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LT properties

e An LT property is a set of infinite traces over AP

e Specifying such sets explicitly is often inconvenient
e Mutual exclusion is specified over AP = { ¢1,c2 } by

Prutex = set of infinite words Ag A1 Ay ... with {c1,c0} € A;forall 0 <4

e Starvation freedom is specified over AP = { ¢1, w1, co, wo } by

P, ostarve = set of infinite words Ag A7 A5 . . . such that:

(%loj.wléAj>:><O§j.CleAj>/\(OEIOj.wQEAj>:><OE|Oj.CQEAj>

such properties can be specified succinctly using logic
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Linear Temporal Logic: Syntax

e Propositional logic

- a € AP atomic proposition
— m¢gpand o A Y negation and conjunction

e Temporal operators

- O¢ neXt state fulfills ¢
- oU ¢ holds Until a v-state is reached

linear temporal logic is a logic for describing LT properties
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Derived operators

oV = (29N Y)
b= = -V
¢y = (=9) N (Y =9)
oD = (¢ A ) V (=g A )
true = ¢V -
false = —true
Odp = trueUo “sometimes in the future”
o = =0 -0 “from now on for ever”

precedence order: the unary operators bind stronger than the binary ones.
— and (O bind equally strong. U takes precedence over A, V, and —
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Intuitive semantics

a arbitrary arbitrary arbitrary arbitrary

atomic prop. a () O () () ()
arbitrary a arbitrary arbitrary arbitrary

next step O a (O O O O O
a N\ —b a N\ —b a N\ —b b arbitrary

until aUb O O O O O
—Q —Q —Q a arbitrary

eventually 0a O O 's 's O

a a a a a

aways Oa OO0
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LT properties
e Mutual exclusion is specified over AP = { ¢1,c2 } by
Pytez = set of infinite words Ag A1 As ... with {c1,c0} € A;forall 0 <4
e In LTL: L—(cy Acs)

e Starvation freedom is specified over AP = { ¢1, w1, co, wo } by

P, osiarve = set of infinite words Ag A1 As . . . such that:

(%Oj.wleAj)i(oﬁj.cléAj)/\(OE(I)j-wQEAj)?(OEIOj-@GAj)

e In LTL: (D<>w1 — D<>Cl) /N (D<>w2 = |:|<>CQ)
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Semantics over words

The LT-property induced by LTL formula ¢ over AP is:

Words(p) = {U € (2A'D)w A= gp},where = is the smallest relation satisfying:

o = ftrue

o E a iff a€ Ay (ie, Ag Ea)

o = piAps iff o=@ and o= @

o E - iff o~

o = Oy iff o|l..] = A142A5... F ¢

o = @i1Upy iff 35 >0.0[j..] Eps and oli..] F 1, 0<i<y
for o = AgA1 Ay ... wehave o[i.] = AjAj 1 A;i4g. .. is the suffix of o from index i on
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Semantics of [, {, [L1{ and QL]

= Qp

= [0y

= Oy

iff

iff

iff

iff

472 0. olj..] E o
Vi>0.0j..]EFEe
¥i>0.3i>j.0[i..]E¢

4 >0Vi>j.0li...]EFE vy
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Semantics over paths and states

Let TS = (S, Act,—,I, AP, L) and ¢ an LTL-formula over AP.

e For infinite path fragment 7 of TS:

TEp iff trace(m) = ¢

e For state s € S"

sk iff  Vm € Paths(s). m = ¢

e TS satisfies ¢, denoted TS |= o, iff Traces(TS) C Words(yp)
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Example
ta;b} ) {a,b} {a}
TS = Ua 7S ¥~ O(anb)
TS = O(=b = O(aA-D)) TS # bU(aN—b)
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Practical properties in LTL

e Reachability

— simple reachability QY

— conditional reachability oUy
e Safety

— Invariant [1¢
e Liveness (¢ = O1) and others
e Fairness [10 ¢ and others
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Semantics of negation

For paths, it holds 7w = ¢ if and only if m = = since:
Words(—yp) = (QAP)W \ Words(y)

But: TS}~ ¢ and TS = — are not equivalent in general
It holds: TS = —¢ implies TS = ¢. Not always the reverse!

Note that:
TS = ¢ iff Traces(TS) € Words(y)

iff Traces(TS) \ Words(yp) # @
iff Traces( TS) N Words(—y) # @

TS neither satisfies ¢ nor = if there are

paths 71 and 72 in TS such that m |= ¢ and w2 |= —p
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Example

{a} &

A transition system for which TS = Qa and TS = —0a
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Equivalence

LTL formulas ¢, are equivalent, denoted ¢ = 1, if:

Words(¢p) = Words(1))
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Duality and idempotence laws

Duality: o = O -0
~0¢ = O-¢
~0¢ = O-¢

l[dempotency: 0 = 0Oo
009 = 009

oU(pUy) = oUy
(pUy)Uy = oUy
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Absorption and distributive laws

o9
000¢

Absorption:

Distribution:

O(eUy)
Olo vV ¥)
Lo A )

LR LR

O ¢
ol¢

(Oe)U(O)
Cp VvV QY
O A D

(09) U (O)
Cp N Oy
Co v T
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Distributive laws

Olandb) Z Qa N Ob and (a V b) # Ua Vv b

10} ta}

) ‘
ST

TS = O(aAb) and TS = Qa A Ob
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Expansion laws

Expansion: ¢oUyp = ¢ VvV (¢ A O(¢pUq))
0¢p = oV OO0
o = o N OUo

proof on the black board
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Expansion for until

P = Words(p U 1)) satisfies:
P = Words(y)) U { AgA1As... € Words(p) | A1Ay...€ P}

and is the smallest LT-property such that:

WOI’dS(lD) U {AoAlAQ ... € WOI’dS(gD) ‘ A{As ... € P} Cc P (*)

smallest LT-property satisfying condition (*) means that:
P = Words(p U 1) satisfies (*) and Words(p U1) C P for each P satisfying (*)
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Weak until

def

e The weak-until (or: unless) operator: W1 = (pU) Vv Oy

— as opposed to until, o W 1) does not require a 1)-state to be reached

e Until U and weak until W are dual:

—(eU) (e A=) W (mp A =)
—(eW1) (p A=) U (mp A=)

e Until and weak until are equally expressive:

— Oy = yYWfalseand pUy = (W) A ==

e Until and weak until satisfy the same expansion law

— but until is the smallest, and weak until the largest solution!
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Expansion for weak until

P = Words(p W 1)) satisfies:
P = Words(y)) U { AgA1As... € Words(p) | A1Ay...€ P}

and is the largest LT-property such that:

WOFdS(@D) U {AOA1A2 N WOFdS(gO) | A{As ... € P} o P <>I<>I<>

largest LT-property satisfying condition (**) means that:
P D Words(yp W 1)) satisfies (**) and Words(¢o W 1)) D P for each P satisfying (**)
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LTL fairness constraints

Let & and W be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = LOOW

2. A strong LTL fairness condition is of the form:

sfair = LOO® — LIOW

3. A weak LTL fairness constraint is of the form:

wfarr = O — LOW

® stands for “something is enabled”; W for “something is taken”
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LTL fairness assumption

e LTL fairness assumption = conjunction of LTL fairness constraints

— the fairness constraints are of any arbitrary type

e Strong fairness assumption: sfair = No<i<k (D<><I>,- — DQ\II,-)

— compare this to an action-based strong fairness constraint over A with |A| = k

e General format: fair = ufair AN sfair N wfair

e Rules of thumb:

— strong (or unconditional) fairness assumptions are useful for solving contentions
— weak fairness suffices for resolving nondeterminism resulting from interleaving
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Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPaths;,(s) = {7‘(‘ € Paths(s) | m = fair}
FairTracesp,;;(s) = { trace(m) | ™ € FairPaths,;, (s) }

For LTL-formula ¢, and LTL fairness assumption fair:

s Fpir ¢ ifand only if V7 € FairPathsg,(s). m =¢ and
TS F=pir ¢ ifand only if  Vsg € I.so =fuir

=1air is the fair satisfaction relation for LTL; |= the standard one for LTL
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Randomized arbiter

noncritq noncrity

unlock

rel rel

TSy || Arbiter || TS = O crity
But: TSy || Arbiter || TSe =i OOcrity A OOcrity with fair = OOhead A OO tail
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For:

Reducing =, to =

e transition system TS without terminal states

e LTL formula ¢, and

e LTL fairness assumption fair

It holds:

TS Epuir ¢ if and only if TS = (fair — @)

verifying an LTL-formula under a fairness assumption can be done
using standard verification algorithms for LTL
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LTL model-checking problem

The following decision problem:

Given finite transition system TS and LTL-formula ¢:
yields “yes” if TS |= ¢, and “no” (plus a counterexample) if TS [~
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NBA for LTL-formulae
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A first attempt

IS¢ ifandonly if  Traces(TS) C Words(p)
Lu(Ayp)

if and only if  Traces(TS) N L,(Ay)

|
Q

if and only if  Traces(TS) N L,(A,) = @

but complementation of NBA is quadratically exponential
— 2
if A has n states, A has c" states in worst case
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Observation

TSE ¢ ifandonlyif  Traces(TS) C Words(y)

if and only if  Traces(TS) N ((24F)« \ Words(p)) = @

if and only if  Traces(TS) N Words(—yp) = &
Lo (ASy)

ifandonlyif TS®A., = OU-F

LTL model checking is thus reduced to persistence checking!
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Overview of LTL model checking

[ Negation of property j

I

Model of system

LTL-formula —¢

model checker

Generalised Biichi automaton g—.gp

Transition system TS

| Biichi automaton A—¢

Product transition system

v

\l/

( ‘No’ (counter-example) )
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Generalized Buchi automata

e NBA are as expressive as w-regular languages

e Variants of NBA exist that are equally expressive

— Muller, Rabin, Streett automata, and eneralized Biichi automata (GNBA)

e GNBA are like NBA, but have a distinct acceptance criterion

— a GNBA requires to visit several sets F1, ..., Fy (k > 0) infinitely often
— for k=0, all runs are accepting; for k=1 it behaves like an NBA

e GNBA are useful to relate temporal logic and automata
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Generalized Buchi automata

A generalized NBA (GNBA) G is a tuple (@, 3,9, Qq, F) where:
e (), X, 0 and )y are as before, and

o F={F,, ..., F.} is a (possibly empty) subset of 2%

© JPK

36



Language of a GNBA

e GNBA G = (Q,X,6,Q0, F) and word 0 = ApA1A; ... € 3¢

e A accepted run for ¢ in G is an infinite sequence qp g1 g2 . . . such that:

— qo € Qo and g; i> qi+1 for all 0 < 4, and
— for all F' € F: q; € F for infinitely many ¢

e L,(G)= {0 €X¥] there exists an accepting run for o in G }
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Example

true Crity

crity true true

A GNBA for the property "both processes are infinitely often in their critical section”

F={{a},{a}}
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From GNBA to NBA

For any GNBA G there exists an NBA A with:
L,(9) = Lu(A) and [A] = O(|G] - | F])

where F denotes the set of acceptance sets in G

Sketch of transformation GNBA (with |F| = k) into equivalent NBA:

— make k copies of the GNBA

— initial states of NBA := the initial states in the first copy

— final states of NBA := accept set F} in the first copy

— on visiting in i-th copy a state in F;, then move to the (i41)-st copy
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Example

crity crity

crity true

© JPK 40



From LTL to GNBA

GNBA G, over 2”7 for LTL-formula ¢ with £,,(G,) = Words(y):

e Assume ¢ only contains the operators A, =, () and U

e States are elementary sets of sub-formulas in ¢

— for o = AgA1Asy ... € Words(p), “expand” A; C AP with sub-formulas of ¢
— ...toobtaino = ByB1Bs...such that

Y € B; if and only if O‘i = AZ'AH_lAH_Q . ‘: (U
— 0 is intended to be a run in GNBA G, for o
e Transitions are derived from semantics () and expansion law for U

e Accept sets guarantee that: & is an accepting run for o iff o = ¢
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From LTL to GNBA: the states (example)

o let p=aU(—aAb) and o={al}{a,b}{b}...

— B, is asubset of { a,b,ma A b, } U {—a,-b,—(—a Ab),—-p}
— this set of formulas is also called the closure of ¢

e Extend Ay={a}, A ={a,b}, Ao ={b}, ... as follows:

— extend Ag with —b, =(—a A b), and ¢ as they hold in ¢ = & (and no others)
— extend A; with =(—a A b) and ¢ as they hold in o' (and no others)

— extend Ay with —a, —a A b and ¢ as they hold in 6 (and no others)

— ... and so forth

— this is not effective and is performed on the automaton (not on words)

e Result:

-6 = {a,7b,~(maAb),p} {a,b,=(maAb),p} {—a,b,maNb,p}...
Bo By B>
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Closure

For LTL-formula ¢, the set closure(y)
consists of all sub-formulas v of ¢ and their negation =%

(where @ and ——1) are identified)

for o = a U (—a Ab), closure(p) = { a, b, ma, =b, ma ANb,=(—a A Db), p, e}

can we take B; as any subset of closure()? no! they must be elementary
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Elementary sets of formulae

B C closure(p) is elementary if:

1. B is logically consistent if for all 1 A o, € closure(y):

e o1 N2 € B & 1 € Band ps € B
e yeEB = Y&B
e true € closure(p) = true € B

2. B is locally consistent if for all 1 U py € closure(yp):

e po B = piUps e B
e pyUpo e Band po € B = ¢, € B

3. Bis maximal, i.e., for all 1 € closure(y):

e y¢B = —EB

© JPK
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Examples
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The GNBA of LTL-formula ¢

For LTL-formula ¢, let G, = (@, 24P 8, Qo, F) where

e () = all elementary sets B C closure(p) , Qo={Be€Q|pec B}

o F = {{BeQ|piUpsgBorypsecB}|piUgpse closure(p)}

e The transition relation § : Q x 24P — 2% is given by:

— If A% BN APthen §(B,A) = O

— §(B, B N AP) is the set B’ of all elementary sets of formulas satisfying:
(i) For every O € closure(p): Oy € B < 1) € B, and

(ii) For every ¢1 U @y € closure(p):

p1Upr € B & (SOQEB V (p1 € B A 901U802€B/))
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GNBA for LTL-formula ()a

a
m B Ba

~ {a,0a} )——{a,~Oa})

a
53 a 54
({400} (a0 a})

—a
Qo = { By, B3} since Oa € By and Oa € By
6(B2,{a})={Bs,BstasBynN{a}={a}t, ~O a=0O—ac By and ~a € Bs, By
6(Bi,{a})={B1,B2tasBinN{a} ={a} Oac€Biandac By, By
6(By,{a}) =@sinceByN{a}t =0 # {a}

The set F is empty, since ¢ = () a does not contain an until-operator
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GNBA for LTL-formula a U b

}/{ib%} et

{~a,~b,~(aUb) }]

B3

{ {a,—-b,aUb} ]
J

({a,~b,~(aUb)} )

—~( {-a,b,aUb} )

Bo

justification: on the black board
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NBA are more expressive than LTL

Corollary: every LTL-formula expresses an w-regular property

But: there exist w-regular properties that cannot be expressed in LTL

Example: there is no LTL formula ¢ with Words(p) = P for the LT-property:
P = {AoAlAQ...E(Z{a}) ‘CLEAQZ'ICOF’IZEO}

But there exists an NBA A with £,(.A) = P

= there are w-regular properties that cannot be expressed in LTL!
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Complexity for LTL to NBA

For any LTL-formula ¢ (over AP) there exists an NBA A,
with Words(¢) = L, (A,) and

which can be constructed in time and space in 20Ul 1ogl#l)

Justification complexity: next slide
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Time and space complexity

e States GNBA G, are elementary sets of formulae in closure(y)

— sets B can be represented by bit vectors with single bit per subformula ¥ of ¢

e The number of states in G, is bounded by 9Isubf(¢)]

— where subf(¢) denotes the set of all subformulae of
— |subf(y)| < 2-|¢p|; so, the number of states in G, is bounded by 20(l#])

e The number of accepting sets of G, is bounded above by O(|¢|)
e The number of states in NBA A, is thus bounded by 2902 . O(|y|)

e 20(l¢) . O(lg]) = 20(lel log |#]) qed
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Lower bound

There exists a family of LTL formulas ¢,, with |p,| = O(poly(n))
such that every NBA A, for ¢, has at least 2" states
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Proof (1)

Let AP be non-empty, that is, |2A'D| > 2 and:

L, = {Al...AnAl...Ana|AZ-QAP/\06 (2AP) }

forn >0

It follows £, = Words(p,,) where ¢, = /\ /\ (O'a +— O""a)

acAP 0<i<n
@n is an LTL formula of polynomial length: |p,| € O(|AP| : n)

However, any NBA A with £, (.A) = L,, has at least 2" states
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Proof (2)

Claim: any NBA A for /\ /\ (O'a +— O™ a) has at least 2" states

ac AP 0<i<n

Words of the form A, ... A, A1... A, @D ... are accepted by A

A thus has for every word A; ... A, of length n, a state g(A; ... A,), say,
which can be reached from an initial state by consuming A; ... A,

From (A1 ... A,), it is possible to visit an accept state infinitely often
by accepting the suffix A1 ... A, 33T ...

fAL ... A, # Al...A then

Al . AALL A @@, ¢ L, = L,(A)

Therefore, the states q(A; ... A,) are all pairwise different

Given |2AP| possible sequences A; ... A,,, NBA A has > <|2A’D|) > 2" states
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Complexity for LTL model checking

The time and space complexity of LTL model checking is in O (| TS|-2|‘P|)
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Theoretical complexity

The LTL model-checking problem is PSPACE-complete
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