Verifying Regular Linear-Time Properties
Lecture #2 of Principles of Model Checking

Joost-Pieter Katoen
Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 5, 2012

© JPK

Content of this lecture

Automata on finite words

— refresh your memory

Verifying regular safety properties

— product construction, counterexamples

Automata on infinite words

— (generalised) Biichi automata, w-regular languages

Verifying w-regular properties

— nested depth first search

© JPK

Content of this lecture

= Automata on finite words

— refresh your memory

e Verifying regular safety properties

— product construction, counterexamples

e Automata on infinite words

— (generalised) Biichi automata, w-regular languages

e Verifying w-regular properties

— nested depth first search

© JPK

Refresh your memory: Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q, 3,9, Qo, F') where:

e () is a finite set of states

e X is an alphabet A A

: . : B
e §:(Q x X — 2% is a transition function do] q1

o Qo C (@ a set of initial states

e ' C () is a set of accept (or: final) states

© JPK 3

Language of an NFA

e NFA A= (Q,3,5,Qo, F) and word w=A;... A, € &*

e An accepted run for win A is a finite sequence ¢y ¢y ... g, such that:

A.
- qo € Qo and ¢ —* 5 g1 forall 0 < i < n,and g, € F

e weE X* is accepted by A if there exists an accepting run for w
e L(A)={we X*| there exists an accepting run for win A }

e NFA A and A’ are equivalent if L(A) = L(A")

© JPK 4

Facts about finite automata

e They are as expressive as regular languages

e They are closed under N and complementation

— NFA A ® B (= cross product) accepts L(A) N L(B)
— Total DFA A (= swap all accept and normal states) accepts £L(A) = X* \ L(A)

e They are closed under determinization (= removal of choice)

— although at an exponential cost.....

e L(A) =27 = check for a reachable accept state in A

— this can be done using a simple depth-first search

e For regular language L there is a unique minimal DFA accepting £

© JPK 5

Content of this lecture

e Automata on finite words

— refresh your memory

= Verifying regular safety properties

— product construction, counterexamples

e Automata on infinite words

— (generalised) Biichi automata, w-regular languages

e Verifying w-regular properties

— nested depth first search

© JPK

Safety properties

o LT property P, over AP is a safety property if

— for all o &€ Py there exists a finite prefix & of o such that:
P N {a’ c (2AP) EX= pref(a)} —
e The set BadPref of bad prefixes for Py,f.:

BadPref(Pyufe) = (QAP) \ pref(Psase)

e The set MinBadPref of minimal bad prefixes for Py,

MinBadPref(Psafe) — {O' c (2AP) | pref(a) M BadPref(Psafe) = {O‘ }}

© JPK 7

Regular safety properties

e Definition:

Safety property Pi,f is regular if BadPref{ Py,) is a regular language

e Or, equivalently:

Safety property Pk, is regular if there exists

a finite automaton over the alphabet 27 recognizing BadPref(Pys.)

© JPK 8

Some regular safety properties

e Every invariant (over AP) is a regular safety property

— bad prefixes have form ®*(—®)true” for invariant condition &
— ... where ® stands for any A C AP with A = ®

e A regular safety property which is not an invariant:

“a red light is immediately preceded by a yellow light”

e A non-regular safety property:

“the number of inserted coins is at least the number of dispensed drinks”

© JPK

Peterson’s banking system

Person Left behaves as follows:

while true {
rq : b1, x = true, 2;
wait until(x == 1| —bg) {
cs : ... @accounty, ...}
b1 = false;

Person Right behaves as follows:

rq :

CS .

while true {
bo, x = true, 1;
wait until(x == 2 || = b1) {
... @accountr ...}
by = false;

© JPK

10

Is the banking system safe?

Can we guarantee that only one person at a time has access to the bank account?

“always — (@account; A @accountp)”

© JPK 11

Is the banking system safe?

e Safe = at most one person may have access to the account

e Unsafe: two persons have access to the account simultaneously

— unsafe behaviour can be characterized by bad prefix
— alternatively (in this case) by the finite automaton:

= (Qaccounty,

A Qaccount) m
Qaccounty, A Qaccountr

—C

o Traces(TSp.) N BadPref(Py.p) = 7

— intersection, complementation and emptiness of languages . . .

© JPK 12

Problem statement

Let
o P, be a regular safety property over AP

e A be an NFA recognizing the bad prefixes of Py

— assume that e ¢ L(A)
= otherwise all finite words over 2" are bad prefixes and Py = @

e TS be a finite transition system (over AP) without terminal states

How to establish whether TS = Psur.?

© JPK 13

Basic idea of the algorithm

TS |= Py if and only if Tracesg,(TS) N BadPref(Py.p) = @
if and only if Traces;,(TS) N L(A) =2

if and only if TS® A = “always” @

But...... this amounts to invariant checking on TS @ A
— checking regular safety properties can be done by depth-first search!

© JPK 14

Synchronous product

For transition system TS = (.S, Act,—, I, AP, L) without terminal states
and A = (Q,%,5,Qo, F) an NFA with X =24 and Qo N F = &, let:

TS® A = (S, Act,—',I', AP, L) where

e '=5xQ, AP =Qand L'((s,q)) = {q}

st A q%p

(s,q) =" (t,p)

e —' is the smallest relation defined by:

o I"'={(s0,9) | so€l A Jq € Qo. CIOMHJ}

without loss of generality it may be assumed that TS ® A has no terminal states

© JPK 15

Example product

—red N\ —yellow

(89, q0) | {8ry, q0)
(&w@ ‘@ QO>

© JPK 16

Verification of regular safety properties

Let TS over AP, NFA A, and P a regular safety property with £(.A) = BadPref(P)

The following statements are equivalent:
(a) TS = P
(b) Traces; (TS) N L(A) = @
() TS®A = Puuity = Ayer—4

© JPK

17

Counterexamples

For each initial path fragment (so, q1) . .. (Sn, qn+1) of TS® A:

Qs---,qn € Frand gy € = trace(sosi...s,) € L(A)
bad prefix for Py,j,

© JPK 18

Time complexity

The time and space complexity of checking TS |= Pk, is in:
O(| TS| - |A)
where A is an NFA with £(.A) = MinBadPref(P;,y.)

© JPK

19

Content of this lecture

e Automata on finite words

— refresh your memory

e Verifying regular safety properties

— product construction, counterexamples

= Automata on infinite words

— (generalised) Biichi automata, w-regular languages

e Verifying w-regular properties

— nested depth first search

© JPK 20

Peterson’s banking system

Person Left behaves as follows:

while true {
rq : b1, x = true, 2;
wait until(x == 1| —bg) {
cs : ... @accounty, ...}
b1 = false;

Person Right behaves as follows:

rq :

CS .

while true {
bo, x = true, 1;
wait until(x == 2 || = b1) {
... @accountr ...}
by = false;

© JPK

21

Is the banking system live?

=

If someone wants to update the account, does he ever get the opportunity to do so?

“always (req;, = eventually @accounty) A always (reqg =- eventually @accountp)"

© JPK 22

Is the banking system live?

e Live = when you want access to account, you eventually get it

e Not live: once you want access to the account, you never get it

— unlive behaviour can be characterized as a (set of) infinite traces
— or, equivalently, by a Buchi-automaton Live:

true — Qaccount true

g g req Q Qaccount @

e Checking liveness: Traces(TSp.:) N L (Live) = &7

— (explicit) complementation, intersection and emptiness of Biichi automata!

© JPK 23

Regular expressions

e Let X be an alphabet with A € X

e Regular expressions over X have syntax:

Ex=9 | ¢ | A | E+E | EE | E'

e The semantics of regular expression E is a language £L(E) C X*:
L(@) =2, L) ={e}, LA ={A}

L(E+E) = L(E)U L(E)) L(E.E) = L(E).L(E) L(E*) = L(E)*

© JPK 24

Syntax of w-regular expressions

e Regular expressions denote languages of finite words
e w-Regular expressions denote languages of infinite words
e An w-regular expression G over Y. has the form:
G =E.F +...+E,F; forn>0
where E;, F; are regular expressions over X with € ¢ L(F;)

e Some examples: (A + B)*.B¥, (B*.A)“, and A*.B¥ + A“

© JPK

25

Semantics of w-regular expressions

e For LY let LY = {wiwows...|Vi>0.w; € L}
e Let w-regular expression G = E;.FY + ... + E,.F;
e The semantics of G is a language £(G) C X¢:

L(G) = L(E).LF)® U ... U L(E,).L(F,)*

e G; and Gs are equivalent, denoted Gy = Go, if L,(G1) = L,(G2)

© JPK 26

w-Regular languages

o L is w-regular if L= L, (G) for some w-regular expression G

e Examples over X = { A, B }:

— language of all words with infinitely many As:
(B*.A)"
— language of all words with finitely many As:
(A+ B)".B”

— the empty language

w

<

e w-Regular languages are closed under U, N, and complementation

© JPK >

w-regular properties

e Definition:

LT property P over AP is w-regular if

P is an w-regular language over the alphabet 247
e Or, equivalently:

LT property P over AP is w-regular if P is a language

accepted by a nondeterministic Biichi automaton over 24F

© JPK

28

Example w-regular properties

e Any invariant P is an w-regular property

— as ®“ describes P with invariant condition ®

e Any regular safety property P is an w-regular property

— as P = BadPref(P). (2Ap)w is w-regular

— and the fact that w-regular languages are closed under complement

e Many liveness properties P are w-regular properties

© JPK 29

Nondeterministic Buchi automata

e NFA (and DFA) are incapable of accepting infinite words

e Automata on infinite words

— suited for accepting w-regular languages
— we consider nondeterministic Biichi automata (NBA)

e Accepting runs have to “check” the entire input word =- are infinite

— acceptance criteria for infinite runs are needed

e NBA are like NFA, but have a distinct acceptance criterion

— one of the accept states must be visited infinitely often

© JPK 30

Language of an NBA
e NBA A = (Q,E,&,QmF) and word o = AoAlAQ. LLe Y

e An accepted run for o in A is an infinite sequence gpq1 ¢2 . . . such that:

A.
— qgo € Qo and g; el qi+1 for all 0 < ¢, and
— q; € F for infinitely many ¢

e 0 € X% is accepted by A if there exists an accepting run for o
e The accepted language of A:

L.,(A) ={o € 3| there exists an accepting run for o in A }

e NBA A and A’ are equivalent if L,(A) = L, (A")

© JPK 31

NBA versus NFA

A A A
/ y - —C_ ©
égé@QA @ O @ S~
A A
Aq A2 Aq A2
finite equivalence 7 w-equivalence w-equivalence 7 finite equivalence

L(A) = L(A), but L,(A) # Lo(A) L,(A) = L,(A), but L(A) # L(A)

© JPK 32

NBA and w-regular languages

The class of languages accepted by NBA

agrees with the class of w-regular languages

(1) any w-regular language is recognized by an NBA
(2) for any NBA A, the language L., (A) is w-regular

© JPK

33

For any w-regular language there is an NBA

e How to construct an NBA for the w-regular expression:
G=FE.F+...+E,.F 7

where E; and F; are regular expressions over alphabet > with € € F;

e Use operators on NBA mimicking operators on w-regular expressions:

(1) for NBA A; and A; there is an NBA accepting £, (A1) U L, (A2)
(2) for any regular language £ with € € L there is an NBA accepting £¥
(3) for regular language £ and NBA A’ there is an NBA accepting £.L£,,(A")

e \We will discuss these three operators in detail

© JPK 3

Definition of w-operator for NFA

o Let A=(Q,3%,0,Q0, F') be an NFA with ¢ ¢ L(A).

e Assume no initial state in A has incoming transitions and Qo N F = &

— otherwise introduce a new initial state q,¢n & F
— let guew A, q iff qg A, q for some gy € Qo
— keep all transitions in A

e Construct an NBA A" = (Q, X%, ", Qj, F') as follows

- ifqi>q/ € F' then add qi>q0 for any qo € Qo
— keep all transitions in A

- Qp = Qo and F' = Qo.

© JPK 35

From an NFA accepting A*B to an NBA accepting (A*B)“

© JPK 36

Extended transition function

Extend the transition function § to §* :) x ¥* — 2% by:

0*(¢,e) ={q} and 6%(q,A) =d(q,A)

5*(q, A1A2 ce An) — UpEé(q,A1) 5*<p, A2 ce An>

0" (q, w) = set of states reachable from ¢ for the word w

© JPK

37

Checking non-emptiness

L,(A) # 2
if and only if
Jq0 € Qo. Ig € F. Iw € > . Avext. g5 (q,w) A g€ d(q, v)

there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved in O(|.A|)

© JPK

38

NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are not!

There is no DBA that accepts L,((A+ B)*B”)

© JPK

39

An LT property requiring nondeterminism

true a true

et {a} = AP, i.e., 27 = {A, B} where A= {} and B = {a}

"eventually for ever a” equals (A+ B)*BY = ({} + {a})"{a}”

© JPK

40

Generalized Buchi automata

e NBA are as expressive as w-regular languages

e Variants of NBA exist that are equally expressive

— Muller, Rabin, Streett automata, and eneralized Biichi automata (GNBA)

e GNBA are like NBA, but have a distinct acceptance criterion

— a GNBA requires to visit several sets F1, ..., Fy (k > 0) infinitely often
— for k=0, all runs are accepting; for k=1 it behaves like an NBA

e GNBA are useful to relate temporal logic and automata

© JPK 41

Generalized Buchi automata

A generalized NBA (GNBA) G is a tuple (Q, X, 6, Qq, F) where:
e (), X, 0 and)y are as before, and

o F={F,, ..., F.} is a (possibly empty) subset of 2%

© JPK

42

Language of a GNBA

e GNBA G = (Q,X,6,Q0, F) and word 0 = ApA1A; ... € 3¢

e A accepted run for ¢ in G is an infinite sequence qp g1 g2 . . . such that:

— qo € Qo and g; i> qi+1 for all 0 < 4, and
— for all F' € F: q; € F for infinitely many ¢

e L,(G)= {0 €X¥] there exists an accepting run for o in G }

© JPK 43

Example

true Crity

crity true true

A GNBA for the property "both processes are infinitely often in their critical section”

F={{a},{a}}

© JPK 44

From GNBA to NBA

For any GNBA G there exists an NBA A with:
L,(G) = Lu(A) and |A] = O(|G] - | F])

where F denotes the set of acceptance sets in G

© JPK

45

Example

crity crity

crity true

© JPK 46

Content of this lecture

e Automata on finite words

— refresh your memory

e Verifying regular safety properties

— product construction, counterexamples

e Automata on infinite words

— (generalised) Biichi automata, w-regular languages

= Verifying w-regular properties

— nested depth first search

© JPK

47

w-regular properties

e Definition:

LT property P over AP is w-regular if

P is an w-regular language over the alphabet 247
e Or, equivalently:

LT property P over AP is w-regular if P is a language

accepted by a nondeterministic Biichi automaton over 24F

© JPK

48

Basic idea of the algorithm

TSl P if and only if Traces(TS) L P
if and only if Traces(TS) N (2AP)W \P#Q
if and only if Traces(TS)N P # &
if and only if Traces(TS) N L, (A) # &

if and only if TS® A £ “eventually for ever” —F

persistence property

N w
where A is an NBA accepting the complement property P = (ZAP) \ P

© JPK

49

Persistence property

A persistence property over AP is an LT property P C (24F)”
“eventually for ever ®" for some propositional logic formula ® over AP:

Pors = {AcAiAy... € (2%)7] 3> 0.9 > i. A; = @}

® is called a persistence (or state) condition of P,

“® is an invariant after a while”

© JPK 50

Example persistence property

qo a —a q2

true a true

et {a} = AP, i.e., 27 = {A, B} where A= {} and B = {a}

"eventually for ever a” equals (A+ B)*BY = ({} + {a})"{a}”

© JPK

51

Recall synchronous product

For transition system TS = (S, Act,—, I, AP, L) without terminal states
and A = (Q,%,d,Qo, F) a non-blocking NBA with ¥ = 247 let:

TS A = (5, Act,—',I', AP, L) where

e '=85x%xQ, AP =Q and L'({(s,q)) = {q}

s 5t A q—>L(t) [

(5,q) =" (t,p)

e —' is the smallest relation defined by:

« I'={(s0,q) | so€T A 3q0 € Qo 0"}

© JPK 52

Verifying w-regular properties
Let:

e TS be a transition system over AP

e P be an w-regular property over AP, and
e A a non-blocking NBA such that £,(A) = P.

The following statements are equivalent:
(a) TS = P
(b) Traces(TS) N L, ,(A) = ©
(c) TS® A E Py

where Pj..s oy = ‘eventually for ever = F'”

= checking w-regular properties is reduced to persistence checking!

© JPK 53

Persistence checking

e Aim: establish whether TS [~ P,.., = “eventually for ever ®"

e Let state s be reachable in TS and s [~ ®

— TS has an initial path fragment that ends in s

o If sison a cycle

— this path fragment can be continued by an infinite path
- ... by traversing the cycle containing s infinitely often

= TS may visit the =®-state s infinitely often and so: TS = Py

e If not such s is found then: 75 = ..

© JPK

54

Persistence checking and cycle detection

Let

e 75 be a finite transition system without terminal states over AP
e & a propositional formula over AP, and

® P, the persistence property "eventually for ever ®"

TS = Ppers
if and only if
Js € Reach(TS).s = ® A sison acyclein G(TS)

© JPK 55

Infinitely often green?

{ red } green } true —green true
. —green JQ green

{qo} {a1} {2}

{ao} {a} {a2}

© JPK

56

Infinitely often green?

%) { red} green }
RS

© JPK 57

Cycle detection

How to check for a reachable cycles containing a —®-state?

e Alternative 1:

— compute the strongly connected components (SCCs) in G(TS)

— check whether one such SCC is reachable from an initial state

— ... that contains a —P-state

— “eventually for ever ®" is refuted if and only if such SCC is found

e Alternative 2:

— use a nested depth-first search
= more adequate for an on-the-fly verification algorithm
—> easier for generating counterexamples

© JPK

58

Nested depth-first search

e |dea: perform the two depth-first searches in an interleaved way

— the outer DFS serves to encounter all reachable —®-states
— the inner DFS seeks for backward edges leading to a —®-state

e Nested DFS

— on full expansion of ~®-state s in the outer DFS, start inner DFS
— in inner DFS, visit all states reachable from s not visited in the inner DFS yet
— no backward edge found to s? continue the outer DFS (look for next =P state)

e Counterexample generation: DFS stack concatenation

— stack U for the outer DFS = path fragment from sg € I to s (in reversed order)
— stack V for the inner DFS = a cycle from state s to s (in reversed order)

© JPK 59

Let:

Correctness of nested DFS

e TS be a finite transition system over AP without terminal states and

e P, a persistence property

The nested DFS algorithm yields "no” if and only if TS [Pps

© JPK

60

Time complexity

The worst-case time complexity of nested DFS is in
O((N+M) + N-| @)
where IN is # reachable states in TS, and M is # transitions in TS

© JPK 61

