

Verifying Regular Linear-Time Properties

Lecture #2 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 5, 2012

Content of this lecture

- Automata on finite words
 - refresh your memory
- Verifying regular safety properties
 - product construction, counterexamples
- Automata on infinite words
 - (generalised) Büchi automata, ω -regular languages
- Verifying ω -regular properties
 - nested depth first search

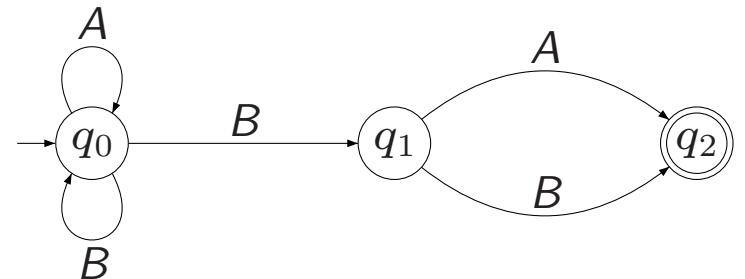
Content of this lecture

- ⇒ Automata on finite words
 - refresh your memory
- Verifying regular safety properties
 - product construction, counterexamples
- Automata on infinite words
 - (generalised) Büchi automata, ω -regular languages
- Verifying ω -regular properties
 - nested depth first search

Refresh your memory: Finite automata

A *nondeterministic finite automaton* (NFA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states
- Σ is an *alphabet*
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is a *transition function*
- $Q_0 \subseteq Q$ a set of *initial states*
- $F \subseteq Q$ is a set of *accept* (or: *final*) states



Language of an NFA

- NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $w = A_1 \dots A_n \in \Sigma^*$
- An **accepted run** for w in \mathcal{A} is a finite sequence $q_0 q_1 \dots q_n$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leq i < n$, and $q_n \in F$
- $w \in \Sigma^*$ is **accepted** by \mathcal{A} if there exists an accepting run for w
- $\mathcal{L}(\mathcal{A}) = \{w \in \Sigma^* \mid \text{there exists an accepting run for } w \text{ in } \mathcal{A}\}$
- NFA \mathcal{A} and \mathcal{A}' are **equivalent** if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$

Facts about finite automata

- They are as expressive as **regular languages**
- They are closed under \cap and **complementation**
 - NFA $\mathcal{A} \otimes B$ (= cross product) accepts $\mathcal{L}(A) \cap \mathcal{L}(B)$
 - Total DFA $\overline{\mathcal{A}}$ (= swap all accept and normal states) accepts $\overline{\mathcal{L}(A)} = \Sigma^* \setminus \mathcal{L}(A)$
- They are closed under **determinization** (= removal of choice)
 - although at an exponential cost.....
- $\mathcal{L}(\mathcal{A}) = \emptyset?$ = check for a reachable accept state in \mathcal{A}
 - this can be done using a **simple** depth-first search
- For regular language \mathcal{L} there is a unique **minimal** DFA accepting \mathcal{L}

Content of this lecture

- Automata on finite words
 - refresh your memory
- ⇒ Verifying regular safety properties
 - product construction, counterexamples
- Automata on infinite words
 - (generalised) Büchi automata, ω -regular languages
- Verifying ω -regular properties
 - nested depth first search

Safety properties

- LT property P_{safe} over AP is a *safety property* if
 - for all $\sigma \notin P_{safe}$ there exists a finite prefix $\widehat{\sigma}$ of σ such that:

$$P_{safe} \cap \left\{ \sigma' \in \left(2^{AP}\right)^\omega \mid \widehat{\sigma} \in pref(\sigma) \right\} = \emptyset$$

- The set $BadPref$ of *bad prefixes* for P_{safe} :

$$BadPref(P_{safe}) = \left(2^{AP}\right)^* \setminus pref(P_{safe})$$

- The set $MinBadPref$ of *minimal bad prefixes* for P_{safe} :

$$MinBadPref(P_{safe}) = \{ \sigma \in \left(2^{AP}\right)^* \mid pref(\sigma) \cap BadPref(P_{safe}) = \{ \sigma \} \}$$

Regular safety properties

- Definition:

Safety property P_{safe} is **regular** if $BadPref(P_{safe})$ is a regular language

- Or, equivalently:

Safety property P_{safe} is **regular** if there exists
a finite automaton over the alphabet 2^{AP} recognizing $BadPref(P_{safe})$

Some regular safety properties

- Every invariant (over AP) is a regular safety property
 - bad prefixes have form $\Phi^*(\neg\Phi)\text{true}^*$ for invariant condition Φ
 - . . . where Φ stands for any $A \subseteq AP$ with $A \models \Phi$
- A regular safety property which is not an invariant:
“a red light is immediately preceded by a yellow light”
- A non-regular safety property:
“the number of inserted coins is at least the number of dispensed drinks”

Peterson's banking system

Person Left behaves as follows:

```

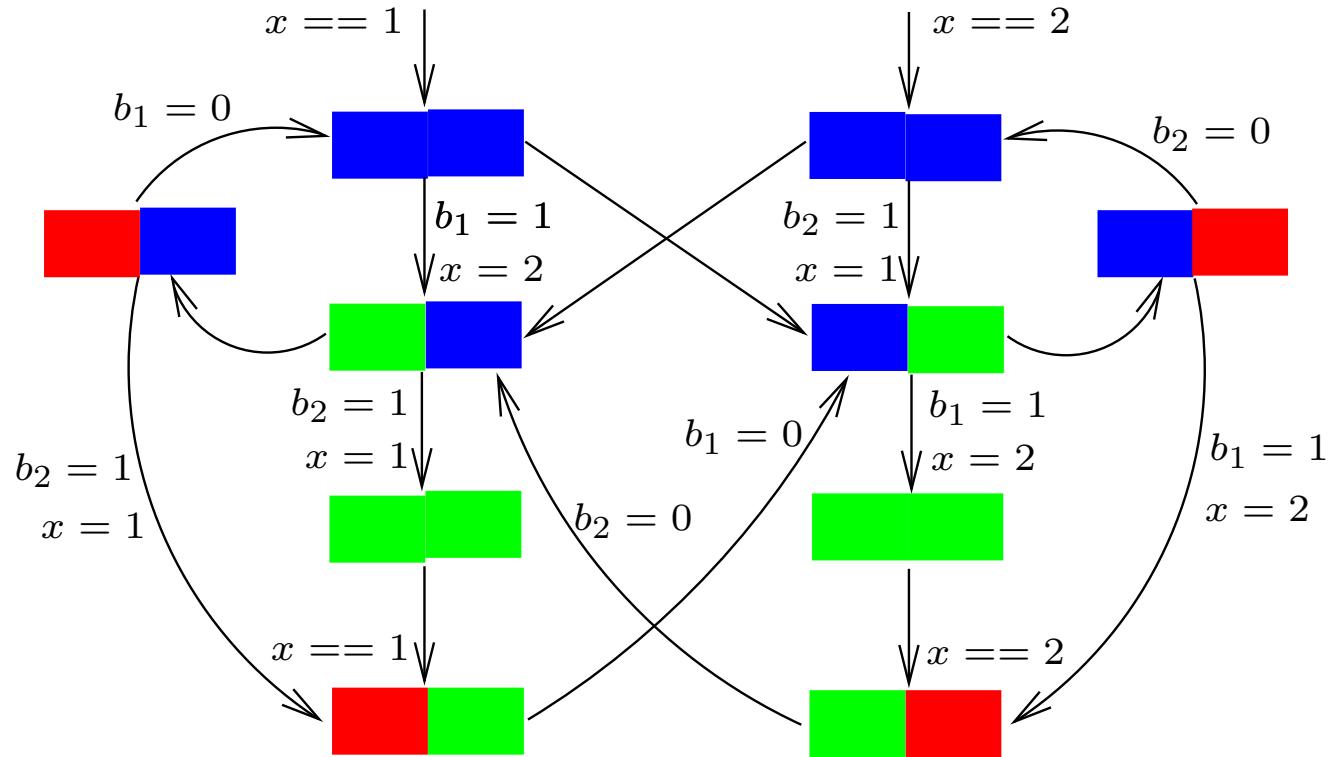
while true  {
    .....
    rq :       $b_1, x = \text{true}, 2;$ 
    wt :      wait until( $x == 1 \parallel \neg b_2$ ) {
        ... @accountL ...
         $b_1 = \text{false};$ 
        .....
    }
}
```

Person Right behaves as follows:

```

while true  {
    .....
    rq :       $b_2, x = \text{true}, 1;$ 
    wt :      wait until( $x == 2 \parallel \neg b_1$ ) {
        ... @accountR ...
         $b_2 = \text{false};$ 
        .....
    }
}
```

Is the banking system safe?



Can we guarantee that only one person at a time has access to the bank account?

“always $\neg (\text{@account}_L \wedge \text{@account}_R)$ ”

Is the banking system safe?

- Safe = at most one person may have access to the account
- Unsafe: two persons have access to the account simultaneously
 - unsafe behaviour can be characterized by bad prefix
 - alternatively (in this case) by the finite automaton:

- $Traces(TS_{Pet}) \cap BadPref(P_{safe}) = \emptyset$?
- intersection, complementation and emptiness of languages . . .

Problem statement

Let

- P_{safe} be a *regular* safety property over AP
- \mathcal{A} be an NFA recognizing the bad prefixes of P_{safe}
 - assume that $\varepsilon \notin \mathcal{L}(\mathcal{A})$ \Rightarrow otherwise all finite words over 2^{AP} are bad prefixes and $P_{safe} = \emptyset$
- TS be a *finite* transition system (over AP) without terminal states

How to establish whether $TS \models P_{safe}$?

Basic idea of the algorithm

$TS \models P_{safe}$ if and only if $Traces_{fin}(TS) \cap BadPref(P_{safe}) = \emptyset$

if and only if $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

if and only if $TS \otimes \mathcal{A} \models \text{“always” } \Phi$

But this amounts to invariant checking on $TS \otimes \mathcal{A}$

\Rightarrow checking regular safety properties can be done by depth-first search!

Synchronous product

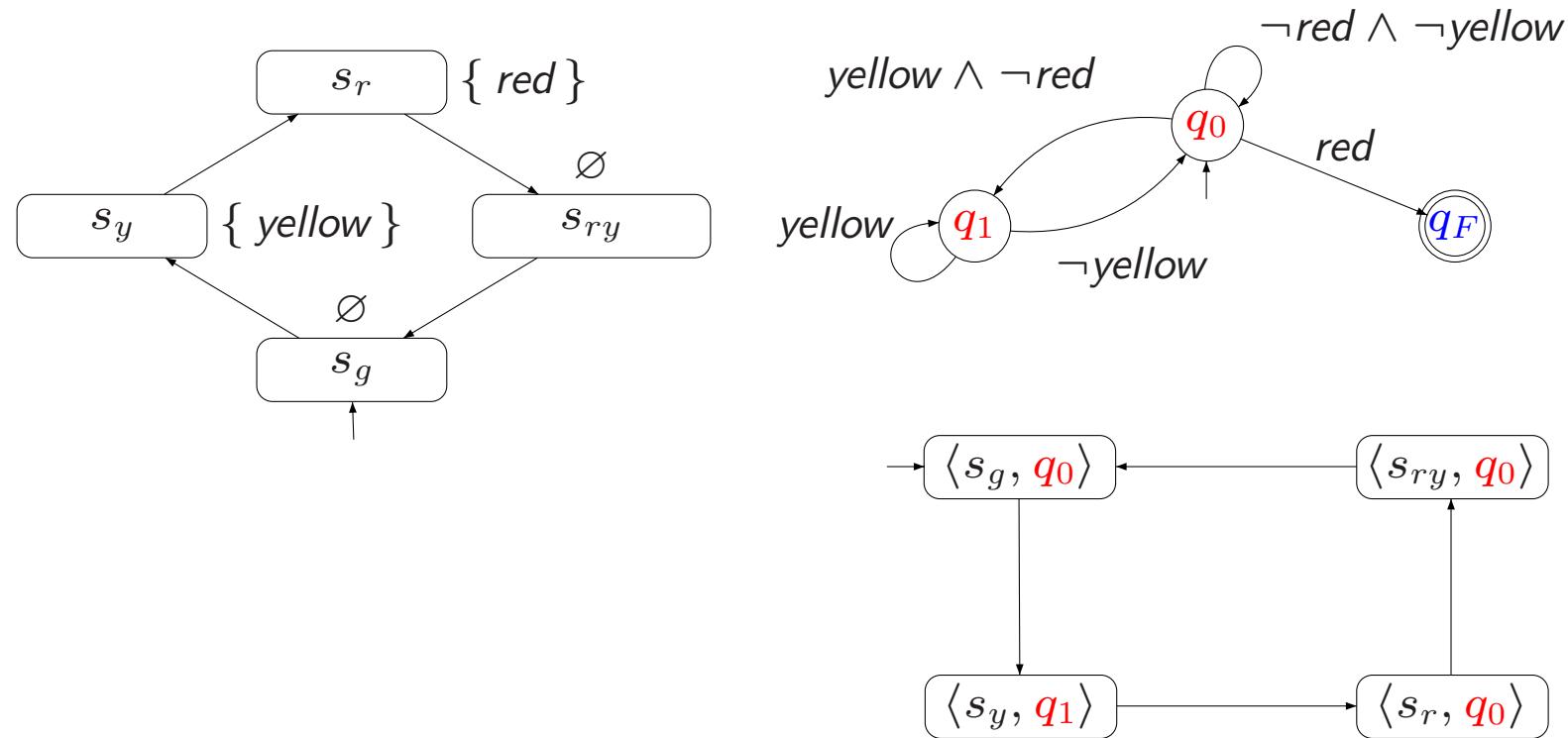
For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ an NFA with $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L') \quad \text{where}$$

- $S' = S \times Q$, $AP' = Q$ and $L'(\langle s, q \rangle) = \{ q \}$
- \rightarrow' is the smallest relation defined by:
$$\frac{s \xrightarrow{\alpha} \textcolor{red}{t} \wedge q \xrightarrow{L(\textcolor{red}{t})} p}{\langle s, q \rangle \xrightarrow{\alpha}' \langle \textcolor{red}{t}, p \rangle}$$
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \wedge \exists q_0 \in Q_0. q_0 \xrightarrow{L(s_0)} q \}$

without loss of generality it may be assumed that $TS \otimes \mathcal{A}$ has no terminal states

Example product



Verification of regular safety properties

Let TS over AP , NFA \mathcal{A} , and P a regular safety property with $\mathcal{L}(\mathcal{A}) = \text{BadPref}(P)$

The following statements are equivalent:

- (a) $TS \models P$
- (b) $\text{Traces}_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
- (c) $TS \otimes \mathcal{A} \models P_{inv(A)} = \bigwedge_{q \in F} \neg q$

Counterexamples

For each initial path fragment $\langle s_0, q_1 \rangle \dots \langle s_n, q_{n+1} \rangle$ of $TS \otimes \mathcal{A}$:
 $q_1, \dots, q_n \notin F$ and $q_{n+1} \in F \quad \Rightarrow \quad \underbrace{\text{trace}(s_0 s_1 \dots s_n)}_{\text{bad prefix for } P_{\text{safe}}} \in \mathcal{L}(\mathcal{A})$

Time complexity

The time and space complexity of checking $TS \models P_{safe}$ is in:

$$\mathcal{O}(|TS| \cdot |\mathcal{A}|)$$

where \mathcal{A} is an NFA with $\mathcal{L}(\mathcal{A}) = \text{MinBadPref}(P_{safe})$

Content of this lecture

- Automata on finite words
 - refresh your memory
 - Verifying regular safety properties
 - product construction, counterexamples
- ⇒ Automata on infinite words
- (generalised) Büchi automata, ω -regular languages
 - Verifying ω -regular properties
 - nested depth first search

Peterson's banking system

Person Left behaves as follows:

```

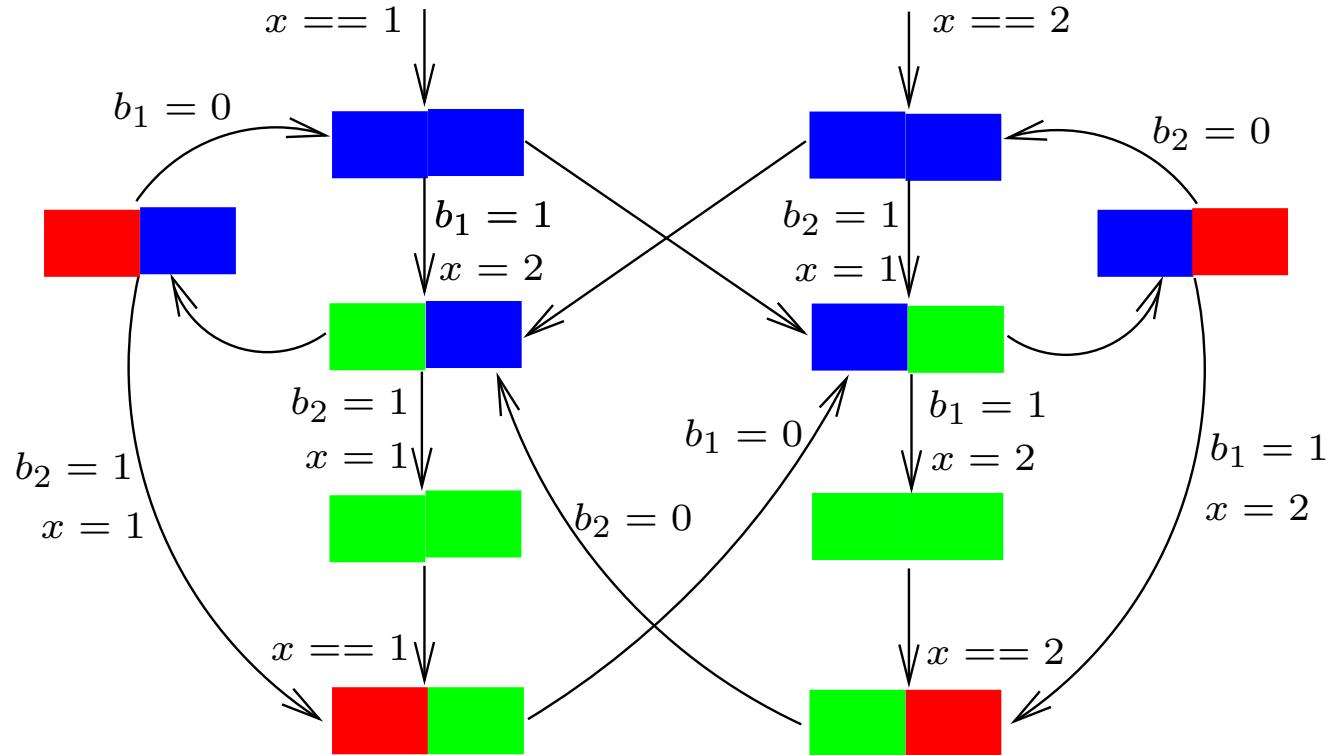
while true  {
    .....
    rq :       $b_1, x = \text{true}, 2;$ 
    wt :      wait until( $x == 1 \parallel \neg b_2$ ) {
        ... @accountL ...
         $b_1 = \text{false};$ 
        .....
    }
}
```

Person Right behaves as follows:

```

while true  {
    .....
    rq :       $b_2, x = \text{true}, 1;$ 
    wt :      wait until( $x == 2 \parallel \neg b_1$ ) {
        ... @accountR ...
         $b_2 = \text{false};$ 
        .....
    }
}
```

Is the banking system live?

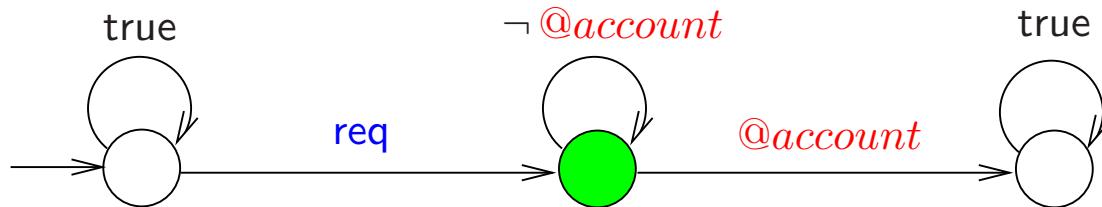


If someone wants to update the account, does he ever get the opportunity to do so?

"always ($req_L \Rightarrow$ eventually @account_L) \wedge always ($req_R \Rightarrow$ eventually @account_R)"

Is the banking system live?

- Live = when you want access to account, you eventually get it
- Not live: once you want access to the account, you never get it
 - unlive behaviour can be characterized as a (set of) **infinite** traces
 - or, equivalently, by a Büchi-automaton *Live*:



- Checking liveness: $Traces(TS_{Pet}) \cap \mathcal{L}_\omega(\overline{Live}) = \emptyset$?
 - (explicit) complementation, intersection and emptiness of **Büchi** automata!

Regular expressions

- Let Σ be an alphabet with $A \in \Sigma$
- Regular expressions over Σ have *syntax*:

$$E ::= \emptyset \quad | \quad \varepsilon \quad | \quad A \quad | \quad E + E' \quad | \quad E \cdot E' \quad | \quad E^*$$

- The *semantics* of regular expression E is a language $\mathcal{L}(E) \subseteq \Sigma^*$:

$$\mathcal{L}(\emptyset) = \emptyset, \quad \mathcal{L}(\varepsilon) = \{ \varepsilon \}, \quad \mathcal{L}(A) = \{ A \}$$

$$\mathcal{L}(E+E') = \mathcal{L}(E) \cup \mathcal{L}(E') \quad \mathcal{L}(E \cdot E') = \mathcal{L}(E) \cdot \mathcal{L}(E') \quad \mathcal{L}(E^*) = \mathcal{L}(E)^*$$

Syntax of ω -regular expressions

- Regular expressions denote languages of finite words
- ω -Regular expressions denote languages of infinite words
- An ω -regular expression G over Σ has the form:

$$G = E_1.F_1^\omega + \dots + E_n.F_n^\omega \quad \text{for } n > 0$$

where E_i, F_i are regular expressions over Σ with $\varepsilon \notin \mathcal{L}(F_i)$

- Some examples: $(A + B)^*.B^\omega$, $(B^*.A)^\omega$, and $A^*.B^\omega + A^\omega$

Semantics of ω -regular expressions

- For $\mathcal{L} \subseteq \Sigma^*$ let $\mathcal{L}^\omega = \{ w_1 w_2 w_3 \dots \mid \forall i \geq 0. w_i \in \mathcal{L} \}$
- Let ω -regular expression $G = E_1.F_1^\omega + \dots + E_n.F_n^\omega$
- The *semantics* of G is a language $\mathcal{L}(G) \subseteq \Sigma^\omega$:

$$\mathcal{L}_\omega(G) = \mathcal{L}(E_1).\mathcal{L}(F_1)^\omega \cup \dots \cup \mathcal{L}(E_n).\mathcal{L}(F_n)^\omega$$

- G_1 and G_2 are *equivalent*, denoted $G_1 \equiv G_2$, if $\mathcal{L}_\omega(G_1) = \mathcal{L}_\omega(G_2)$

ω -Regular languages

- \mathcal{L} is ω -regular if $\mathcal{L} = \mathcal{L}_\omega(G)$ for some ω -regular expression G
- Examples over $\Sigma = \{A, B\}$:
 - language of all words with infinitely many A s:

$$(B^* \cdot A)^\omega$$

- language of all words with finitely many A s:

$$(A + B)^* \cdot B^\omega$$

- the empty language

$$\emptyset^\omega$$

- ω -Regular languages are closed under \cup , \cap , and complementation

ω -regular properties

- Definition:

LT property P over AP is ω -regular if
 P is an ω -regular language over the alphabet 2^{AP}

- Or, equivalently:

LT property P over AP is ω -regular if P is a language
accepted by a nondeterministic Büchi automaton over 2^{AP}

Example ω -regular properties

- Any invariant P is an ω -regular property
 - as Φ^ω describes P with invariant condition Φ
- Any regular safety property P is an ω -regular property
 - as $\overline{P} = \text{BadPref}(P) \cdot \left(2^{AP}\right)^\omega$ is ω -regular
 - and the fact that ω -regular languages are closed under complement
- Many liveness properties P are ω -regular properties

Nondeterministic Büchi automata

- NFA (and DFA) are incapable of accepting infinite words
- Automata on infinite words
 - suited for accepting ω -regular languages
 - we consider nondeterministic Büchi automata (NBA)
- Accepting runs have to “check” the entire input word \Rightarrow are infinite
 \Rightarrow acceptance criteria for infinite runs are needed
- NBA are like NFA, but have a distinct *acceptance criterion*
 - one of the accept states must be visited infinitely often

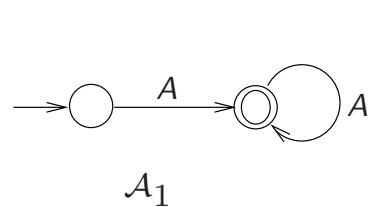
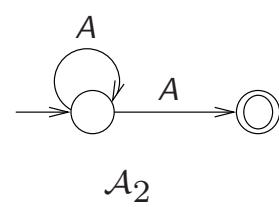
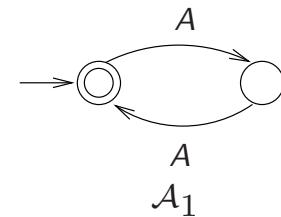
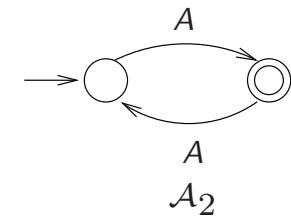
Language of an NBA

- NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $\sigma = A_0 A_1 A_2 \dots \in \Sigma^\omega$
- An **accepted run** for σ in \mathcal{A} is an **infinite** sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leq i$, and
 - $q_i \in F$ for **infinitely** many i
- $\sigma \in \Sigma^\omega$ is **accepted** by \mathcal{A} if there exists an accepting run for σ
- The **accepted language** of \mathcal{A} :

$$\mathcal{L}_\omega(\mathcal{A}) = \{ \sigma \in \Sigma^\omega \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}$$

- NBA \mathcal{A} and \mathcal{A}' are **equivalent** if $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}')$

NBA versus NFA



finite equivalence $\not\Rightarrow$ ω -equivalence

$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$, but $\mathcal{L}_\omega(\mathcal{A}) \neq \mathcal{L}_\omega(\mathcal{A}')$

ω -equivalence $\not\Rightarrow$ finite equivalence

$\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}')$, but $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}(\mathcal{A}')$

NBA and ω -regular languages

The class of languages accepted by NBA
agrees with the class of ω -regular languages

- (1) any ω -regular language is recognized by an NBA
- (2) for any NBA \mathcal{A} , the language $\mathcal{L}_\omega(\mathcal{A})$ is ω -regular

For any ω -regular language there is an NBA

- How to construct an NBA for the ω -regular expression:

$$G = E_1.F_1^\omega + \dots + E_n.F_n^\omega ?$$

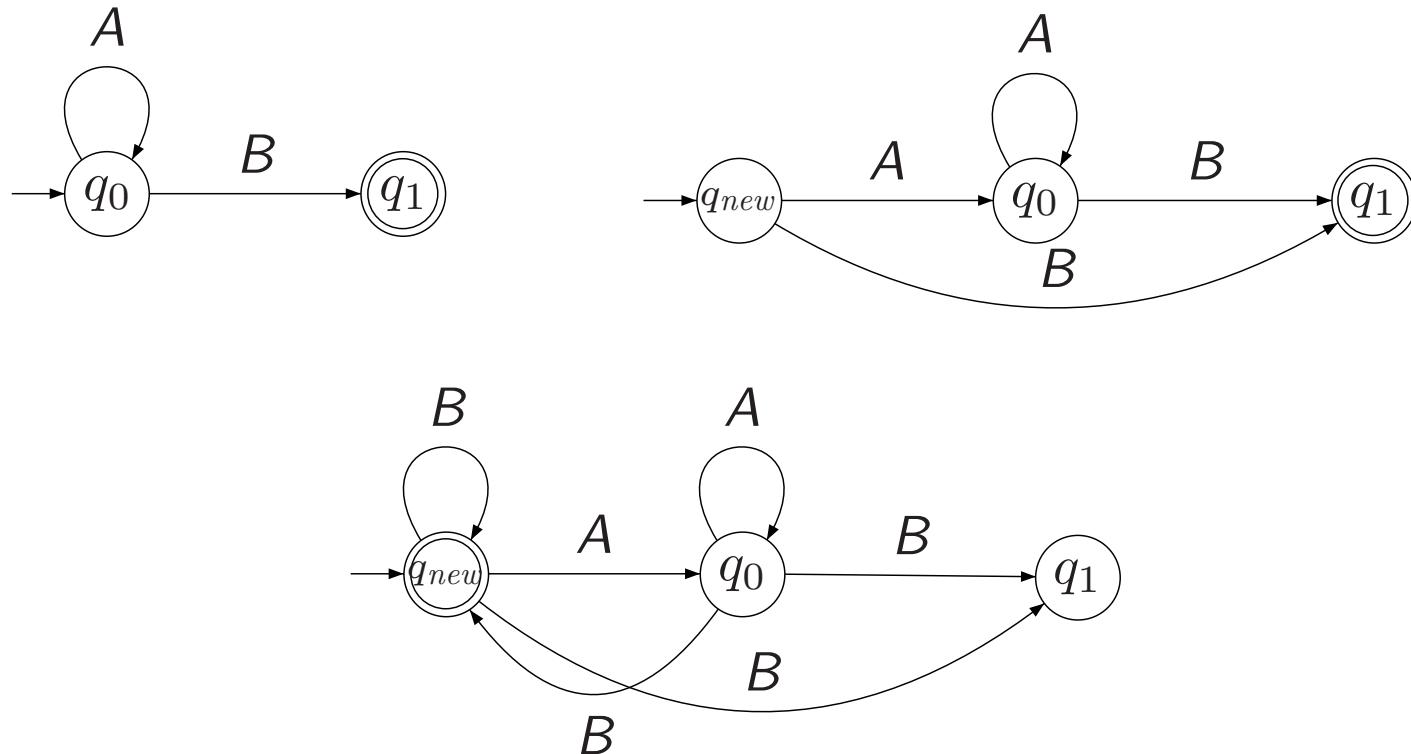
where E_i and F_i are regular expressions over alphabet Σ with $\varepsilon \notin F_i$

- Use operators on NBA mimicking operators on ω -regular expressions:
 - (1) for NBA \mathcal{A}_1 and \mathcal{A}_2 there is an NBA accepting $\mathcal{L}_\omega(\mathcal{A}_1) \cup \mathcal{L}_\omega(\mathcal{A}_2)$
 - (2) for any regular language \mathcal{L} with $\varepsilon \notin \mathcal{L}$ there is an NBA accepting \mathcal{L}^ω
 - (3) for regular language \mathcal{L} and NBA \mathcal{A}' there is an NBA accepting $\mathcal{L}.\mathcal{L}_\omega(\mathcal{A}')$
- We will discuss these three operators in detail

Definition of ω -operator for NFA

- Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NFA with $\varepsilon \notin \mathcal{L}(\mathcal{A})$.
- Assume no initial state in \mathcal{A} has incoming transitions and $Q_0 \cap F = \emptyset$
 - otherwise introduce a new initial state $q_{new} \notin F$
 - let $q_{new} \xrightarrow{A} q$ iff $q_0 \xrightarrow{A} q$ for some $q_0 \in Q_0$
 - keep all transitions in \mathcal{A}
- Construct an NBA $\mathcal{A}' = (Q, \Sigma, \delta', Q'_0, F')$ as follows
 - if $q \xrightarrow{A} q' \in F$ then add $q \xrightarrow{A} q_0$ for any $q_0 \in Q_0$
 - keep all transitions in \mathcal{A}
 - $Q'_0 = Q_0$ and $F' = Q_0$.

Example for ω -operator for NFA



From an NFA accepting A^*B to an NBA accepting $(A^*B)^\omega$

Extended transition function

Extend the transition function δ to $\delta^* : Q \times \Sigma^* \rightarrow 2^Q$ by:

$$\delta^*(q, \varepsilon) = \{ q \} \quad \text{and} \quad \delta^*(q, A) = \delta(q, A)$$

$$\delta^*(q, A_1 A_2 \dots A_n) = \bigcup_{p \in \delta(q, A_1)} \delta^*(p, A_2 \dots A_n)$$

$\delta^*(q, w)$ = set of states reachable from q for the word w

Checking non-emptiness

$$\mathcal{L}_\omega(\mathcal{A}) \neq \emptyset$$

if and only if

$$\exists q_0 \in Q_0. \exists q \in F. \exists w \in \Sigma^*. \exists v \in \Sigma^+. \underbrace{q \in \delta^*(q_0, w) \wedge q \in \delta^*(q, v)}$$

there is a reachable accept state on a cycle

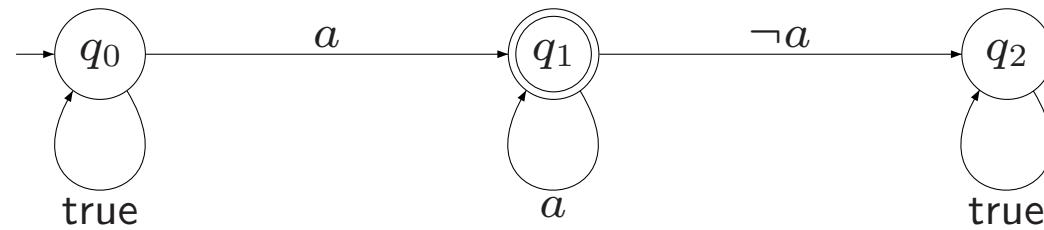
The emptiness problem for NBA \mathcal{A} can be solved in $\mathcal{O}(|\mathcal{A}|)$

NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are **not!**

There is no DBA that accepts $\mathcal{L}_\omega((A + B)^* B^\omega)$

An LT property requiring nondeterminism



let $\{ a \} = AP$, i.e., $2^{AP} = \{A, B\}$ where $A = \{\}$ and $B = \{a\}$

"eventually for ever a " equals $(A + B)^*B^\omega = (\{\} + \{a\})^*\{a\}^\omega$

Generalized Büchi automata

- NBA are as expressive as ω -regular languages
- Variants of NBA exist that are equally expressive
 - Muller, Rabin, Streett automata, and generalized Büchi automata (GNBA)
- GNBA are like NBA, but have a distinct **acceptance criterion**
 - a GNBA requires to visit several sets F_1, \dots, F_k ($k \geq 0$) infinitely often
 - for $k=0$, all runs are accepting; for $k=1$ it behaves like an NBA
- GNBA are useful to relate temporal logic and automata

Generalized Büchi automata

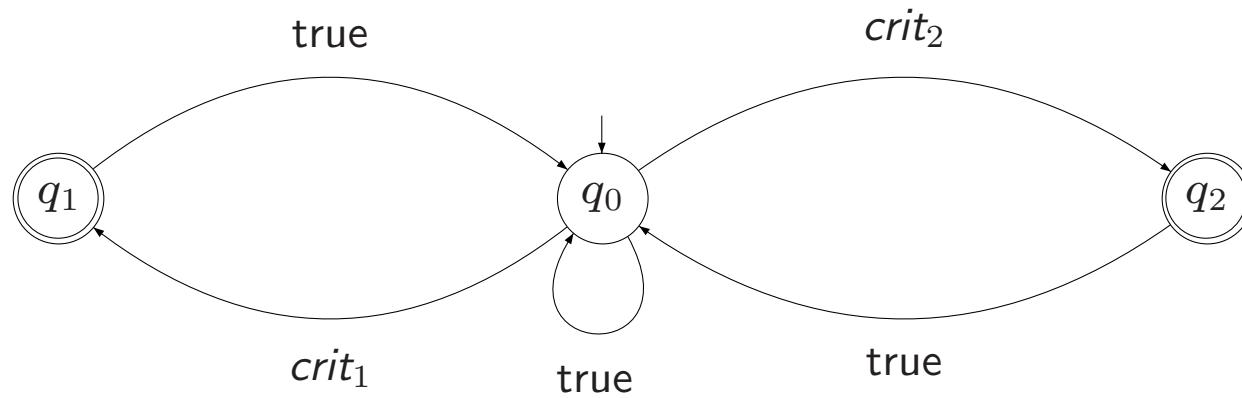
A **generalized NBA** (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- Q, Σ, δ and Q_0 are as before, and
- $\mathcal{F} = \{ F_1, \dots, F_k \}$ is a (possibly empty) subset of 2^Q

Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \dots \in \Sigma^\omega$
- A **accepted run** for σ in \mathcal{G} is an **infinite** sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leq i$, and
 - **for all $F \in \mathcal{F}$:** $q_i \in F$ for infinitely many i
- $\mathcal{L}_\omega(\mathcal{G}) = \{\sigma \in \Sigma^\omega \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{G}\}$

Example



A GNBA for the property "both processes are infinitely often in their critical section"

$$\mathcal{F} = \{ \{ q_1 \}, \{ q_2 \} \}$$

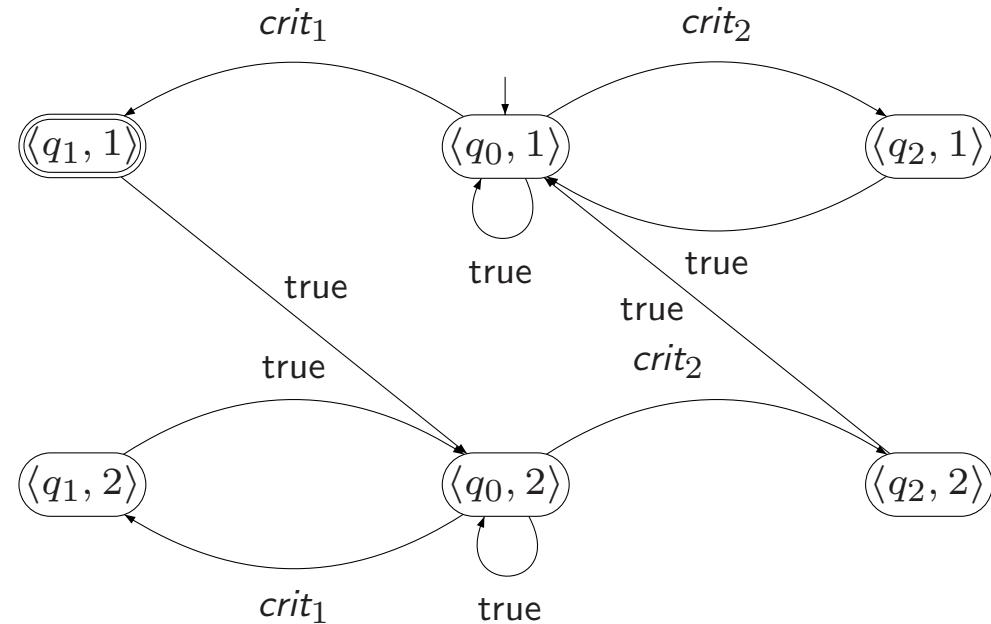
From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$\mathcal{L}_\omega(\mathcal{G}) = \mathcal{L}_\omega(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where \mathcal{F} denotes the set of acceptance sets in \mathcal{G}

Example



Content of this lecture

- Automata on finite words
 - refresh your memory
 - Verifying regular safety properties
 - product construction, counterexamples
 - Automata on infinite words
 - (generalised) Büchi automata, ω -regular languages
- ⇒ Verifying ω -regular properties
- nested depth first search

ω -regular properties

- Definition:

LT property P over AP is ω -regular if
 P is an ω -regular language over the alphabet 2^{AP}

- Or, equivalently:

LT property P over AP is ω -regular if P is a language
accepted by a nondeterministic Büchi automaton over 2^{AP}

Basic idea of the algorithm

$TS \not\models P$ if and only if $Traces(TS) \not\subseteq P$

if and only if $Traces(TS) \cap (2^{AP})^\omega \setminus P \neq \emptyset$

if and only if $Traces(TS) \cap \overline{P} \neq \emptyset$

if and only if $Traces(TS) \cap \mathcal{L}_\omega(\mathcal{A}) \neq \emptyset$

if and only if $TS \otimes \mathcal{A} \not\models \underbrace{\text{"eventually for ever" } \neg F}_{\text{persistence property}}$

where \mathcal{A} is an NBA accepting the complement property $\overline{P} = (2^{AP})^\omega \setminus P$

Persistence property

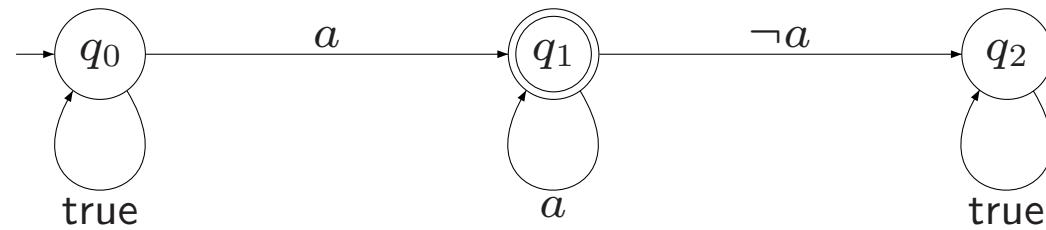
A *persistence property* over AP is an LT property $P_{pers} \subseteq (2^{AP})^\omega$
“eventually for ever Φ ” for some propositional logic formula Φ over AP :

$$P_{pers} = \left\{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega \mid \exists i \geq 0. \forall j \geq i. A_j \models \Phi \right\}$$

Φ is called a persistence (or state) condition of P_{pers}

“ Φ is an invariant after a while”

Example persistence property



let $\{ a \} = AP$, i.e., $2^{AP} = \{A, B\}$ where $A = \{ \}$ and $B = \{a\}$

"eventually for ever a " equals $(A + B)^* B^\omega = (\{ \} + \{a\})^* \{a\}^\omega$

Recall synchronous product

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ a non-blocking NBA with $\Sigma = 2^{AP}$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L') \quad \text{where}$$

- $S' = S \times Q$, $AP' = Q$ and $L'(\langle s, q \rangle) = \{ q \}$
- \rightarrow' is the smallest relation defined by:
$$\frac{s \xrightarrow{\alpha} \textcolor{red}{t} \wedge q \xrightarrow{L(\textcolor{red}{t})} p}{\langle s, q \rangle \xrightarrow{\alpha'} \langle \textcolor{red}{t}, p \rangle}$$
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \wedge \exists q_0 \in Q_0. q_0 \xrightarrow{L(s_0)} q \}$

Verifying ω -regular properties

Let:

- TS be a transition system over AP
- P be an ω -regular property over AP , and
- \mathcal{A} a non-blocking NBA such that $\mathcal{L}_\omega(\mathcal{A}) = \overline{P}$.

The following statements are equivalent:

- (a) $TS \models P$
- (b) $Traces(TS) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$
- (c) $TS \otimes \mathcal{A} \models P_{pers(A)}$

where $P_{pers(A)}$ = “eventually for ever $\neg F$ ”

⇒ checking ω -regular properties is reduced to persistence checking!

Persistence checking

- Aim: establish whether $TS \not\models P_{pers}$ = “eventually for ever Φ ”
 - Let state s be reachable in TS and $s \not\models \Phi$
 - TS has an initial path fragment that ends in s
 - If s is on a *cycle*
 - this path fragment can be continued by an infinite path
 - by traversing the cycle containing s infinitely often
- $\Rightarrow TS$ may visit the $\neg\Phi$ -state s infinitely often and so: $TS \not\models P_{pers}$
- If not such s is found then: $TS \models P_{pers}$

Persistence checking and cycle detection

Let

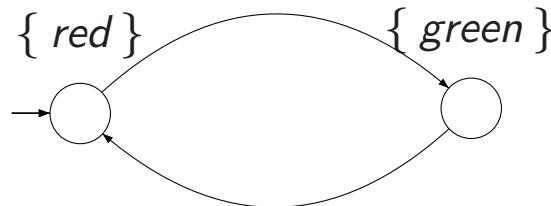
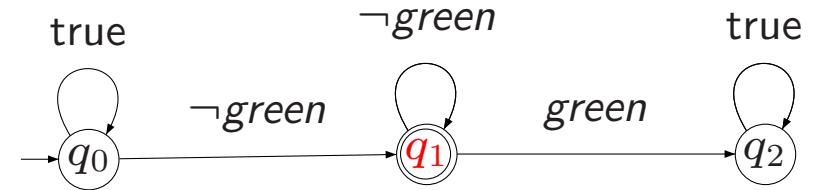
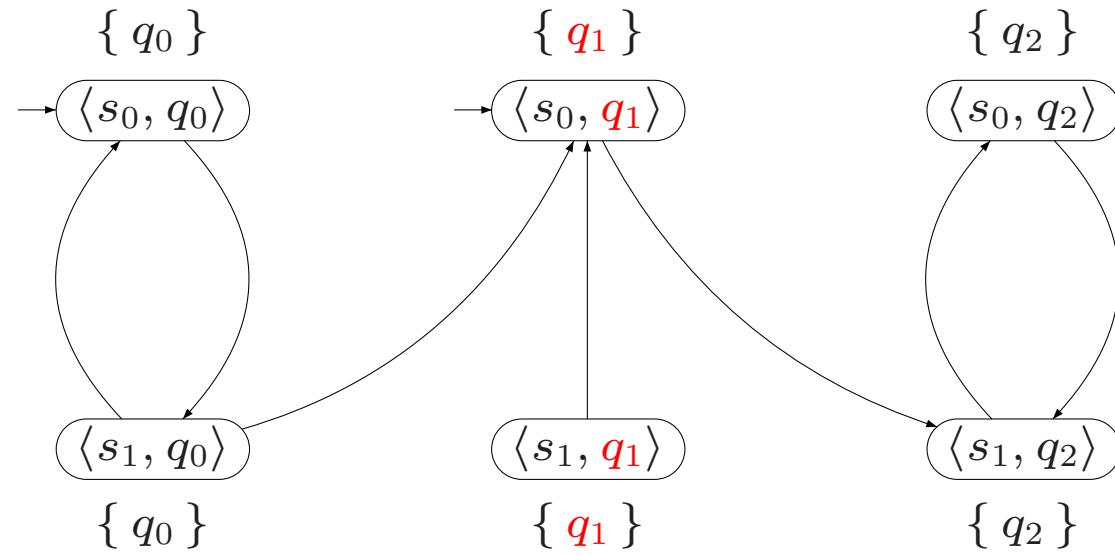
- TS be a finite transition system without terminal states over AP
- Φ a propositional formula over AP , and
- P_{pers} the persistence property "eventually for ever Φ "

$TS \not\models P_{pers}$

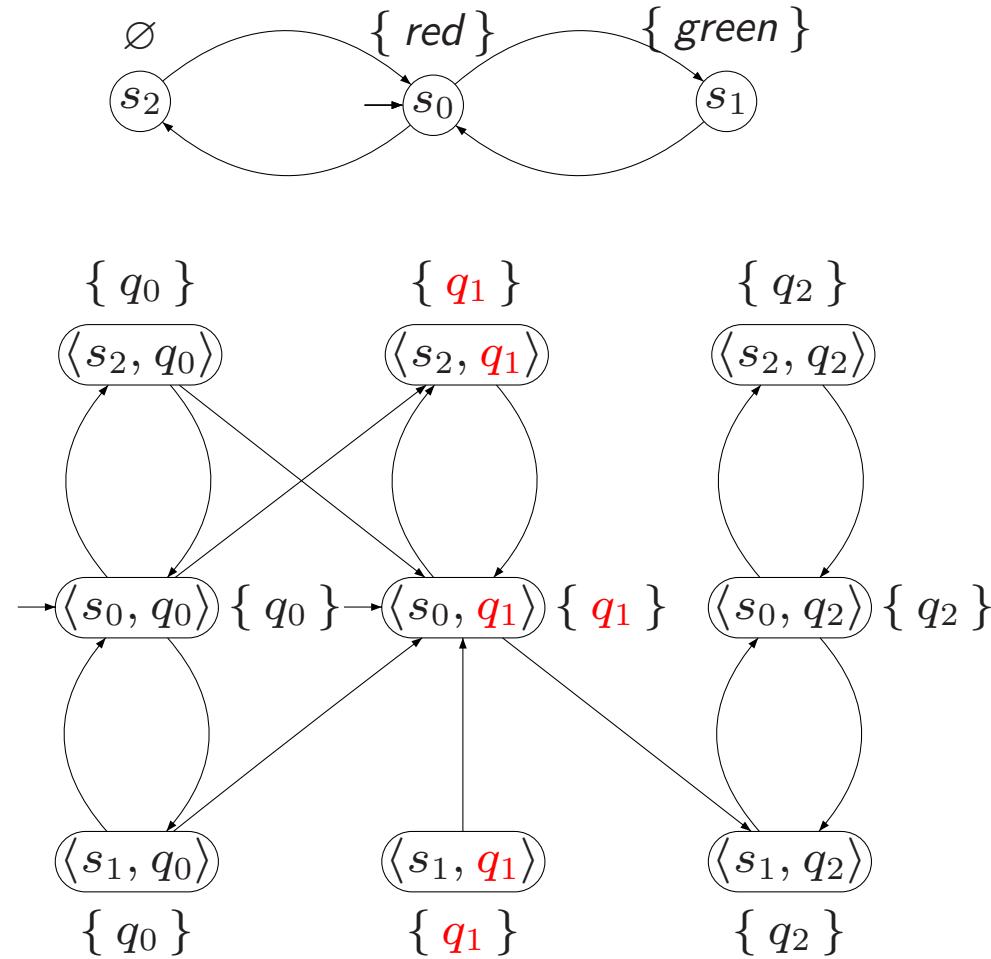
if and only if

$\exists s \in \text{Reach}(TS). s \not\models \Phi \wedge s \text{ is on a cycle in } G(TS)$

Infinitely often green?



Infinitely often green?



Cycle detection

How to check for a reachable cycles containing a $\neg\Phi$ -state?

- Alternative 1:

- compute the strongly connected components (SCCs) in $G(TS)$
- check whether one such SCC is reachable from an initial state
- . . . that contains a $\neg\Phi$ -state
- “eventually for ever Φ ” is refuted if and only if such SCC is found

- Alternative 2:

- *use a nested depth-first search*
- ⇒ more adequate for an on-the-fly verification algorithm
- ⇒ easier for generating counterexamples

Nested depth-first search

- Idea: perform the two depth-first searches in an *interleaved* way
 - the outer DFS serves to encounter all reachable $\neg\Phi$ -states
 - the inner DFS seeks for backward edges leading to a $\neg\Phi$ -state
- *Nested DFS*
 - on full expansion of $\neg\Phi$ -state s in the outer DFS, start inner DFS
 - in inner DFS, visit all states reachable from s *not visited* in the inner DFS yet
 - no backward edge found to s ? continue the outer DFS (look for next $\neg\Phi$ state)
- *Counterexample generation*: DFS stack concatenation
 - stack U for the outer DFS = path fragment from $s_0 \in I$ to s (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

Correctness of nested DFS

Let:

- TS be a finite transition system over AP without terminal states and
- P_{pers} a persistence property

The nested DFS algorithm yields "no" if and only if $TS \not\models P_{pers}$

Time complexity

The worst-case time complexity of nested DFS is in

$$\mathcal{O}((N+M) + N \cdot |\Phi|)$$

where N is # reachable states in TS , and M is # transitions in TS