
Verifying Regular Linear-Time Properties
Lecture #2 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 5, 2012

c© JPK

Content of this lecture

• Automata on finite words

– refresh your memory

• Verifying regular safety properties

– product construction, counterexamples

• Automata on infinite words

– (generalised) Büchi automata, ω-regular languages

• Verifying ω-regular properties

– nested depth first search

c© JPK 1

Content of this lecture

⇒ Automata on finite words

– refresh your memory

• Verifying regular safety properties

– product construction, counterexamples

• Automata on infinite words

– (generalised) Büchi automata, ω-regular languages

• Verifying ω-regular properties

– nested depth first search

c© JPK 2

Refresh your memory: Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q,Σ, δ, Q0, F) where:

• Q is a finite set of states

• Σ is an alphabet

• δ : Q× Σ → 2Q is a transition function

• Q0 ⊆ Q a set of initial states

• F ⊆ Q is a set of accept (or: final) states

q0 q1 q2

A

B

B

A

B

c© JPK 3

Language of an NFA

• NFA A = (Q,Σ, δ,Q0, F) and word w = A1 . . .An ∈ Σ∗

• An accepted run for w in A is a finite sequence q0 q1 . . . qn such that:

– q0 ∈ Q0 and qi
Ai+1−−−−→ qi+1 for all 0 � i < n, and qn ∈ F

• w ∈ Σ∗ is accepted by A if there exists an accepting run for w

• L(A) =
{
w ∈ Σ∗ | there exists an accepting run for w in A }

• NFA A and A′ are equivalent if L(A) = L(A′)

c© JPK 4

Facts about finite automata

• They are as expressive as regular languages

• They are closed under ∩ and complementation

– NFA A ⊗ B (= cross product) accepts L(A) ∩ L(B)

– Total DFA A (= swap all accept and normal states) accepts L(A) = Σ∗ \ L(A)

• They are closed under determinization (= removal of choice)

– although at an exponential cost.....

• L(A) = ∅? = check for a reachable accept state in A
– this can be done using a simple depth-first search

• For regular language L there is a unique minimal DFA accepting L

c© JPK 5

Content of this lecture

• Automata on finite words

– refresh your memory

⇒ Verifying regular safety properties

– product construction, counterexamples

• Automata on infinite words

– (generalised) Büchi automata, ω-regular languages

• Verifying ω-regular properties

– nested depth first search

c© JPK 6

Safety properties

• LT property Psafe over AP is a safety property if

– for all σ �∈ Psafe there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP

)ω

| σ̂ ∈ pref(σ)
}

= ∅

• The set BadPref of bad prefixes for Psafe:

BadPref(Psafe) =
(
2AP

)∗
\ pref(Psafe)

• The set MinBadPref of minimal bad prefixes for Psafe:

MinBadPref(Psafe) = {σ ∈
(
2
AP

)∗
| pref(σ) ∩ BadPref(Psafe) = {σ } }

c© JPK 7

Regular safety properties

• Definition:

Safety property Psafe is regular if BadPref(Psafe) is a regular language

• Or, equivalently:

Safety property Psafe is regular if there exists

a finite automaton over the alphabet 2AP recognizing BadPref(Psafe)

c© JPK 8

Some regular safety properties

• Every invariant (over AP) is a regular safety property

– bad prefixes have form Φ∗(¬Φ)true∗ for invariant condition Φ

– . . . where Φ stands for any A ⊆ AP with A |= Φ

• A regular safety property which is not an invariant:

“a red light is immediately preceded by a yellow light”

• A non-regular safety property:

“the number of inserted coins is at least the number of dispensed drinks”

c© JPK 9

Peterson’s banking system

Person Left behaves as follows:

while true {
.

rq : b1, x = true, 2;

wt : wait until(x == 1 || ¬ b2) {
cs : . . .@accountL . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {
.

rq : b2, x = true, 1;

wt : wait until(x == 2 || ¬ b1) {
cs : . . .@accountR . . .}

b2 = false;

.

}

c© JPK 10

Is the banking system safe?

x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Can we guarantee that only one person at a time has access to the bank account?

“always ¬ (@accountL ∧ @accountR)”

c© JPK 11

Is the banking system safe?

• Safe = at most one person may have access to the account

• Unsafe: two persons have access to the account simultaneously

– unsafe behaviour can be characterized by bad prefix

– alternatively (in this case) by the finite automaton:

@accountL∧@accountR

¬ (@accountL
∧@accountR)

• Traces(TSPet) ∩ BadPref(Psafe) = ∅?

– intersection, complementation and emptiness of languages . . .

c© JPK 12

Problem statement

Let

• Psafe be a regular safety property over AP

• A be an NFA recognizing the bad prefixes of Psafe

– assume that ε /∈ L(A)

⇒ otherwise all finite words over 2AP are bad prefixes and Psafe = ∅

• TS be a finite transition system (over AP) without terminal states

How to establish whether TS |= Psafe?

c© JPK 13

Basic idea of the algorithm

TS |= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

if and only if Tracesfin(TS) ∩ L(A) = ∅

if and only if TS⊗A |= “always” Φ

But this amounts to invariant checking on TS ⊗ A
⇒ checking regular safety properties can be done by depth-first search!

c© JPK 14

Synchronous product

For transition system TS = (S,Act,→, I,AP, L) without terminal states
and A = (Q,Σ, δ,Q0, F) an NFA with Σ = 2AP and Q0 ∩ F = ∅, let:

TS⊗A = (S′,Act,→ ′, I ′,AP′, L′) where

• S′ = S ×Q, AP′ = Q and L′(〈s, q〉) = { q }

• → ′ is the smallest relation defined by:
s α−−→ t ∧ q

L(t)−−−→ p

〈s, q〉 α−−→′ 〈t, p〉

• I ′ = { 〈s0, q〉 | s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−→ q }

without loss of generality it may be assumed that TS ⊗ A has no terminal states

c© JPK 15

Example product

sr { red }

sy { yellow } sry

∅

sg

∅

q0

q1 qF

red

yellow ∧ ¬red

¬yellow

¬red ∧ ¬yellow

〈sg, q0〉 〈sry, q0〉

〈sy, q1〉 〈sr, q0〉

yellow

c© JPK 16

Verification of regular safety properties

Let TS over AP, NFA A, and P a regular safety property with L(A) = BadPref(P)

The following statements are equivalent:

(a) TS |= P

(b) Tracesfin(TS) ∩ L(A) = ∅

(c) TS ⊗ A |= Pinv(A) =
∧

q∈F ¬ q

c© JPK 17

Counterexamples

For each initial path fragment 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ⊗ A:

q1, . . . , qn �∈ F and qn+1 ∈ F ⇒ trace(s0 s1 . . . sn)︸ ︷︷ ︸
bad prefix for Psafe

∈ L(A)

c© JPK 18

Time complexity

The time and space complexity of checking TS |= Psafe is in:

O(|TS| · |A|)
where A is an NFA with L(A) = MinBadPref(Psafe)

c© JPK 19

Content of this lecture

• Automata on finite words

– refresh your memory

• Verifying regular safety properties

– product construction, counterexamples

⇒ Automata on infinite words

– (generalised) Büchi automata, ω-regular languages

• Verifying ω-regular properties

– nested depth first search

c© JPK 20

Peterson’s banking system

Person Left behaves as follows:

while true {
.

rq : b1, x = true, 2;

wt : wait until(x == 1 || ¬ b2) {
cs : . . .@accountL . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {
.

rq : b2, x = true, 1;

wt : wait until(x == 2 || ¬ b1) {
cs : . . .@accountR . . .}

b2 = false;

.

}

c© JPK 21

Is the banking system live?

x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

If someone wants to update the account, does he ever get the opportunity to do so?

“always (reqL ⇒ eventually @accountL) ∧ always (reqR ⇒ eventually @accountR)”

c© JPK 22

Is the banking system live?

• Live = when you want access to account, you eventually get it

• Not live: once you want access to the account, you never get it

– unlive behaviour can be characterized as a (set of) infinite traces

– or, equivalently, by a Büchi-automaton Live:

¬@account

@account

true true

req

• Checking liveness: Traces(TSPet) ∩ Lω(Live) = ∅?

– (explicit) complementation, intersection and emptiness of Büchi automata!

c© JPK 23

Regular expressions

• Let Σ be an alphabet with A ∈ Σ

• Regular expressions over Σ have syntax:

E ::= ∅ | ε | A | E+ E′ | E.E′ | E∗

• The semantics of regular expression E is a language L(E) ⊆ Σ∗:

L(∅) = ∅, L(ε) = { ε }, L(A) = {A }

L(E+E′) = L(E) ∪ L(E′) L(E.E′) = L(E).L(E′) L(E∗) = L(E)∗

c© JPK 24

Syntax of ω-regular expressions

• Regular expressions denote languages of finite words

• ω-Regular expressions denote languages of infinite words

• An ω-regular expression G over Σ has the form:

G = E1.F
ω
1 + . . . + En.F

ω
n for n > 0

where Ei,Fi are regular expressions over Σ with ε /∈ L(Fi)

• Some examples: (A+B)∗.Bω, (B∗.A)ω, and A∗.Bω +Aω

c© JPK 25

Semantics of ω-regular expressions

• For L ⊆ Σ∗ let Lω = {w1w2w3 . . . | ∀i � 0.wi ∈ L}

• Let ω-regular expression G = E1.F
ω
1 + . . . + En.F

ω
n

• The semantics of G is a language L(G) ⊆ Σω:

Lω(G) = L(E1).L(F1)
ω ∪ . . . ∪ L(En).L(Fn)

ω

• G1 and G2 are equivalent, denoted G1 ≡ G2, if Lω(G1) = Lω(G2)

c© JPK 26

ω-Regular languages

• L is ω-regular if L = Lω(G) for some ω-regular expression G

• Examples over Σ = {A,B }:
– language of all words with infinitely many As:

(B∗.A)ω

– language of all words with finitely many As:

(A + B)
∗
.B

ω

– the empty language

∅
ω

• ω-Regular languages are closed under ∪, ∩, and complementation

c© JPK 27

ω-regular properties

• Definition:

LT property P over AP is ω-regular if

P is an ω-regular language over the alphabet 2AP

• Or, equivalently:

LT property P over AP is ω-regular if P is a language

accepted by a nondeterministic Büchi automaton over 2AP

c© JPK 28

Example ω-regular properties

• Any invariant P is an ω-regular property

– as Φω describes P with invariant condition Φ

• Any regular safety property P is an ω-regular property

– as P = BadPref(P).
(
2AP

)ω

is ω-regular

– and the fact that ω-regular languages are closed under complement

• Many liveness properties P are ω-regular properties

c© JPK 29

Nondeterministic Büchi automata

• NFA (and DFA) are incapable of accepting infinite words

• Automata on infinite words

– suited for accepting ω-regular languages

– we consider nondeterministic Büchi automata (NBA)

• Accepting runs have to “check” the entire input word ⇒ are infinite

⇒ acceptance criteria for infinite runs are needed

• NBA are like NFA, but have a distinct acceptance criterion

– one of the accept states must be visited infinitely often

c© JPK 30

Language of an NBA

• NBA A = (Q,Σ, δ,Q0, F) and word σ = A0A1A2 . . . ∈ Σω

• An accepted run for σ in A is an infinite sequence q0 q1 q2 . . . such that:

– q0 ∈ Q0 and qi
Ai+1−−−−→ qi+1 for all 0 � i, and

– qi ∈ F for infinitely many i

• σ ∈ Σω is accepted by A if there exists an accepting run for σ

• The accepted language of A:

Lω(A) =
{
σ ∈ Σω | there exists an accepting run for σ in A }

• NBA A and A′ are equivalent if Lω(A) = Lω(A′)

c© JPK 31

NBA versus NFA

A

A

A
A

A2A1

finite equivalence �⇒ ω-equivalence

L(A) = L(A′), but Lω(A) �= Lω(A′)

A

A

A2

A

A

A1

ω-equivalence �⇒ finite equivalence

Lω(A) = Lω(A′), but L(A) �= L(A′)

c© JPK 32

NBA and ω-regular languages

The class of languages accepted by NBA

agrees with the class of ω-regular languages

(1) any ω-regular language is recognized by an NBA

(2) for any NBA A, the language Lω(A) is ω-regular

c© JPK 33

For any ω-regular language there is an NBA

• How to construct an NBA for the ω-regular expression:

G = E1.F
ω
1 + . . . + En.F

ω
n ?

where Ei and Fi are regular expressions over alphabet Σ with ε �∈ Fi

• Use operators on NBA mimicking operators on ω-regular expressions:

(1) for NBA A1 and A2 there is an NBA accepting Lω(A1) ∪ Lω(A2)

(2) for any regular language L with ε /∈ L there is an NBA accepting Lω

(3) for regular language L and NBA A′ there is an NBA accepting L.Lω(A′)

• We will discuss these three operators in detail

c© JPK 34

Definition of ω-operator for NFA

• Let A = (Q,Σ, δ, Q0, F) be an NFA with ε /∈ L(A).

• Assume no initial state in A has incoming transitions and Q0 ∩ F = ∅

– otherwise introduce a new initial state qnew �∈ F

– let qnew
A−→ q iff q0

A−→ q for some q0 ∈ Q0

– keep all transitions in A

• Construct an NBA A′ = (Q,Σ, δ′, Q′
0, F

′) as follows

– if q A−→ q′ ∈ F then add q A−→ q0 for any q0 ∈ Q0

– keep all transitions in A
– Q′

0 = Q0 and F ′ = Q0.

c© JPK 35

Example for ω-operator for NFA

q1q0
B

A

qnew q0 q1

A

A B

B

qnew q0

A

A
q1

B

B

B

B

From an NFA accepting A∗B to an NBA accepting (A∗B)ω

c© JPK 36

Extended transition function

Extend the transition function δ to δ∗ : Q× Σ∗ → 2Q by:

δ∗(q, ε) = { q } and δ∗(q,A) = δ(q,A)

δ∗(q,A1A2 . . .An) =
⋃

p∈δ(q,A1)
δ∗(p,A2 . . .An)

δ∗(q,w) = set of states reachable from q for the word w

c© JPK 37

Checking non-emptiness

Lω(A) �= ∅

if and only if

∃q0 ∈ Q0. ∃q ∈ F. ∃w ∈ Σ∗. ∃v ∈ Σ+. q ∈ δ∗(q0,w) ∧ q ∈ δ∗(q, v)︸ ︷︷ ︸
there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved in O(|A|)

c© JPK 38

NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are not!

There is no DBA that accepts Lω((A+ B)∗Bω)

c© JPK 39

An LT property requiring nondeterminism

q0 q1 q2a ¬a

true a true

let { a } = AP, i.e., 2AP = {A,B} where A = {} and B = {a}
”eventually for ever a” equals (A + B)∗Bω = ({} + {a})∗{a}ω

c© JPK 40

Generalized Büchi automata

• NBA are as expressive as ω-regular languages

• Variants of NBA exist that are equally expressive

– Muller, Rabin, Streett automata, and eneralized Büchi automata (GNBA)

• GNBA are like NBA, but have a distinct acceptance criterion

– a GNBA requires to visit several sets F1, . . . , Fk (k � 0) infinitely often

– for k=0, all runs are accepting; for k=1 it behaves like an NBA

• GNBA are useful to relate temporal logic and automata

c© JPK 41

Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q,Σ, δ, Q0,F) where:

• Q, Σ, δ and Q0 are as before, and

• F = {F1, . . . , Fk } is a (possibly empty) subset of 2Q

c© JPK 42

Language of a GNBA

• GNBA G = (Q,Σ, δ,Q0,F) and word σ = A0A1A2 . . . ∈ Σω

• A accepted run for σ in G is an infinite sequence q0 q1 q2 . . . such that:

– q0 ∈ Q0 and qi
Ai−−→ qi+1 for all 0 � i, and

– for all F ∈ F : qi ∈ F for infinitely many i

• Lω(G) =
{
σ ∈ Σω | there exists an accepting run for σ in G }

c© JPK 43

Example

q0q1 q2

true

crit2

truecrit1

true

A GNBA for the property ”both processes are infinitely often in their critical section”

F = { { q1 }, { q2 } }

c© JPK 44

From GNBA to NBA

For any GNBA G there exists an NBA A with:

Lω(G) = Lω(A) and |A| = O(|G| · |F|)
where F denotes the set of acceptance sets in G

c© JPK 45

Example

〈q0, 1〉〈q1, 1〉 〈q2, 1〉

true

crit2

true

crit1

〈q1, 2〉 〈q0, 2〉 〈q2, 2〉

true
true

crit1

true crit2

true

c© JPK 46

Content of this lecture

• Automata on finite words

– refresh your memory

• Verifying regular safety properties

– product construction, counterexamples

• Automata on infinite words

– (generalised) Büchi automata, ω-regular languages

⇒ Verifying ω-regular properties

– nested depth first search

c© JPK 47

ω-regular properties

• Definition:

LT property P over AP is ω-regular if

P is an ω-regular language over the alphabet 2AP

• Or, equivalently:

LT property P over AP is ω-regular if P is a language

accepted by a nondeterministic Büchi automaton over 2AP

c© JPK 48

Basic idea of the algorithm

TS �|= P if and only if Traces(TS) �⊆ P

if and only if Traces(TS) ∩ (
2AP

)ω \ P �= ∅

if and only if Traces(TS) ∩ P �= ∅

if and only if Traces(TS) ∩ Lω(A) �= ∅

if and only if TS⊗A �|= “eventually for ever” ¬F︸ ︷︷ ︸
persistence property

where A is an NBA accepting the complement property P =
(
2AP

)ω

\ P

c© JPK 49

Persistence property

A persistence property over AP is an LT property Ppers ⊆
(
2AP

)ω
“eventually for ever Φ” for some propositional logic formula Φ over AP:

Ppers =
{
A0A1A2 . . . ∈

(
2AP

)ω | ∃i � 0. ∀j � i. Aj |= Φ
}

Φ is called a persistence (or state) condition of Ppers

“Φ is an invariant after a while”

c© JPK 50

Example persistence property

q0 q1 q2a ¬a

true a true

let { a } = AP, i.e., 2AP = {A,B} where A = {} and B = {a}
”eventually for ever a” equals (A + B)∗Bω = ({} + {a})∗{a}ω

c© JPK 51

Recall synchronous product

For transition system TS = (S,Act,→, I,AP, L) without terminal states
and A = (Q,Σ, δ,Q0, F) a non-blocking NBA with Σ = 2AP, let:

TS⊗A = (S′,Act,→ ′, I ′,AP′, L′) where

• S′ = S ×Q, AP′ = Q and L′(〈s, q〉) = { q }

• → ′ is the smallest relation defined by:
s α−−→ t ∧ q

L(t)−−−→ p

〈s, q〉 α−−→′ 〈t, p〉

• I ′ = { 〈s0, q〉 | s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−→ q }

c© JPK 52

Verifying ω-regular properties

Let:

• TS be a transition system over AP

• P be an ω-regular property over AP, and

• A a non-blocking NBA such that Lω(A) = P .

The following statements are equivalent:

(a) TS |= P

(b) Traces(TS) ∩ Lω(A) = ∅

(c) TS ⊗ A |= Ppers(A)

where Ppers(A) = “eventually for ever ¬F ”

⇒ checking ω-regular properties is reduced to persistence checking!

c© JPK 53

Persistence checking

• Aim: establish whether TS �|= Ppers = “eventually for ever Φ”

• Let state s be reachable in TS and s �|= Φ

– TS has an initial path fragment that ends in s

• If s is on a cycle

– this path fragment can be continued by an infinite path

– by traversing the cycle containing s infinitely often

⇒ TS may visit the ¬Φ-state s infinitely often and so: TS �|= Ppers

• If not such s is found then: TS |= Ppers

c© JPK 54

Persistence checking and cycle detection

Let

• TS be a finite transition system without terminal states over AP

• Φ a propositional formula over AP, and

• Ppers the persistence property ”eventually for ever Φ”

TS �|= Ppers

if and only if

∃s ∈ Reach(TS). s �|= Φ ∧ s is on a cycle in G(TS)

c© JPK 55

Infinitely often green?

{ green }{ red }

q0 q2

true

q1
¬green green

true¬green

{ q0 }
〈s0, q0〉

{ q1 }
〈s0, q1〉

{ q2 }
〈s0, q2〉

〈s1, q0〉
{ q0 } { q1 }

〈s1, q1〉
{ q2 }
〈s1, q2〉

c© JPK 56

Infinitely often green?

s1

{ green }
s0

{ red }

〈s0, q0〉 { q0 } 〈s0, q1〉 { q1 } 〈s0, q2〉 { q2 }

〈s1, q0〉
{ q0 }

〈s1, q1〉
{ q1 }

〈s1, q2〉
{ q2 }

s2

∅

{ q0 }
〈s2, q0〉

{ q1 }
〈s2, q1〉

{ q2 }
〈s2, q2〉

c© JPK 57

Cycle detection

How to check for a reachable cycles containing a ¬Φ-state?

• Alternative 1:

– compute the strongly connected components (SCCs) in G(TS)

– check whether one such SCC is reachable from an initial state

– . . . that contains a ¬Φ-state

– “eventually for ever Φ” is refuted if and only if such SCC is found

• Alternative 2:

– use a nested depth-first search

⇒ more adequate for an on-the-fly verification algorithm

⇒ easier for generating counterexamples

c© JPK 58

Nested depth-first search

• Idea: perform the two depth-first searches in an interleaved way

– the outer DFS serves to encounter all reachable ¬Φ-states

– the inner DFS seeks for backward edges leading to a ¬Φ-state

• Nested DFS

– on full expansion of ¬Φ-state s in the outer DFS, start inner DFS

– in inner DFS, visit all states reachable from s not visited in the inner DFS yet

– no backward edge found to s? continue the outer DFS (look for next ¬Φ state)

• Counterexample generation: DFS stack concatenation

– stack U for the outer DFS = path fragment from s0 ∈ I to s (in reversed order)

– stack V for the inner DFS = a cycle from state s to s (in reversed order)

c© JPK 59

Correctness of nested DFS

Let:

• TS be a finite transition system over AP without terminal states and

• Ppers a persistence property

The nested DFS algorithm yields ”no” if and only if TS �|= Ppers

c© JPK 60

Time complexity

The worst-case time complexity of nested DFS is in

O((N+M) + N ·|Φ |)
where N is # reachable states in TS, and M is # transitions in TS

c© JPK 61

