Transition Systems and Linear-Time Properties
Lecture #1 of Principles of Model Checking

Joost-Pieter Katoen
Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 4, 2012

© JPK

Model checking

e Automated model-based verification and debugging technique

— model of system = Kripke structure = labeled transition system
— properties expressed in temporal logic like LTL or CTL
— provides counterexamples in case of property refutation

e Various striking examples

— Needham-Schroeder security protocol, storm surge barrier, C code

e 2008: Pioneers awarded prestigious ACM Turing Award

© JPK 1

Course topics

e Transition systems and linear-time properties

— traces, safety, liveness, fairness

e Verifying regular linear-time properties

— omega-regular languages, Buchi automata, nested depth-first search

e LTL model checking

— syntax, semantics, automata, model-checking algorithm

e CTL model checking

— syntax, semantics, CTL versus LTL, model-checking algorithm

© JPK 2

Course topics

e Abstraction

— stutter (bi)simulation, LTL/CTL equivalence, minimisation algorithms

e Partial-order reduction

— independence, ample sets, dynamic POR

e Probabilistic model checking

— Markov chains, reachability probabilities

© JPK 3

Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany,
and

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

University of Twente, the Netherlands

“This book offers one of the most comprehensive introductions to logic model checking techniques available
today. The authors have found a way to explain both basic concepts and foundational theory thoroughly and
in crystal clear prose. Highly recommended for anyone who wants to learn about this important new field, or

brush up on their knowledge of the current state of the art.”

(Gerard J. Holzmann, NASA JPL, Pasadena)

© JPK 4

Content of this lecture

Introduction

— why model checking?, how to model check?

Transition systems

— paths, traces, program graphs

Linear time properties

— safety, liveness, decomposition

Fairness

— unconditional, strong and weak fairness

© JPK

Content of this lecture

= |Introduction

— why model checking?, how to model check?

e T[ransition systems

— paths, traces, program graphs

e Linear time properties

— safety, liveness, decomposition

e Fairness

— unconditional, strong and weak fairness

© JPK 6

Catching software bugs: the sooner, the better

Analysis Cgr;ggp;ual Programming Unit Testing | System Testing | Operation
50% - 125
. detected
introduced)
n 0 errors (in %) cost of
40% errors (in %) correction 10
per error
(in 1,000 US $)
30% T 7o
20% 15
10% - 125
0% | | 0

Time (non-linear)

© JPK

Milestones in formal verification

e Mathematical approach towards program correctness (Turing, 1949)

e Syntax-based technique for sequential programs (Hoare, 1969)

— for a given input, does a computer program generate the correct output?
— based on compositional proof rules expressed in predicate logic

e Syntax-based technique for concurrent programs (Pnueli, 1977)

— can handle properties referring to situations during the computation
— based on proof rules expressed in temporal logic

e Automated verification of concurrent programs (Emerson & Clarke, 1981)

— model-based instead of proof-rule based approach
— does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios

© JPK 8

Model checking overview

o
““not biased towards the

l most probable scenarios’’

Formalizing Modeling

ystem modef———

®Model Checking———

;
ounterexample

insufficien
memory

S | ;
imulation—~(f0Satio

© JPK 9

The model checking process

e Modeling phase

— model the system under consideration
— as a first sanity check, perform some simulations
— formalise the property to be checked

e Running phase

— run the model checker to check the validity of the property in the model

e Analysis phase

— property satisfied? — check next property (if any)
— property violated? —

1. analyse generated counterexample by simulation

2. refine the model, design, or property ... and repeat the entire procedure
— out of memory? — try to reduce the model and try again

© JPK 10

Content of this lecture

e Introduction

— why model checking?, how to model check?

= Transition systems

— paths, traces, program graphs

e Linear time properties

— safety, liveness, decomposition

e Fairness

— unconditional, strong and weak fairness

© JPK 11

Transition systems

e Model to describe the behaviour of systems

e Digraphs where nodes represent states, and edges model transitions

e State:

— the current colour of a traffic light
— the current values of all program variables 4+ the program counter
— the current value of the registers together with the values of the input bits

e Transition: (“state change”)

— a switch from one colour to another
— the execution of a program statement
— the change of the registers and output bits for a new input

© JPK 12

Formal definition

A transition system TS is a tuple (S, Act,—, I, AP, L) where

e S is a set of states

e Act is a set of actions

e — C S X Act X S is a transition relation
e /| C S is a set of initial states

e AP is a set of atomic propositions

o L:S —2%isa labeling function

S and Act are either finite or countably infinite

Notation: s - s’ instead of (s, o, s’) € —

© JPK 13

Paths

e An infinite path fragment 7 is an infinite state sequence:

SpS1S2... such that S; € POSt(SZ'_l) forallz > 0

e Notations for path fragment m = sgs159...:
— first(m) = so = m[0]; let w[j] = s; denote the j-th state of =

— j-th prefix 7[..j5] = s¢ s1...s; and j-th suffix w[j..] = s 541 ..

e A path of TS is an initial, maximal path fragment

— a maximal path fragment cannot be prolonged
— a path fragment is initial if sog € I

e Paths(s) is the set of maximal path fragments 7 with first(m) = s

© JPK 14

A mutual exclusion algorithm

(w1, n2, y=1) ni, wo, y=1

vy e

e

<’LU1, C2, y:O

)

© JPK 15

Traces

e Actions are mainly used to model the (possibility of) interaction

— synchronous or asynchronous communication

e Here, focus on the states that are visited during executions

— the states themselves are not “observable”, but just their atomic propositions

e Traces are sequences of the form L(sg) L(s1) L(s2) ...

— just register the (set of) atomic propositions that are valid along the execution

e For transition systems without terminal states:

w
— traces are infinite words over the alphabet 2AF e, they are in (QAP)

— we will (mostly) assume that there are no terminal states

© JPK 16

Traces

e Let transition system TS = (S, Act, —, I, AP, L) without terminal states

e The trace of path fragment m = sgs1... is trace(mw) = L(sg) L(s1) . ..

— the trace of ™ = sgs1... 8y is trace(mw) = L(sp) L(s1) ... L(sn).

e The set of traces of a set Il of paths: trace(Il) = { trace(w) | m € 11 }

e Traces(s) = trace(Paths(s))

Traces(TS) =

sel

Traces(s)

© JPK

17

Example traces
Let AP = { crity, crity }
Example path:
T = (ny,no,y=1) = (wi,ne,y =1) — (c1,n2,y = 0) —
(ni,mo,y =1) =5 (ny,we,y =1) > (ny1,co,y =0) — ...

The trace of this path is the infinite word:

trace(?T) = @@{critl}@@{cri@}@@{critl}@@{critg}...

The trace of the finite path fragment:
T = (ni,no,y=1) = (wi,no,y =1) = (wy, w2,y = 1) —

(wyi,co,y = 0) = (wi,ne,y = 1) = {c1,n2,y = 0)

trace(?r\) = 03I { Crity } %) { crity }

© JPK 18

Program graphs: A beverage vending machine

“Abstract” transitions:

:cot true:refill
start —UCom s select and start Ty ot ot
it :sget b :bget
select —Prie>0:59¢t o oyt and select —10eer>0:b9¢t o ot
select nsprite=0 N\ nbeer=_0:ret_coin s start
Action Effect on variables
coin
ret_coin
sget nsprite := nsprite — 1
bget nbeer := nbeer — 1
refill nsprite := mazx; nbeer := max

© JPK 19

Some preliminaries

e typed variables with a valuation that assigns values to variables

—eg,n(x) =17 and n(y) = —2

e the set of Boolean conditions over Var

— propositional logic formulas whose propositions are of the form “Z € D"
- (=3 <x<5) A (y=green) AN (z <22)

e effect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)

— e.g.,, @ = x := y+>5 and evaluation n(x) = 17 and n(y) = —2
— Effect(a,n)(z) = n(y) +5 =3, and Effect(a,n)(y) =n(y) = —2

© JPK 20

Program graphs
A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,—, Locy, go) where
e [ocis a set of locations with initial locations Locy C Loc
e Act is a set of actions
e Effect: Act x Eval(Var) — Eval(Var) is the effect function

e — C Locx Cond(Var) xActx Loc, transition relation

VO
Boolean conditions overVar

e go € Cond(Var) is the initial condition.

Notation: ¢ £ ¢’ denotes (6, g, o, E’) e

© JPK 21

Beverage vending machine

e Loc = start, select } with Locy = { start }

o Act = { bget, sget, coin, ret_coin, refill }

o Var= { nsprite, nbeer } with domain {0,1,..., maz }
Effect(coin, n) = 7
Effect(ret_coin,n) = n
® Fffect(sget, n) = n|nsprite := nsprite—1]
Effect(bget, n) = n[nbeer := nbeer—1]
Effect(refill, n) = [nsprite := mazx, nbeer := max]

e gy = (nsprite = max N\ nbeer = maz)

© JPK 22

From program graphs to transition systems

e Basic strategy: unfolding

— state = location (current control) ¢ 4 data valuation 7
— initial state = initial location satisfying the initial condition gg

e Propositions and labeling

— propositions: “at £” and "z € D" for D C dom(x)
— (¢, n) is labeled with “at £” and all conditions that hold in n

o /L= /" and g holds in n then (¢, n) = (¢, Effect(c,n))

© JPK 23

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc, Act, Effect,—, Locy, go)
over set Var of variables is the tuple (S, Act, —, I, AP, L) where
e S = Loc x Eval(Var)

(250 N nEg

C S x Act x S is defined by the rule
o —C S x Act x S is defined by the rule (0, n) 2 (¢, Effect(c,n))

o I ={{{,n)|£¢c Locy,n = go}

e AP = LocU Cond(Var) and L({¢,n)) = {£} U {g € Cond(Var) | n E g}.

© JPK 24

25
© JPK

Content of this lecture

e Introduction

— why model checking?, how to model check?

e Transition systems

— paths, traces, program graphs

= Linear time properties

— safety, liveness, decomposition

e Fairness

— unconditional, strong and weak fairness

© JPK 26

Linear-time properties

e Linear-time properties specify the traces that a TS must exhibit

— LT-property specifies the admissible behaviour of the system
— later, a logical formalism will be introduced for specifying LT properties

e A linear-time property (LT property) over AP is a subset of (QAP)w

— finite words are not needed, as it is assumed that there are no terminal states

e TS5 (over AP) satisfies LT-property P (over AP):

TS= P if and only if Traces(TS) C P

— TS satisfies the LT property P if all its “observable” behaviors are admissible

© JPK 27

Semaphore-based mutual exclusion

PG12 PGQZ

))

£ noncrity } £ noncrity }

[crity } [Crity }

y=0 means “lock is currently possessed”; y=1 means “lock is free"

© JPK 28

Transition system

(n1, ng, y=1)

© JPK 29

How to specify mutual exclusion?

“Always at most one process is in its critical section”

o Let AP = {crity, crity }

— other atomic propositions are not of any relevance for this property
e Formalization as LT property
Putex = set of infinite words Ag Ay As ... with { crity, crity } € A; forall 0 < 4

e Contained in Py, are e.g., the infinite words:

{crity } { crity } { crity } { critac } { crity } {crit } ... and
BSDDIITT. ..

— this does not apply to words of the form: { crit; } @ { crity, crita } . ..

Does the semaphore-based algorithm satisfy P,ie. ?

© JPK 30

N

{ Critl } <Cla w2, y:O>

w1, €2, y:OD{ crity }

as there is no reachable state labeled with { crity, crity }

© JPK 31

How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able to do so™
o Let AP = { waity, crity, waity, crity }

e Formalization as LT-property

P, ostarve = set of infinite words Ag A1 As . . . such that:
(OET j. wait; € A;) = (OET j. crit; € A;) foreachi e {1,2}

oo
3 stands for “there are infinitely many”.

Does the semaphore-based algorithm satisfy P,,starve 7

© JPK 32

No. The trace

& { waity } { waity, waity } { crity, waity }

{ Waitg } { Waitl, Waitg } { Critl, Waitg } ce

is a possible trace of the transition system but not in P, s4ve

© JPK 33

Trace equivalence and LT properties

For TS and TS be transition systems (over AP):

Traces(TS) C Traces(TS)
if and only if
for any LT property P: TS |= P implies TS = P

Traces(TS) = Traces(TS')
if and only if

TS and TS satisfy the same LT properties

© JPK 3

Invariants

e LT property P;,, over AP is an invariant if it has the form:
Pipy = { ApA1As. .. € (2Ap)w ‘ VJ > 0. Aj |:(I) }

— where ® is a propositional logic formula ® over AP
— & is called an invariant condition of P;,,

e Note that

TS = Py, iff trace(w) € Py, for all paths 7 in TS
iff L(s) = & for all states s that belong to a path of TS
iff L(s) |= ® for all states s € Reach(TS)

e ® has to be fulfilled by all initial states and

— satisfaction of ® is invariant under all transitions in the reachable fragment of TS

© JPK 35

Safety properties

e Safety properties may impose requirements on finite path fragments

— and cannot be verified by considering the reachable states only

e A safety property which is not an invariant:

— consider a cash dispenser, also known as automated teller machine (ATM)

— property “money can only be withdrawn once a correct PIN has been provided”
=> not an invariant, since it is not a state property

e But a safety property:

— any infinite run violating the property has a finite prefix that is “bad”
— i.e., in which money is withdrawn without issuing a PIN before

© JPK 36

Safety properties

o LT property P, over AP is a safety property if

w
— for all o € (ZAP) \ Pkqfe there exists a finite prefix & of o such that:
/ AP\ Y | ~ . : p
Ppe N {a € (2) | o is a preflxofa} = O

e Path fragment o is a bad prefix of P,

— let BadPref(Ps,p.) denote the set of bad prefixes of Py

e Path fragment o is a minimal bad prefix for P,

— if & € BadPref(Py,) and no proper prefix of & is in BadPref(Psf.)

© JPK 37

Example safety properties

© JPK 38

Safety properties and finite traces

For transition system TS without terminal states

and safety property Py,

TS = Py if and only if Tracesg,,(TS) N BadPref(Pyype) = @

© JPK

39

Closure

e For trace o € (QAP)w, let pref(c) be the set of finite prefixes of o:
pref(c) = {0 € (2AP)>k | & is a finite prefix of o}
— ifo=AgA ... then pref(c) = {s,Ao,AOAl,AOAlAQ, L }
o For property P we have: pre(P) =, .p pref(o)
e The closure of LT property P:
closure(P) = {o € (2AP)w | preflo) C pref(P)}

— the set of infinite traces whose finite prefixes are also prefixes of P, or
— infinite traces in the closure of P do not have a prefix that is not a prefix of P

© JPK 40

Safety properties and closures

For any LT property P over AP:
P is a safety property if and only if closure(P) = P

© JPK 41

Why liveness?

e Safety properties specify that “something bad never happens”

e Doing nothing easily fulfills a safety property

— as this will never lead to a “bad” situation

= Safety properties are complemented by liveness properties

— that require some progress

e Liveness properties assert that:

— "something good” will happen eventually [Lamport 1977]

© JPK 42

The meaning of liveness

The question of whether a real system satisfies a liveness property
is meaningless; it can be answered only by observing the system for
an infinite length of time, and real systems don’t run forever.

Liveness is always an approximation to the property we really care about.
We want a program to terminate within 100 years, but proving that it does
would require addition of distracting timing assumptions.

So, we prove the weaker condition that the program eventually terminates.
This doesn't prove that the program will terminate within our lifetimes,
[Lamport 2000] but it does demonstrate the absence of infinite loops.

© JPK 43

Liveness properties

LT property Pj,. over AP is a liveness property whenever

pref(Pjiye) = (2AP)*

e A liveness property is an LT property

— that does not rule out any prefix

e Liveness properties are violated in “infinite time”

— whereas safety properties are violated in finite time
— finite traces are of no use to decide whether P holds or not
— any finite prefix can be extended such that the resulting infinite trace satisfies P

© JPK 44

Liveness properties for mutual exclusion

e Eventually:

— each process will eventually enter its critical section

e Repeated eventually:

— each process will enter ist critical section infinitely often

e Starvation freedom:

— each waiting process will eventually enter its critical section

© JPK 45

Safety vs. liveness

e Are safety and liveness properties disjoint?
e |s any linear-time property a safety or liveness property? No

e But:

for any LT property P an equivalent LT property P’ exists

which is a conjunction of a safety and a liveness property

© JPK 46

A non-safety and non-liveness property

“the machine provides infinitely often beer
after initially providing sprite three times in a row”

e This property consists of two parts:

— it requires beer to be provided infinitely often
= as any finite trace fulfills this, it is a liveness property
— the first three drinks it provides should all be sprite
= bad prefix = one of first three drinks is beer; this is a safety property

e Property is thus a conjunction of a safety and a liveness property

does this apply to all such properties?

© JPK 47

Decomposition theorem

a safety property Py.s. and a liveness property P,

For any LT property P over AP there exists

(both over AP) such that:

P = Psafe M Plie

Proposal: P

= closure(P) N (P U ((QAP)W \ c/osure(P)))

2N U J

" safe :]‘Dlrz've

© JPK

48

Classification of LT properties

safety and liveness property
(277)*

safety properties . _

—
—

- - liveness properties

-

—

| __ -~ neither liveness
nor safety properties

invariants

© JPK 49

Content of this lecture

e Introduction

— why model checking?, how to model check?

e T[ransition systems

— paths, traces, program graphs

e Linear time properties

— safety, liveness, decomposition

= Fairness

— unconditional, strong and weak fairness

© JPK 50

Does this program always terminate?

Inc ||| Reset
where
proc Inc = while (x >0do xz:=2x+1) od
proc Reset = z:= —1

x is a shared integer variable that initially has value 0

© JPK 51

Is it possible to starve?

(w1, c2, y=0))

© JPK 52

Process two starves

(n1,n2, y=1)

(w1, c2, y:O>>

Is it fair that process two has infinitely many possibilities
to enter the critical section, but never enters it?

© JPK

53

Process two starves

(n1,n2, y=1)

Is it fair that process two has infinitely many possibilities
to enter the critical section, but only enters it finitely often?

© JPK

54

Fairness

e Starvation freedom is often considered under process fairness

= there is a fair scheduling of the execution of processes

e Fairness is typically needed to prove liveness

— to prove some form of progress, progress needs to be possible

e Fairness is concerned with a fair resolution of nondeterminism

— such that it is not biased to consistently ignore a possible option

e Problem: liveness properties constrain infinite behaviours

— but some traces—that are unfair—refute the liveness property

© JPK 55

Fairness constraints

e What is wrong with our examples? Nothing!

— interleaving: not realistic as in no processor is infinitely faster than another
— semaphore-based mutual exclusion: level of abstraction

e Rule out “unrealistic” executions by imposing fairness constraints

— what to rule out? = different kinds of fairness constraints

e "“A process gets its turn infinitely often”

— always unconditional fairness
— if it is enabled infinitely often strong fairness
— if it is continuously enabled from some point on weak fairness

© JPK 56

Fairness

This program terminates under unconditional (process) fairness:

proc Inc = while (x >0do x:=x+1) od

proc Reset = z:= —1

x is a shared integer variable that initially has value 0

© JPK 57

Fairness constraints

For TS = (S, Act, —, I, AP, L) without terminal states, A C Act,

and infinite execution fragment p = sg —% 51 —5 ... of TS:

1. pis unconditionally A-fair whenever: true — yk 0.d5 2 k. o5 € A

infinitely often A is taken
2. pis strongly A-fair whenever:

(VE>0.3j 2 k. Act(s;) N A#0) — Vk>20.3j>2k o; €A

infinitely often A is enabled infinitely often A is taken

3. pis weakly A-fair whenever:

(3k>0.Vj > kAct(sj)ﬂA#Q) — Vk2>20.3j>2k ;€A

Ais eventually always enabled infinitely often A is taken

where Act(s) = {a € Act|3s' € S.s 2% }

© JPK 58

Example (un)fair executions

((n1, c2,y=0))

(w1, c2, y=0))

© JPK 59

Which fairness notion to use?

e Fairness constraints aim to rule out “unreasonable” runs

e [oo strong? =- relevant computations ruled out

verification yields:
— “false”: error found
— “true”: don't know as some relevant execution may refute it

e [oo weak? = too many computations considered

verification yields:
— “true”: property holds
— “false”: don't know, as refutation maybe due to some unreasonable run

often a combination of several fairness constraints is used

© JPK 60

Fairness assumptions

e A fairness assumption for Act is a triple

F = (Fuconda Fstrongafweak)
with Fucondafstmngafweak C 2ACt

e Execution p is F-fair if:

— it is unconditionally A-fair for all A € Fcond, and
— it is strongly A-fair for all A € Fong, and
— it is weakly A-fair for all A € Fear

fairness assumption (&, F', @) denotes strong fairness; (@, @, F') weak, etc.

© JPK 61

Fairness for mutual exclusion

@Cl, noy, yzOD @nl, 2, y:OD

reqo
reqiq

<Cl7 w2, Y= <’lU1, c2, y:())

© JPK 62

Fairness for mutual exclusion

@Cl, noy, yzOD @nl, 2, y:OD

reqo
reqiq

<Cl7 w2, Y= <’lU1, c2, y:())

F = (@, i{ enter; }, { entery }}J) o)

N
F strong

© JPK 63

Fairness for mutual exclusion

@nl, c2, y:OD

%

<’UJ1,CQ,y:O)
F' = (@, {{ enter; }, { enter }}, {{ req, }, { reg }}>
fs?rrong }—;‘;ak

. 1/ . . . e
in any JF'-fair execution each process infinitely often requests access

© JPK oa

Fair paths and traces

e Path so — sy —so...1s F-fairif

— there exists an F-fair execution sg —L 81 —25 S5
— FairPathsz(s) denotes the set of F-fair paths that start in s
— FairPathsy(TS) = U, FairPathsz(s)

e Trace o is F-fair if there exists an F-fair path 7 with trace(w) = o

— FairTracesr(s) = trace(FairPathsz(s))
— FairTracesr(TS) = trace(FairPathsz(TS))

© JPK 65

Fair satisfaction

e TS satisfies LT-property P:
TS P if and only if Traces(TS) C P
— TS satisfies the LT property P if all its observable behaviors are admissible
e TS fairly satisfies LT-property P wrt. fairness assumption F:
TSE=x P ifand only if FairTracesz(TS) C P

— if all paths in TS are F-fair, then TS |=x P if and only if TS |= P
— if some path in TS is not F-fair, then possibly TS = P but TS & P

© JPK

66

Fairness for mutual exclusion

@Cl, no, yzOD @nl, 2, y:OD

reqo
reqiq

<Cl7 w2, Y= <’lU1, c2, y:())

TS [~ "every process enters its critical section infinitely often”

and TS [~ “every ... often”

but TS =21 “every ... often”

© JPK p

Fairness and safety properties

For TS and safety property P (both over AP)
suhc that for any s € Reach(TS): FairPathsr(s) # ©:
TS = Py ifandonlyif TS =7 Py

Safety properties are thus preserved by “realizable” fairness assumptions

© JPK

68

