

LTL Model Checking

Lecture #3 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 12, 2012

Content of this lecture

- Linear temporal logic
 - syntax, semantics, specifying properties
- Equivalences and fairness
 - weak until, fairness in LTL
- LTL model checking
 - GNBA, from LTL to GNBA, complexity

Content of this lecture

- ⇒ Linear temporal logic
 - syntax, semantics, specifying properties
- Equivalences and fairness
 - weak until, fairness in LTL
- LTL model checking
 - GNBA, from LTL to GNBA, complexity

LT properties

- An LT property is a set of infinite traces over AP
- Specifying such sets explicitly is often inconvenient
- Mutual exclusion is specified over $AP = \{ c_1, c_2 \}$ by

P_{mutex} = set of infinite words $A_0 A_1 A_2 \dots$ with $\{ c_1, c_2 \} \not\subseteq A_i$ for all $0 \leq i$

- Starvation freedom is specified over $AP = \{ c_1, w_1, c_2, w_2 \}$ by

$P_{nostarve}$ = set of infinite words $A_0 A_1 A_2 \dots$ such that:

$$\left(\exists^{\infty} j. w_1 \in A_j \right) \Rightarrow \left(\exists^{\infty} j. c_1 \in A_j \right) \wedge \left(\exists^{\infty} j. w_2 \in A_j \right) \Rightarrow \left(\exists^{\infty} j. c_2 \in A_j \right)$$

such properties can be specified succinctly using logic

Linear Temporal Logic: Syntax

- Propositional logic

- $a \in AP$ atomic proposition
 - $\neg\phi$ and $\phi \wedge \psi$ negation and conjunction

- Temporal operators

- $\bigcirc \phi$ neXt state fulfills ϕ
 - $\phi \mathsf{U} \psi$ ϕ holds Until a ψ -state is reached

linear temporal logic is a logic for describing LT properties

Derived operators

$$\phi \text{ } \textcolor{red}{\vee} \text{ } \psi \equiv \neg(\neg\phi \wedge \neg\psi)$$

$$\phi \text{ } \textcolor{red}{\Rightarrow} \text{ } \psi \equiv \neg\phi \vee \psi$$

$$\phi \text{ } \textcolor{red}{\Leftrightarrow} \text{ } \psi \equiv (\phi \Rightarrow \psi) \wedge (\psi \Rightarrow \phi)$$

$$\phi \text{ } \textcolor{red}{\oplus} \text{ } \psi \equiv (\phi \wedge \neg\psi) \vee (\neg\phi \wedge \psi)$$

$$\text{true} \equiv \phi \vee \neg\phi$$

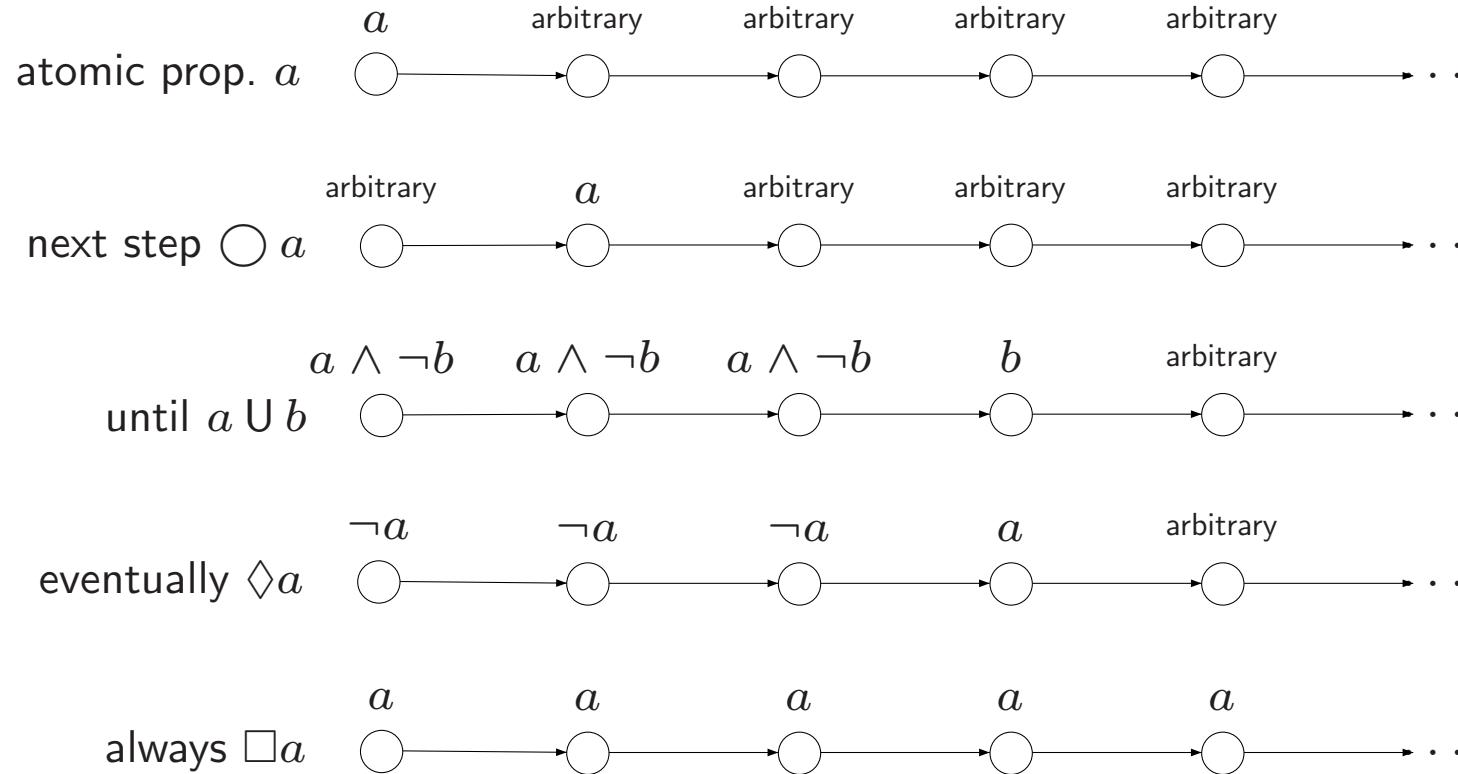
$$\text{false} \equiv \neg\text{true}$$

$$\textcolor{red}{\Diamond} \phi \equiv \text{true} \text{U} \phi \quad \text{“sometimes in the future”}$$

$$\textcolor{red}{\Box} \phi \equiv \neg\Diamond \neg\phi \quad \text{“from now on for ever”}$$

precedence order: the unary operators bind stronger than the binary ones.
 \neg and $\textcolor{blue}{\bigcirc}$ bind equally strong. U takes precedence over \wedge , \vee , and \Rightarrow

Intuitive semantics



LT properties

- Mutual exclusion is specified over $AP = \{ c_1, c_2 \}$ by

$P_{mutex} = \text{set of infinite words } A_0 A_1 A_2 \dots \text{ with } \{ c_1, c_2 \} \not\subseteq A_i \text{ for all } 0 \leq i$

- In LTL: $\square \neg(c_1 \wedge c_2)$
- Starvation freedom is specified over $AP = \{ c_1, w_1, c_2, w_2 \}$ by

$P_{nostarve} = \text{set of infinite words } A_0 A_1 A_2 \dots \text{ such that:}$

$$\left(\exists^{\infty} j. w_1 \in A_j \right) \Rightarrow \left(\exists^{\infty} j. c_1 \in A_j \right) \wedge \left(\exists^{\infty} j. w_2 \in A_j \right) \Rightarrow \left(\exists^{\infty} j. c_2 \in A_j \right)$$

- In LTL: $(\square \diamond w_1 \Rightarrow \square \diamond c_1) \wedge (\square \diamond w_2 \Rightarrow \square \diamond c_2)$

Semantics over words

The LT-property induced by LTL formula φ over AP is:

$Words(\varphi) = \{\sigma \in (2^{AP})^\omega \mid \sigma \models \varphi\}$, where \models is the smallest relation satisfying:

$$\sigma \models \text{true}$$

$$\sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a)$$

$$\sigma \models \varphi_1 \wedge \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma[1..] = A_1 A_2 A_3 \dots \models \varphi$$

$$\sigma \models \varphi_1 \bigcup \varphi_2 \quad \text{iff} \quad \exists j \geq 0. \ \sigma[j..] \models \varphi_2 \text{ and } \sigma[i..] \models \varphi_1, \ 0 \leq i < j$$

for $\sigma = A_0 A_1 A_2 \dots$ we have $\sigma[i..] = A_i A_{i+1} A_{i+2} \dots$ is the suffix of σ from index i on

Semantics of \Box , \Diamond , $\Box\Diamond$ and $\Diamond\Box$

$\sigma \models \Diamond\varphi$ iff $\exists j \geq 0. \sigma[j..] \models \varphi$

$\sigma \models \Box\varphi$ iff $\forall j \geq 0. \sigma[j..] \models \varphi$

$\sigma \models \Box\Diamond\varphi$ iff $\forall j \geq 0. \exists i \geq j. \sigma[i..] \models \varphi$

$\sigma \models \Diamond\Box\varphi$ iff $\exists j \geq 0. \forall i \geq j. \sigma[i..] \models \varphi$

Semantics over paths and states

Let $TS = (S, Act, \rightarrow, I, AP, L)$ and φ an LTL-formula over AP .

- For infinite path fragment π of TS :

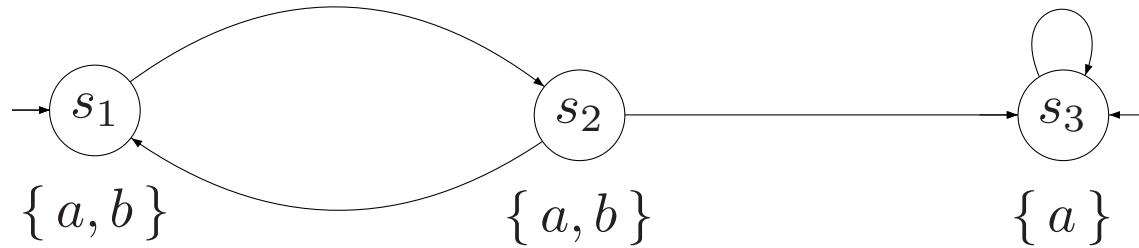
$$\pi \models \varphi \quad \text{iff} \quad \text{trace}(\pi) \models \varphi$$

- For state $s \in S$:

$$s \models \varphi \quad \text{iff} \quad \forall \pi \in \text{Paths}(s). \pi \models \varphi$$

- TS satisfies φ , denoted $TS \models \varphi$, iff $\text{Traces}(TS) \subseteq \text{Words}(\varphi)$

Example



$$TS \models \Box a$$

$$TS \models \Box(\neg b \Rightarrow \Box(a \wedge \neg b))$$

$$TS \not\models \bigcirc(a \wedge b)$$

$$TS \not\models b \bigcup (a \wedge \neg b)$$

Practical properties in LTL

- Reachability
 - simple reachability $\Diamond \psi$
 - conditional reachability $\phi \mathbf{U} \psi$
- Safety
 - invariant $\Box \phi$
- Liveness $\Box (\phi \Rightarrow \Diamond \psi)$ and others
- Fairness $\Box \Diamond \phi$ and others

Semantics of negation

For paths, it holds $\pi \models \varphi$ if and only if $\pi \not\models \neg\varphi$ since:

$$Words(\neg\varphi) = (2^{AP})^\omega \setminus Words(\varphi) \quad .$$

But: $TS \not\models \varphi$ and $TS \models \neg\varphi$ are *not* equivalent in general

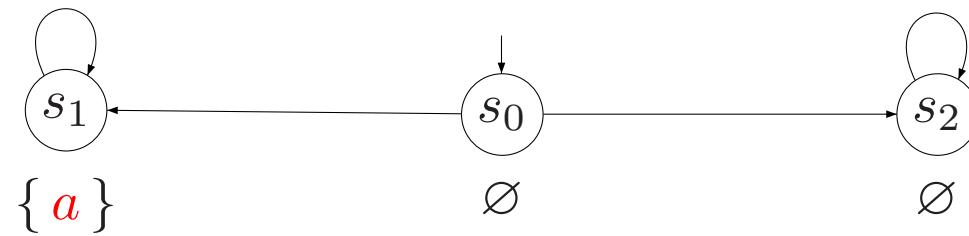
It holds: $TS \models \neg\varphi$ implies $TS \not\models \varphi$. Not always the reverse!

Note that:

$$\begin{aligned} TS \not\models \varphi &\quad \text{iff } Traces(TS) \not\subseteq Words(\varphi) \\ &\quad \text{iff } Traces(TS) \setminus Words(\varphi) \neq \emptyset \\ &\quad \text{iff } Traces(TS) \cap Words(\neg\varphi) \neq \emptyset \quad . \end{aligned}$$

TS neither satisfies φ nor $\neg\varphi$ if there are
paths π_1 and π_2 in TS such that $\pi_1 \models \varphi$ and $\pi_2 \models \neg\varphi$

Example



A transition system for which $TS \not\models \Diamond a$ and $TS \not\models \neg\Diamond a$

Content of this lecture

- Linear temporal logic
 - syntax, semantics, specifying properties
- ⇒ Equivalences and fairness
 - weak until, fairness in LTL
- LTL model checking
 - GNBA, from LTL to GNBA, complexity

Equivalence

LTL formulas ϕ, ψ are *equivalent*, denoted $\phi \equiv \psi$, if:

$$\text{Words}(\phi) = \text{Words}(\psi)$$

Duality and idempotence laws

Duality:

$$\begin{aligned}\neg \Box \phi &\equiv \Diamond \neg \phi \\ \neg \Diamond \phi &\equiv \Box \neg \phi \\ \neg \bigcirc \phi &\equiv \bigcirc \neg \phi\end{aligned}$$

Idempotency:

$$\begin{aligned}\Box \Box \phi &\equiv \Box \phi \\ \Diamond \Diamond \phi &\equiv \Diamond \phi \\ \phi \mathbf{U} (\phi \mathbf{U} \psi) &\equiv \phi \mathbf{U} \psi \\ (\phi \mathbf{U} \psi) \mathbf{U} \psi &\equiv \phi \mathbf{U} \psi\end{aligned}$$

Absorption and distributive laws

Absorption: $\Diamond \Box \Diamond \phi \equiv \Box \Diamond \phi$

$$\Box \Diamond \Box \phi \equiv \Diamond \Box \phi$$

Distribution: $\bigcirc(\phi \cup \psi) \equiv (\bigcirc \phi) \cup (\bigcirc \psi)$

$$\Diamond(\phi \vee \psi) \equiv \Diamond \phi \vee \Diamond \psi$$

$$\Box(\phi \wedge \psi) \equiv \Box \phi \wedge \Box \psi$$

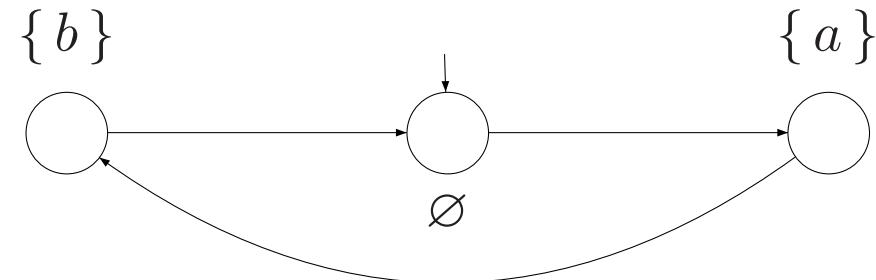
but: $\Diamond(\phi \cup \psi) \not\equiv (\Diamond \phi) \cup (\Diamond \psi)$

$$\Diamond(\phi \wedge \psi) \not\equiv \Diamond \phi \wedge \Diamond \psi$$

$$\Box(\phi \vee \psi) \not\equiv \Box \phi \vee \Box \psi$$

Distributive laws

$$\Diamond(a \wedge b) \not\equiv \Diamond a \wedge \Diamond b \quad \text{and} \quad \Box(a \vee b) \not\equiv \Box a \vee \Box b$$



TS $\not\models \Diamond(a \wedge b)$ and *TS* $\models \Diamond a \wedge \Diamond b$

Expansion laws

Expansion:

$$\begin{aligned}\phi \mathbf{U} \psi &\equiv \psi \vee (\phi \wedge \bigcirc (\phi \mathbf{U} \psi)) \\ \Diamond \phi &\equiv \phi \vee \bigcirc \Diamond \phi \\ \Box \phi &\equiv \phi \wedge \bigcirc \Box \phi\end{aligned}$$

proof on the black board

Expansion for until

$P = \text{Words}(\varphi \cup \psi)$ satisfies:

$$P = \text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \}$$

and is the *smallest* LT-property such that:

$$\text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \} \subseteq P \quad (*)$$

smallest LT-property satisfying condition $(*)$ means that:

$P = \text{Words}(\varphi \cup \psi)$ satisfies $(*)$ and $\text{Words}(\varphi \cup \psi) \subseteq P$ for each P satisfying $(*)$

Weak until

- The *weak-until* (or: unless) operator: $\varphi W \psi \stackrel{\text{def}}{=} (\varphi U \psi) \vee \square \varphi$
 - as opposed to until, $\varphi W \psi$ does not require a ψ -state to be reached
- Until U and weak until W are *dual*:

$$\begin{aligned}\neg(\varphi U \psi) &\equiv (\varphi \wedge \neg\psi) W (\neg\varphi \wedge \neg\psi) \\ \neg(\varphi W \psi) &\equiv (\varphi \wedge \neg\psi) U (\neg\varphi \wedge \neg\psi)\end{aligned}$$
- Until and weak until are *equally expressive*:
 - $\square \psi \equiv \psi W \text{false}$ and $\varphi U \psi \equiv (\varphi W \psi) \wedge \neg \square \neg \psi$
- Until and weak until satisfy the *same expansion law*
 - but until is the smallest, and weak until the largest solution!

Expansion for weak until

$P = \text{Words}(\varphi \text{ W } \psi)$ satisfies:

$$P = \text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \}$$

and is the *largest* LT-property such that:

$$\text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \} \supseteq P \quad (**)$$

largest LT-property satisfying condition $(**)$ means that:

$P \supseteq \text{Words}(\varphi \text{ W } \psi)$ satisfies $(**)$ and $\text{Words}(\varphi \text{ W } \psi) \supseteq P$ for each P satisfying $(**)$

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over AP .

1. An *unconditional LTL fairness constraint* is of the form:

$$ufair = \square\lozenge\Psi$$

2. A *strong LTL fairness condition* is of the form:

$$sfair = \square\lozenge\Phi \longrightarrow \square\lozenge\Psi$$

3. A *weak LTL fairness constraint* is of the form:

$$wfair = \lozenge\square\Phi \longrightarrow \square\lozenge\Psi$$

Φ stands for “something is enabled”; Ψ for “something is taken”

LTL fairness assumption

- *LTL fairness assumption* = conjunction of LTL fairness constraints
 - the fairness constraints are of any arbitrary type
- Strong fairness assumption: $sfair = \bigwedge_{0 < i \leq k} (\square \diamond \Phi_i \longrightarrow \square \diamond \Psi_i)$
 - compare this to an action-based strong fairness constraint over A with $|A| = k$
- General format: $fair = ufair \wedge sfair \wedge wfair$
- Rules of thumb:
 - strong (or unconditional) fairness assumptions are useful for solving contentions
 - weak fairness suffices for resolving nondeterminism resulting from interleaving

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

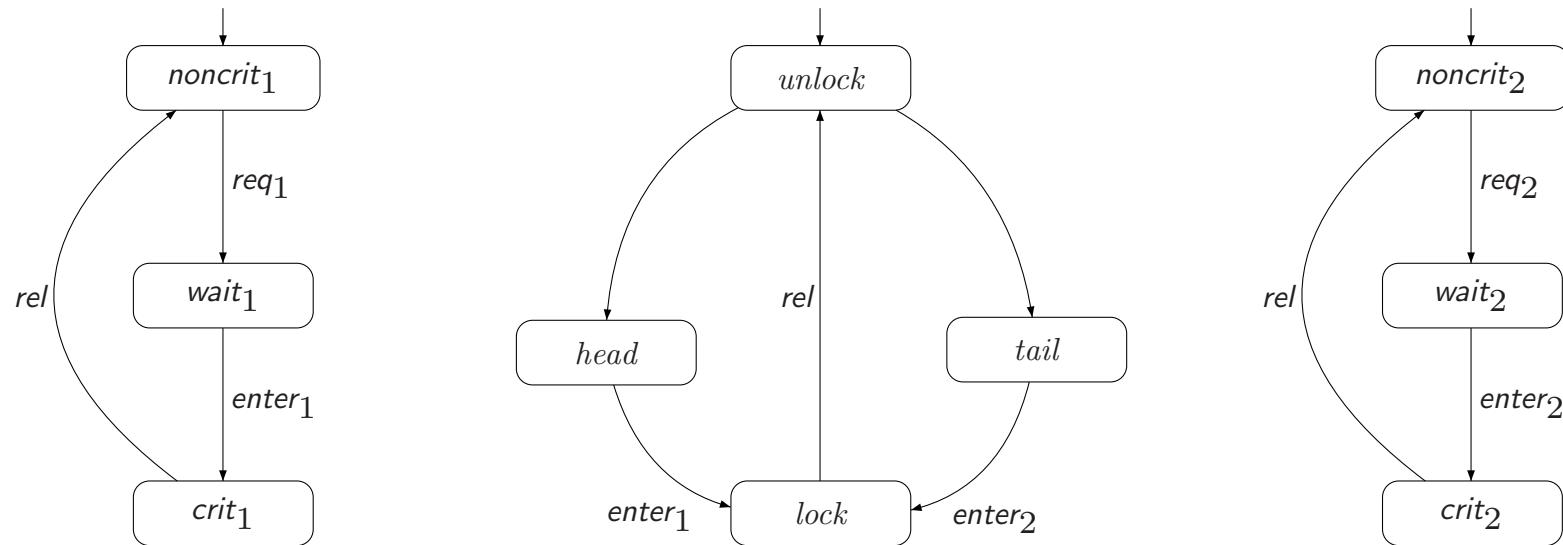
$$\begin{aligned} \text{FairPaths}_{\text{fair}}(s) &= \left\{ \pi \in \text{Paths}(s) \mid \pi \models_{\text{fair}} \text{fair} \right\} \\ \text{FairTraces}_{\text{fair}}(s) &= \left\{ \text{trace}(\pi) \mid \pi \in \text{FairPaths}_{\text{fair}}(s) \right\} \end{aligned}$$

For LTL-formula φ , and LTL fairness assumption fair :

$$\begin{aligned} s \models_{\text{fair}} \varphi &\quad \text{if and only if} \quad \forall \pi \in \text{FairPaths}_{\text{fair}}(s). \pi \models \varphi \quad \text{and} \\ TS \models_{\text{fair}} \varphi &\quad \text{if and only if} \quad \forall s_0 \in I. s_0 \models_{\text{fair}} \varphi \end{aligned}$$

\models_{fair} is the *fair satisfaction relation* for LTL; \models the standard one for LTL

Randomized arbiter



$$TS_1 \parallel \text{Arbiter} \parallel TS_2 \not\models \Box \Diamond crit_1$$

But: $TS_1 \parallel \text{Arbiter} \parallel TS_2 \models_{fair} \Box \Diamond crit_1 \wedge \Box \Diamond crit_2$ with $fair = \Box \Diamond head \wedge \Box \Diamond tail$

Reducing \models_{fair} to \models

For:

- transition system TS without terminal states
- LTL formula φ , and
- LTL fairness assumption $fair$

it holds:

$$TS \models_{fair} \varphi \quad \text{if and only if} \quad TS \models (fair \rightarrow \varphi)$$

verifying an LTL-formula under a fairness assumption can be done
using standard verification algorithms for LTL

Content of this lecture

- Linear temporal logic
 - syntax, semantics, specifying properties
- Equivalences and fairness
 - weak until, fairness in LTL

⇒ LTL model checking

- GNBA, from LTL to GNBA, complexity

LTL model-checking problem

The following decision problem:

Given finite transition system TS and LTL-formula φ :
yields “yes” if $TS \models \varphi$, and “no” (plus a counterexample) if $TS \not\models \varphi$

NBA for LTL-formulae

A first attempt

$$TS \models \varphi \quad \text{if and only if} \quad \text{Traces}(TS) \subseteq \underbrace{\text{Words}(\varphi)}_{\mathcal{L}_\omega(\mathcal{A}_\varphi)}$$

$$\text{if and only if} \quad \text{Traces}(TS) \cap \overline{\mathcal{L}_\omega(\mathcal{A}_\varphi)} = \emptyset$$

$$\text{if and only if} \quad \text{Traces}(TS) \cap \mathcal{L}_\omega(\overline{\mathcal{A}_\varphi}) = \emptyset$$

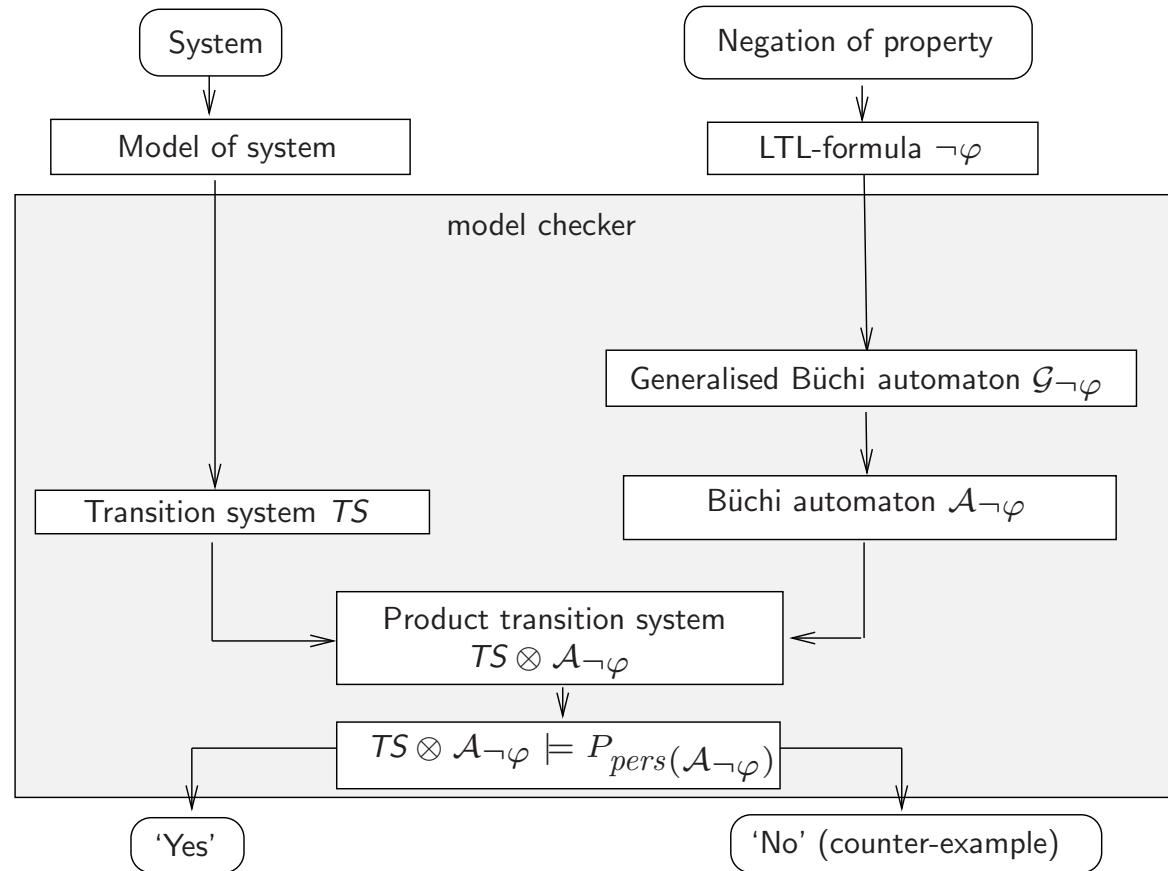
*but complementation of NBA is quadratically exponential
if \mathcal{A} has n states, $\overline{\mathcal{A}}$ has c^{n^2} states in worst case*

Observation

$TS \models \varphi$ if and only if $Traces(TS) \subseteq Words(\varphi)$
 if and only if $Traces(TS) \cap ((2^{AP})^\omega \setminus Words(\varphi)) = \emptyset$
 if and only if $Traces(TS) \cap \underbrace{Words(\neg\varphi)}_{\mathcal{L}_\omega(\mathcal{A}_{\neg\varphi})} = \emptyset$
 if and only if $TS \otimes \mathcal{A}_{\neg\varphi} \models \Diamond\Box\neg F$

LTL model checking is thus reduced to persistence checking!

Overview of LTL model checking



Generalized Büchi automata

- NBA are as expressive as ω -regular languages
- Variants of NBA exist that are equally expressive
 - Muller, Rabin, Streett automata, and generalized Büchi automata (GNBA)
- GNBA are like NBA, but have a distinct **acceptance criterion**
 - a GNBA requires to visit several sets F_1, \dots, F_k ($k \geq 0$) infinitely often
 - for $k=0$, all runs are accepting; for $k=1$ it behaves like an NBA
- GNBA are useful to relate temporal logic and automata

Generalized Büchi automata

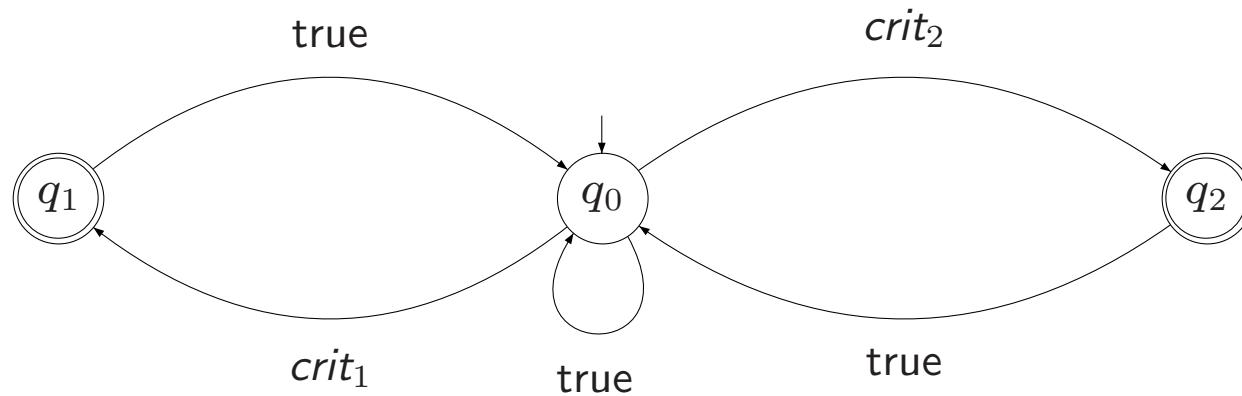
A **generalized NBA** (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- Q, Σ, δ and Q_0 are as before, and
- $\mathcal{F} = \{ F_1, \dots, F_k \}$ is a (possibly empty) subset of 2^Q

Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \dots \in \Sigma^\omega$
- A **accepted run** for σ in \mathcal{G} is an **infinite** sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leq i$, and
 - **for all $F \in \mathcal{F}$:** $q_i \in F$ for infinitely many i
- $\mathcal{L}_\omega(\mathcal{G}) = \{\sigma \in \Sigma^\omega \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{G}\}$

Example



A GNBA for the property "both processes are infinitely often in their critical section"

$$\mathcal{F} = \{ \{ q_1 \}, \{ q_2 \} \}$$

From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

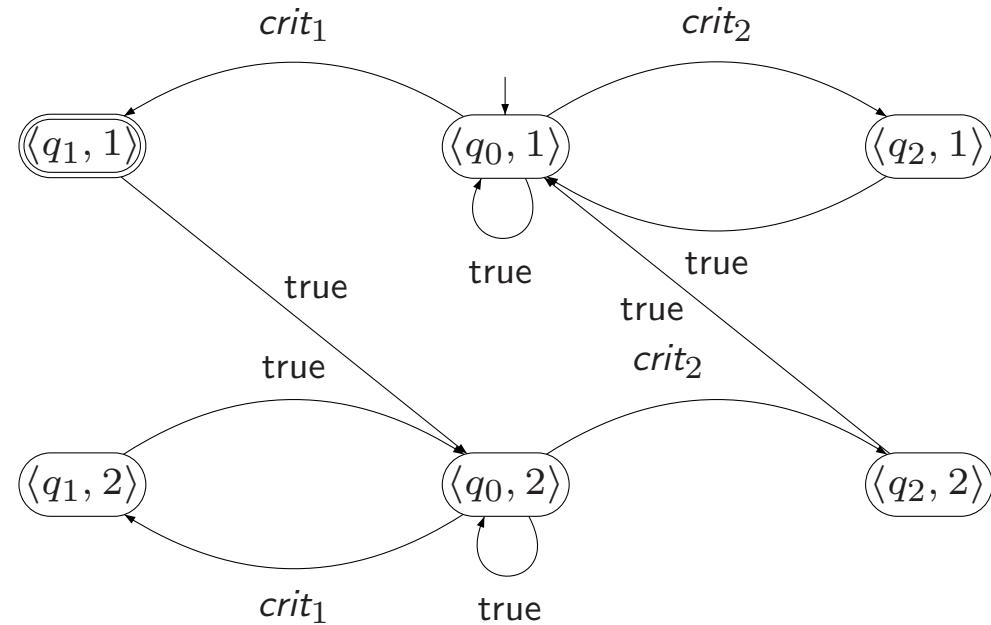
$$\mathcal{L}_\omega(\mathcal{G}) = \mathcal{L}_\omega(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where \mathcal{F} denotes the set of acceptance sets in \mathcal{G}

Sketch of transformation GNBA (with $|\mathcal{F}| = k$) into equivalent NBA:

- make k copies of the GNBA
- initial states of NBA := the initial states in the first copy
- final states of NBA := accept set F_1 in the first copy
- on visiting in i -th copy a state in F_i , then move to the $(i+1)$ -st copy

Example



From LTL to GNBA

GNBA \mathcal{G}_φ over 2^{AP} for LTL-formula φ with $\mathcal{L}_\omega(\mathcal{G}_\varphi) = \text{Words}(\varphi)$:

- Assume φ only contains the operators \wedge , \neg , \bigcirc and \mathbf{U}
- States are **elementary sets** of sub-formulas in φ
 - for $\sigma = A_0A_1A_2\dots \in \text{Words}(\varphi)$, “expand” $A_i \subseteq AP$ with sub-formulas of φ
 - \dots to obtain $\bar{\sigma} = B_0B_1B_2\dots$ such that
$$\psi \in B_i \quad \text{if and only if} \quad \sigma^i = A_iA_{i+1}A_{i+2}\dots \models \psi$$
 - $\bar{\sigma}$ is intended to be a run in GNBA \mathcal{G}_φ for σ
- **Transitions** are derived from semantics \bigcirc and expansion law for \mathbf{U}
- **Accept sets** guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \models \varphi$

From LTL to GNBA: the states (example)

- Let $\varphi = a \cup (\neg a \wedge b)$ and $\sigma = \{a\} \{a, b\} \{b\} \dots$
 - B_i is a subset of $\{a, b, \neg a \wedge b, \varphi\} \cup \{\neg a, \neg b, \neg(\neg a \wedge b), \neg \varphi\}$
 - this set of formulas is also called the *closure* of φ
- Extend $A_0 = \{a\}$, $A_1 = \{a, b\}$, $A_2 = \{b\}$, ... as follows:
 - extend A_0 with $\neg b$, $\neg(\neg a \wedge b)$, and φ as they hold in $\sigma^0 = \sigma$ (and no others)
 - extend A_1 with $\neg(\neg a \wedge b)$ and φ as they hold in σ^1 (and no others)
 - extend A_2 with $\neg a$, $\neg a \wedge b$ and φ as they hold in σ^2 (and no others)
 - ... and so forth
 - this is not effective and is performed on the automaton (not on words)
- Result:
 - $\bar{\sigma} = \underbrace{\{a, \neg b, \neg(\neg a \wedge b), \varphi\}}_{B_0} \underbrace{\{a, b, \neg(\neg a \wedge b), \varphi\}}_{B_1} \underbrace{\{\neg a, b, \neg a \wedge b, \varphi\}}_{B_2} \dots$

Closure

For LTL-formula φ , the set $\text{closure}(\varphi)$
consists of all sub-formulas ψ of φ and their negation $\neg\psi$
(where ψ and $\neg\neg\psi$ are identified)

for $\varphi = a \cup (\neg a \wedge b)$, $\text{closure}(\varphi) = \{ a, b, \neg a, \neg b, \neg a \wedge b, \neg(\neg a \wedge b), \varphi, \neg\varphi \}$

can we take B_i as any subset of $\text{closure}(\varphi)$? no! they must be elementary

Elementary sets of formulae

$B \subseteq \text{closure}(\varphi)$ is *elementary* if:

1. B is *logically consistent* if for all $\varphi_1 \wedge \varphi_2, \psi \in \text{closure}(\varphi)$:

- $\varphi_1 \wedge \varphi_2 \in B \Leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
- $\psi \in B \Rightarrow \neg\psi \notin B$
- $\text{true} \in \text{closure}(\varphi) \Rightarrow \text{true} \in B$

2. B is *locally consistent* if for all $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:

- $\varphi_2 \in B \Rightarrow \varphi_1 \cup \varphi_2 \in B$
- $\varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \Rightarrow \varphi_1 \in B$

3. B is *maximal*, i.e., for all $\psi \in \text{closure}(\varphi)$:

- $\psi \notin B \Rightarrow \neg\psi \in B$

Examples

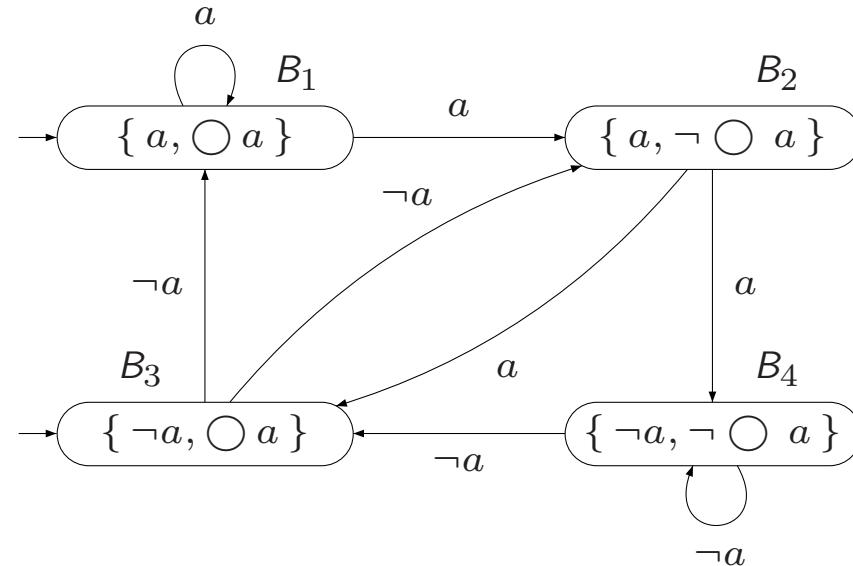
The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_\varphi = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

- $Q = \text{all elementary sets } B \subseteq \text{closure}(\varphi)$, $Q_0 = \{ B \in Q \mid \varphi \in B \}$
- $\mathcal{F} = \{ \{ B \in Q \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \} \mid \varphi_1 \cup \varphi_2 \in \text{closure}(\varphi) \}$
- The transition relation $\delta : Q \times 2^{AP} \rightarrow 2^Q$ is given by:
 - If $A \neq B \cap AP$ then $\delta(B, A) = \emptyset$
 - $\delta(B, B \cap AP)$ is the set B' of all elementary sets of formulas satisfying:
 - For every $\bigcirc \psi \in \text{closure}(\varphi)$: $\bigcirc \psi \in B \Leftrightarrow \psi \in B'$, and
 - For every $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:

$$\varphi_1 \cup \varphi_2 \in B \Leftrightarrow (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in B'))$$

GNBA for LTL-formula $\bigcirc a$



$Q_0 = \{ B_1, B_3 \}$ since $\bigcirc a \in B_1$ and $\bigcirc a \in B_3$

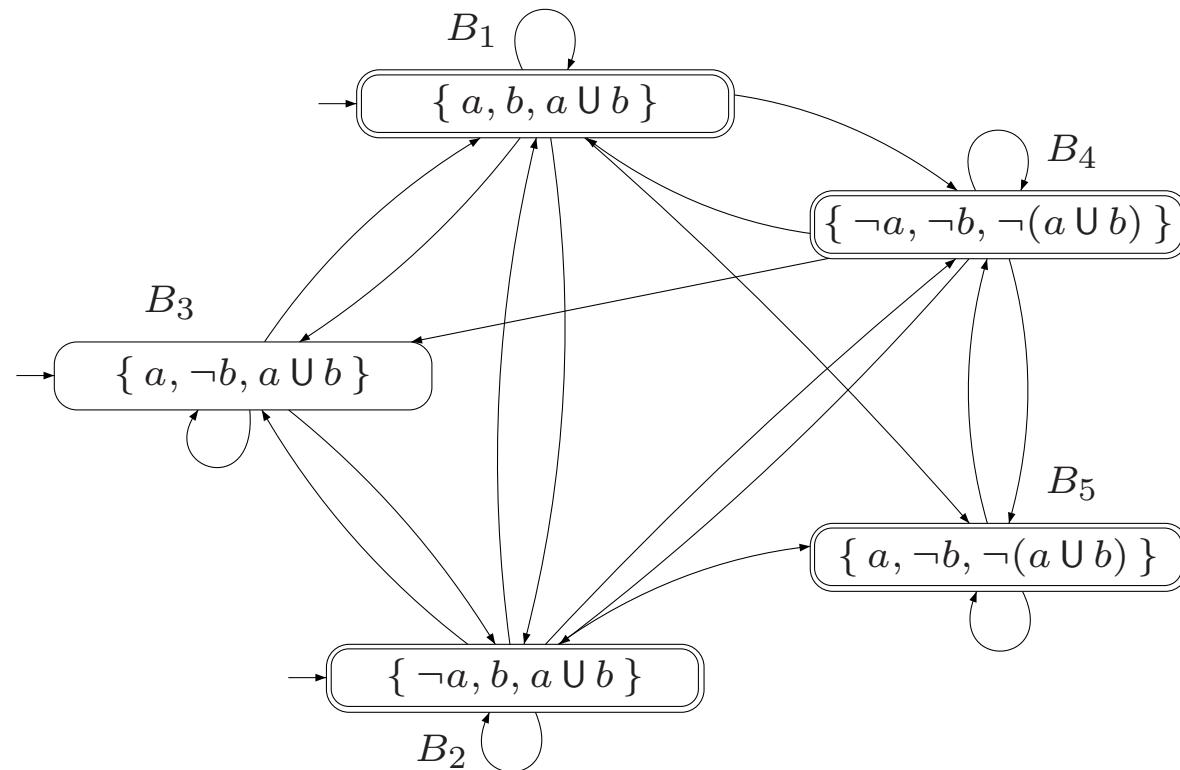
$\delta(B_2, \{ a \}) = \{ B_3, B_4 \}$ as $B_2 \cap \{ a \} = \{ a \}$, $\neg \bigcirc a = \bigcirc \neg a \in B_2$, and $\neg a \in B_3, B_4$

$\delta(B_1, \{ a \}) = \{ B_1, B_2 \}$ as $B_1 \cap \{ a \} = \{ a \}$, $\bigcirc a \in B_1$ and $a \in B_1, B_2$

$\delta(B_4, \{ a \}) = \emptyset$ since $B_4 \cap \{ a \} = \emptyset \neq \{ a \}$

The set \mathcal{F} is empty, since $\varphi = \bigcirc a$ does not contain an until-operator

GNBA for LTL-formula $a \mathbin{\text{\textup{U}}} b$



justification: on the black board

NBA are more expressive than LTL

Corollary: every LTL-formula expresses an ω -regular property

But: there exist ω -regular properties that cannot be expressed in LTL

Example: there is **no** LTL formula φ with $\text{Words}(\varphi) = P$ for the LT-property:

$$P = \left\{ A_0 A_1 A_2 \dots \in \left(2^{\{a\}}\right)^\omega \mid a \in A_{2i} \text{ for } i \geq 0 \right\}$$

But there exists an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = P$

\Rightarrow *there are ω -regular properties that cannot be expressed in LTL!*

Complexity for LTL to NBA

For any LTL-formula φ (over AP) there exists an NBA \mathcal{A}_φ
with $Words(\varphi) = \mathcal{L}_\omega(\mathcal{A}_\varphi)$ and
which can be constructed in time and space in $2^{\mathcal{O}(|\varphi| \cdot \log |\varphi|)}$

Justification complexity: next slide

Time and space complexity

- States GNBA \mathcal{G}_φ are elementary sets of formulae in $\text{closure}(\varphi)$
 - sets B can be represented by bit vectors with single bit per subformula ψ of φ
- The number of states in \mathcal{G}_φ is bounded by $2^{|\text{subf}(\varphi)|}$
 - where $\text{subf}(\varphi)$ denotes the set of all subformulae of φ
 - $|\text{subf}(\varphi)| \leq 2 \cdot |\varphi|$; so, the number of states in \mathcal{G}_φ is bounded by $2^{\mathcal{O}(|\varphi|)}$
- The number of accepting sets of \mathcal{G}_φ is bounded above by $\mathcal{O}(|\varphi|)$
- The number of states in NBA \mathcal{A}_φ is thus bounded by $2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|)$
- $2^{\mathcal{O}(|\varphi|)} \cdot \mathcal{O}(|\varphi|) = 2^{\mathcal{O}(|\varphi| \log |\varphi|)}$ qed

Lower bound

There exists a family of LTL formulas φ_n with $|\varphi_n| = \mathcal{O}(\text{poly}(n))$
such that every NBA \mathcal{A}_{φ_n} for φ_n has at least 2^n states

Proof (1)

Let AP be non-empty, that is, $|2^{AP}| \geq 2$ and:

$$\mathcal{L}_n = \left\{ A_1 \dots A_n A_1 \dots A_n \sigma \mid A_i \subseteq AP \wedge \sigma \in (2^{AP})^\omega \right\}, \quad \text{for } n \geq 0$$

It follows $\mathcal{L}_n = \text{Words}(\varphi_n)$ where $\varphi_n = \bigwedge_{a \in AP} \bigwedge_{0 \leq i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$

φ_n is an LTL formula of polynomial length: $|\varphi_n| \in \mathcal{O}(|AP| \cdot n)$

However, any NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_n$ has at least 2^n states

Proof (2)

Claim: any NBA \mathcal{A} for $\bigwedge_{a \in AP} \bigwedge_{0 \leq i < n} (\bigcirc^i a \longleftrightarrow \bigcirc^{n+i} a)$ has at least 2^n states

Words of the form $A_1 \dots A_n A_1 \dots A_n \emptyset \emptyset \emptyset \dots$ are accepted by \mathcal{A}

\mathcal{A} thus has for every word $A_1 \dots A_n$ of length n , a state $q(A_1 \dots A_n)$, say, which can be reached from an initial state by consuming $A_1 \dots A_n$

From $q(A_1 \dots A_n)$, it is possible to visit an accept state infinitely often by accepting the suffix $A_1 \dots A_n \emptyset \emptyset \emptyset \dots$

If $A_1 \dots A_n \neq A'_1 \dots A'_n$ then

$$A_1 \dots A_n A'_1 \dots A'_n \emptyset \emptyset \emptyset \dots \notin \mathcal{L}_n = \mathcal{L}_\omega(\mathcal{A})$$

Therefore, the states $q(A_1 \dots A_n)$ are all pairwise different

Given $|2^{AP}|$ possible sequences $A_1 \dots A_n$, NBA \mathcal{A} has $\geq \left(|2^{AP}| \right)^n \geq 2^n$ states

Complexity for LTL model checking

The time and space complexity of LTL model checking is in $\mathcal{O}(|TS| \cdot 2^{|\varphi|})$

Theoretical complexity

The LTL model-checking problem is PSPACE-complete