition systems

– paths, traces, program graphs

⇒ Linear time properties

– safety, liveness, decomposition

• Fairness

– unconditional, strong and weak fairness

c© JPK 26

Linear-time properties

• Linear-time properties specify the traces that a TS must exhibit

– LT-property specifies the admissible behaviour of the system

– later, a logical formalism will be introduced for specifying LT properties

• A linear-time property (LT property) over AP is a subset of
(
2AP

)ω
– finite words are not needed, as it is assumed that there are no terminal states

• TS (over AP) satisfies LT-property P (over AP):

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its “observable” behaviors are admissible

c© JPK 27

Semaphore-based mutual exclusion

wait1

crit1

noncrit1

y := y+1

y := y−1
y > 0 :

wait2

crit2

noncrit2

y := y+1

y := y−1
y > 0 :

PG1 : PG2 :

y=0 means “lock is currently possessed”; y=1 means “lock is free”

c© JPK 28

Transition system

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉
y := y−1

y := y−1

y := y+1

y := y+1

c© JPK 29

How to specify mutual exclusion?

“Always at most one process is in its critical section”

• Let AP = { crit1, crit2 }
– other atomic propositions are not of any relevance for this property

• Formalization as LT property

Pmutex = set of infinite words A0 A1 A2 . . . with { crit1, crit2 } �⊆ Ai for all 0 � i

• Contained in Pmutex are e.g., the infinite words:

{ crit1 } { crit2 } { crit1 } { crit2 } { crit1 } { crit2 } . . . and

∅∅∅∅∅∅∅ . . .

– this does not apply to words of the form: { crit1 }∅ { crit1, crit2 } . . .

Does the semaphore-based algorithm satisfy Pmutex?

c© JPK 30

Does the semaphore-based algorithm satisfy Pmutex?

〈n1, n2, y=1〉
∅

〈w1, n2, y=1〉
∅

〈n1, w2, y=1〉
∅

〈c1, n2, y=0〉 { crit1 } 〈w1, w2, y=1〉
∅

〈n1, c2, y=0〉{ crit2 }

〈c1, w2, y=0〉{ crit1 } 〈w1, c2, y=0〉 { crit2 }

Yes as there is no reachable state labeled with { crit1, crit2 }

c© JPK 31

How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able to do so‘”

• Let AP = {wait1, crit1,wait2, crit2 }

• Formalization as LT-property

Pnostarve = set of infinite words A0 A1 A2 . . . such that:

(∞
∃ j. waiti ∈ Aj

)
⇒

(∞
∃ j. criti ∈ Aj

)
for each i ∈ { 1, 2 }

∞
∃ stands for “there are infinitely many”.

Does the semaphore-based algorithm satisfy Pnostarve?

c© JPK 32

No. The trace

∅ {wait2 } {wait1,wait2 } { crit1,wait2 }
{wait2 } {wait1,wait2 } { crit1,wait2 } . . .

is a possible trace of the transition system but not in Pnostarve

c© JPK 33

Trace equivalence and LT properties

For TS and TS′ be transition systems (over AP):

Traces(TS) ⊆ Traces(TS′)

if and only if

for any LT property P : TS′ |= P implies TS |= P

Traces(TS) = Traces(TS′)

if and only if

TS and TS′ satisfy the same LT properties

c© JPK 34

Invariants

• LT property Pinv over AP is an invariant if it has the form:

Pinv =
{
A0A1A2 . . . ∈

(
2AP

)ω | ∀j � 0. Aj |= Φ
}

– where Φ is a propositional logic formula Φ over AP

– Φ is called an invariant condition of Pinv

• Note that

TS |= Pinv iff trace(π) ∈ Pinv for all paths π in TS

iff L(s) |= Φ for all states s that belong to a path of TS

iff L(s) |= Φ for all states s ∈ Reach(TS)

• Φ has to be fulfilled by all initial states and

– satisfaction of Φ is invariant under all transitions in the reachable fragment of TS

c© JPK 35

Safety properties

• Safety properties may impose requirements on finite path fragments

– and cannot be verified by considering the reachable states only

• A safety property which is not an invariant:

– consider a cash dispenser, also known as automated teller machine (ATM)

– property “money can only be withdrawn once a correct PIN has been provided”

⇒ not an invariant, since it is not a state property

• But a safety property:

– any infinite run violating the property has a finite prefix that is “bad”

– i.e., in which money is withdrawn without issuing a PIN before

c© JPK 36

Safety properties

• LT property Psafe over AP is a safety property if

– for all σ ∈
(
2AP

)ω

\ Psafe there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP

)ω

| σ̂ is a prefix of σ′
}

= ∅

• Path fragment σ̂ is a bad prefix of Psafe

– let BadPref(Psafe) denote the set of bad prefixes of Psafe

• Path fragment σ̂ is a minimal bad prefix for Psafe:

– if σ̂ ∈ BadPref(Psafe) and no proper prefix of σ̂ is in BadPref(Psafe)

c© JPK 37

Example safety properties

c© JPK 38

Safety properties and finite traces

For transition system TS without terminal states

and safety property Psafe:

TS |= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

c© JPK 39

Closure

• For trace σ ∈ (
2AP

)ω
, let pref(σ) be the set of finite prefixes of σ:

pref(σ) = { σ̂ ∈ (
2AP

)∗ | σ̂ is a finite prefix of σ }

– if σ = A0 A1 . . . then pref(σ) =
{
ε,A0,A0A1,A0A1A2, . . .

}

• For property P we have: pref(P) =
⋃

σ∈P pref(σ)

• The closure of LT property P :

closure(P) =
{
σ ∈ (

2AP
)ω | pref(σ) ⊆ pref(P)

}

– the set of infinite traces whose finite prefixes are also prefixes of P , or

– infinite traces in the closure of P do not have a prefix that is not a prefix of P

c© JPK 40

Safety properties and closures

For any LT property P over AP:

P is a safety property if and only if closure(P) = P

c© JPK 41

Why liveness?

• Safety properties specify that “something bad never happens”

• Doing nothing easily fulfills a safety property

– as this will never lead to a “bad” situation

⇒ Safety properties are complemented by liveness properties

– that require some progress

• Liveness properties assert that:

– ”something good” will happen eventually [Lamport 1977]

c© JPK 42

The meaning of liveness

[Lamport 2000]

The question of whether a real system satisfies a liveness property
is meaningless; it can be answered only by observing the system for

an infinite length of time, and real systems don’t run forever.

Liveness is always an approximation to the property we really care about.
We want a program to terminate within 100 years, but proving that it does

would require addition of distracting timing assumptions.

So, we prove the weaker condition that the program eventually terminates.
This doesn’t prove that the program will terminate within our lifetimes,

but it does demonstrate the absence of infinite loops.

c© JPK 43

Liveness properties

LT property Plive over AP is a liveness property whenever

pref(Plive) =
(
2AP

)∗

• A liveness property is an LT property

– that does not rule out any prefix

• Liveness properties are violated in “infinite time”

– whereas safety properties are violated in finite time

– finite traces are of no use to decide whether P holds or not

– any finite prefix can be extended such that the resulting infinite trace satisfies P

c© JPK 44

Liveness properties for mutual exclusion

• Eventually:

– each process will eventually enter its critical section

• Repeated eventually:

– each process will enter ist critical section infinitely often

• Starvation freedom:

– each waiting process will eventually enter its critical section

c© JPK 45

Safety vs. liveness

• Are safety and liveness properties disjoint? Yes

• Is any linear-time property a safety or liveness property? No

• But:

for any LT property P an equivalent LT property P ′ exists

which is a conjunction of a safety and a liveness property

c© JPK 46

A non-safety and non-liveness property

“the machine provides infinitely often beer

after initially providing sprite three times in a row”

• This property consists of two parts:

– it requires beer to be provided infinitely often

⇒ as any finite trace fulfills this, it is a liveness property

– the first three drinks it provides should all be sprite

⇒ bad prefix = one of first three drinks is beer; this is a safety property

• Property is thus a conjunction of a safety and a liveness property

does this apply to all such properties?

c© JPK 47

Decomposition theorem

For any LT property P over AP there exists

a safety property Psafe and a liveness property Plive

(both over AP) such that:

P = Psafe ∩ Plive

Proposal: P = closure(P)︸ ︷︷ ︸
=Psafe

∩
(
P ∪

((
2AP

)ω

\ closure(P)
))

︸ ︷︷ ︸
=Plive

c© JPK 48

Classification of LT properties

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

liveness properties

neither liveness
nor safety properties

invariants

safety properties

safety and liveness property

(2AP)ω

c© JPK 49

Content of this lecture

• Introduction

– why model checking?, how to model check?

• Transition systems

– paths, traces, program graphs

• Linear time properties

– safety, liveness, decomposition

⇒ Fairness

– unconditional, strong and weak fairness

c© JPK 50

Does this program always terminate?

Inc |||Reset

where

proc Inc = while 〈x � 0 do x := x+ 1 〉 od
proc Reset = x := −1

x is a shared integer variable that initially has value 0

c© JPK 51

Is it possible to starve?

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel
rel

c© JPK 52

Process two starves

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel
rel

Is it fair that process two has infinitely many possibilities

to enter the critical section, but never enters it?

c© JPK 53

Process two starves

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel
rel

Is it fair that process two has infinitely many possibilities

to enter the critical section, but only enters it finitely often?

c© JPK 54

Fairness

• Starvation freedom is often considered under process fairness

⇒ there is a fair scheduling of the execution of processes

• Fairness is typically needed to prove liveness

– to prove some form of progress, progress needs to be possible

• Fairness is concerned with a fair resolution of nondeterminism

– such that it is not biased to consistently ignore a possible option

• Problem: liveness properties constrain infinite behaviours

– but some traces—that are unfair—refute the liveness property

c© JPK 55

Fairness constraints

• What is wrong with our examples? Nothing!

– interleaving: not realistic as in no processor is infinitely faster than another

– semaphore-based mutual exclusion: level of abstraction

• Rule out “unrealistic” executions by imposing fairness constraints

– what to rule out? ⇒ different kinds of fairness constraints

• “A process gets its turn infinitely often”

– always unconditional fairness

– if it is enabled infinitely often strong fairness

– if it is continuously enabled from some point on weak fairness

c© JPK 56

Fairness

This program terminates under unconditional (process) fairness:

proc Inc = while 〈x � 0 do x := x+ 1 〉 od
proc Reset = x := −1

x is a shared integer variable that initially has value 0

c© JPK 57

Fairness constraints

For TS = (S, Act,→, I,AP, L) without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−−→ s1

α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever: true =⇒ ∀k � 0. ∃j � k. αj ∈ A︸ ︷︷ ︸
infinitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k � 0. ∃j � k. Act(sj) ∩ A �= ∅)︸ ︷︷ ︸
infinitely often A is enabled

=⇒ ∀k � 0. ∃j � k. αj ∈ A︸ ︷︷ ︸
infinitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k � 0. ∀j � k. Act(sj) ∩ A �= ∅)︸ ︷︷ ︸
A is eventually always enabled

=⇒ ∀k � 0. ∃j � k. αj ∈ A︸ ︷︷ ︸
infinitely often A is taken

where Act(s) =
{
α ∈ Act | ∃s′ ∈ S. s α−−→ s′

}

c© JPK 58

Example (un)fair executions

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel

rel

rel
rel

c© JPK 59

Which fairness notion to use?

• Fairness constraints aim to rule out “unreasonable” runs

• Too strong? ⇒ relevant computations ruled out

verification yields:

– “false”: error found

– “true”: don’t know as some relevant execution may refute it

• Too weak? ⇒ too many computations considered

verification yields:

– “true”: property holds

– “false”: don’t know, as refutation maybe due to some unreasonable run

often a combination of several fairness constraints is used

c© JPK 60

Fairness assumptions

• A fairness assumption for Act is a triple

F = (Fucond ,Fstrong ,Fweak)

with Fucond ,Fstrong ,Fweak ⊆ 2Act

• Execution ρ is F -fair if:

– it is unconditionally A-fair for all A ∈ Fucond , and

– it is strongly A-fair for all A ∈ Fstrong , and

– it is weakly A-fair for all A ∈ Fweak

fairness assumption (∅,F′,∅) denotes strong fairness; (∅,∅,F′) weak, etc.

c© JPK 61

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F = (∅,
{
{ enter1, enter2 }

}
︸ ︷︷ ︸

Fstrong

,∅)

c© JPK 62

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F′ = (∅,
{
{ enter1 }, { enter2 }

}
︸ ︷︷ ︸

Fstrong

,∅)

c© JPK 63

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F′′ =
(
∅,

{
{ enter1 }, { enter2 }

}
︸ ︷︷ ︸

Fstrong

,
{
{ req1 }, { req2 }

}
︸ ︷︷ ︸

Fweak

)

in any F′′-fair execution each process infinitely often requests access

c© JPK 64

Fair paths and traces

• Path s0−→ s1−→ s2 . . . is F-fair if

– there exists an F -fair execution s0
α1−−→ s1

α2−−→ s2 . . .

– FairPathsF(s) denotes the set of F -fair paths that start in s

– FairPathsF(TS) =
⋃

s∈I FairPathsF(s)

• Trace σ is F -fair if there exists an F-fair path π with trace(π) = σ

– FairTracesF(s) = trace(FairPathsF(s))
– FairTracesF(TS) = trace(FairPathsF(TS))

c© JPK 65

Fair satisfaction

• TS satisfies LT-property P :

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its observable behaviors are admissible

• TS fairly satisfies LT-property P wrt. fairness assumption F :

TS |=F P if and only if FairTracesF(TS) ⊆ P

– if all paths in TS are F -fair, then TS |=F P if and only if TS |= P

– if some path in TS is not F -fair, then possibly TS |=F P but TS �|= P

c© JPK 66

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

TS �|= “every process enters its critical section infinitely often”

and TS �|=F′ “every . . . often”

but TS |=F′′ “every . . . often”

c© JPK 67

Fairness and safety properties

For TS and safety property Psafe (both over AP)

suhc that for any s ∈ Reach(TS): FairPathsF(s) �= ∅:

TS |= Psafe if and only if TS |=F Psafe

Safety properties are thus preserved by “realizable” fairness assumptions

c© JPK 68

