
LTL Model Checking
Lecture #3 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 12, 2012

c© JPK

Content of this lecture

• Linear temporal logic

– syntax, semantics, specifying properties

• Equivalences and fairness

– weak until, fairness in LTL

• LTL model checking

– GNBA, from LTL to GNBA, complexity

c© JPK 1

Content of this lecture

⇒ Linear temporal logic

– syntax, semantics, specifying properties

• Equivalences and fairness

– weak until, fairness in LTL

• LTL model checking

– GNBA, from LTL to GNBA, complexity

c© JPK 2

LT properties

• An LT property is a set of infinite traces over AP

• Specifying such sets explicitly is often inconvenient

• Mutual exclusion is specified over AP = { c1, c2 } by

Pmutex = set of infinite words A0A1A2 . . . with { c1, c2 } �⊆ Ai for all 0 � i

• Starvation freedom is specified over AP = { c1, w1, c2, w2 } by

Pnostarve = set of infinite words A0A1A2 . . . such that:

(∞
∃ j. w1 ∈ Aj

)
⇒

(∞
∃ j. c1 ∈ Aj

)
∧

(∞
∃ j. w2 ∈ Aj

)
⇒

(∞
∃ j. c2 ∈ Aj

)

such properties can be specified succinctly using logic

c© JPK 3

Linear Temporal Logic: Syntax

• Propositional logic

– a ∈ AP atomic proposition

– ¬φ and φ ∧ ψ negation and conjunction

• Temporal operators

– ©φ neXt state fulfills φ

– φUψ φ holds Until a ψ-state is reached

linear temporal logic is a logic for describing LT properties

c© JPK 4

Derived operators

φ ∨ ψ ≡ ¬ (¬φ∧ ¬ψ)
φ ⇒ ψ ≡ ¬φ ∨ ψ

φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)

φ⊕ ψ ≡ (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)

true ≡ φ ∨ ¬φ
false ≡ ¬ true

♦φ ≡ trueUφ “sometimes in the future”

�φ ≡ ¬♦ ¬φ “from now on for ever”

precedence order: the unary operators bind stronger than the binary ones.

¬ and© bind equally strong. U takes precedence over ∧, ∨, and→

c© JPK 5

Intuitive semantics

a
atomic prop. a

arbitrary arbitrary arbitrary arbitrary

. . .

arbitrary

next step© a
a arbitrary arbitrary arbitrary

. . .

a ∧ ¬b
until aU b

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

¬a
eventually ♦a

¬a ¬a a arbitrary

. . .

a
always �a

a a a a
. . .

c© JPK 6

LT properties

• Mutual exclusion is specified over AP = { c1, c2 } by

Pmutex = set of infinite words A0A1A2 . . . with { c1, c2 } �⊆ Ai for all 0 � i

• In LTL: �¬(c1∧ c2)

• Starvation freedom is specified over AP = { c1, w1, c2, w2 } by

Pnostarve = set of infinite words A0A1A2 . . . such that:

(∞
∃ j. w1 ∈ Aj

)
⇒

(∞
∃ j. c1 ∈ Aj

)
∧

(∞
∃ j. w2 ∈ Aj

)
⇒

(∞
∃ j. c2 ∈ Aj

)

• In LTL: (�♦w1 ⇒ �♦ c1) ∧ (�♦w2 ⇒ �♦ c2)

c© JPK 7

Semantics over words

The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) =
{
σ ∈ (

2AP
)ω | σ |= ϕ

}
,where |= is the smallest relation satisfying:

σ |= true

σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= ϕ1∧ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ �|= ϕ

σ |= ©ϕ iff σ[1..] = A1A2A3 . . . |= ϕ

σ |= ϕ1Uϕ2 iff ∃j � 0. σ[j..] |= ϕ2 and σ[i..] |= ϕ1, 0 � i < j

for σ = A0A1A2 . . . we have σ[i..] = AiAi+1Ai+2 . . . is the suffix of σ from index i on

c© JPK 8

Semantics of �, ♦, �♦ and ♦�

σ |= ♦ϕ iff ∃j � 0. σ[j..] |= ϕ

σ |= �ϕ iff ∀j � 0. σ[j..] |= ϕ

σ |= �♦ϕ iff ∀j � 0. ∃i � j. σ[i . . .] |= ϕ

σ |= ♦�ϕ iff ∃j � 0.∀i � j. σ[i . . .] |= ϕ

c© JPK 9

Semantics over paths and states

Let TS = (S,Act,→, I,AP, L) and ϕ an LTL-formula over AP.

• For infinite path fragment π of TS:

π |= ϕ iff trace(π) |= ϕ

• For state s ∈ S:

s |= ϕ iff ∀π ∈ Paths(s). π |= ϕ

• TS satisfies ϕ, denoted TS |= ϕ, iff Traces(TS) ⊆ Words(ϕ)

c© JPK 10

Example

{ a, b }
s1

{ a, b }
s2

{ a }
s3

TS |= �a TS �|= © (a∧ b)
TS |= �(¬b ⇒ �(a∧¬b)) TS �|= bU (a∧¬b)

c© JPK 11

Practical properties in LTL

• Reachability

– simple reachability ♦ψ
– conditional reachability φUψ

• Safety

– invariant �φ

• Liveness � (φ ⇒ ♦ψ) and others

• Fairness �♦φ and others

c© JPK 12

Semantics of negation

For paths, it holds π |= ϕ if and only if π �|= ¬ϕ since:

Words(¬ϕ) = (
2AP

)ω \Words(ϕ) .

But: TS �|= ϕ and TS |= ¬ϕ are not equivalent in general

It holds: TS |= ¬ϕ implies TS �|= ϕ. Not always the reverse!

Note that:

TS �|= ϕ iff Traces(TS) �⊆ Words(ϕ)

iff Traces(TS) \Words(ϕ) �= ∅

iff Traces(TS) ∩Words(¬ϕ) �= ∅ .

TS neither satisfies ϕ nor ¬ϕ if there are

paths π1 and π2 in TS such that π1 |= ϕ and π2 |= ¬ϕ

c© JPK 13

Example

{ a }
s1

∅

s0

∅

s2

A transition system for which TS �|= ♦a and TS �|= ¬♦a

c© JPK 14

Content of this lecture

• Linear temporal logic

– syntax, semantics, specifying properties

⇒ Equivalences and fairness

– weak until, fairness in LTL

• LTL model checking

– GNBA, from LTL to GNBA, complexity

c© JPK 15

Equivalence

LTL formulas φ, ψ are equivalent, denoted φ ≡ ψ, if:

Words(φ) = Words(ψ)

c© JPK 16

Duality and idempotence laws

Duality: ¬�φ ≡ ♦ ¬φ
¬♦φ ≡ � ¬φ

¬ © φ ≡ © ¬φ

Idempotency: ��φ ≡ �φ

♦♦φ ≡ ♦φ
φU (φUψ) ≡ φUψ

(φUψ)Uψ ≡ φUψ

c© JPK 17

Absorption and distributive laws

Absorption: ♦�♦φ ≡ �♦φ
�♦�φ ≡ ♦�φ

Distribution: © (φUψ) ≡ (©φ)U (©ψ)

♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ
�(φ ∧ ψ) ≡ �φ ∧ �ψ

but: ♦(φUψ) �≡ (♦φ)U (♦ψ)
♦(φ ∧ ψ) �≡ ♦φ ∧ ♦ψ
�(φ ∨ ψ) �≡ �φ ∨ �ψ

c© JPK 18

Distributive laws

♦(a∧ b) �≡ ♦a ∧ ♦b and �(a ∨ b) �≡ �a ∨ �b

∅

{ a }{ b }

TS �|= ♦(a∧ b) and TS |= ♦a ∧ ♦b

c© JPK 19

Expansion laws

Expansion: φUψ ≡ ψ ∨ (φ ∧ © (φUψ))

♦φ ≡ φ ∨ © ♦φ
�φ ≡ φ ∧ ©�φ

proof on the black board

c© JPK 20

Expansion for until

P = Words(ϕUψ) satisfies:

P = Words(ψ) ∪ {
A0A1A2 . . . ∈ Words(ϕ) | A1A2 . . . ∈ P

}

and is the smallest LT-property such that:

Words(ψ) ∪ {
A0A1A2 . . . ∈ Words(ϕ) | A1A2 . . . ∈ P

} ⊆ P (∗)

smallest LT-property satisfying condition (*) means that:

P = Words(ϕUψ) satisfies (*) and Words(ϕUψ) ⊆ P for each P satisfying (*)

c© JPK 21

Weak until

• The weak-until (or: unless) operator: ϕWψ
def
= (ϕUψ) ∨ �ϕ

– as opposed to until, ϕWψ does not require a ψ-state to be reached

• Until U and weak until W are dual:

¬(ϕUψ) ≡ (ϕ∧¬ψ)W (¬ϕ∧¬ψ)
¬(ϕWψ) ≡ (ϕ∧¬ψ)U (¬ϕ∧¬ψ)

• Until and weak until are equally expressive:

– �ψ ≡ ψW false and ϕUψ ≡ (ϕWψ) ∧ ¬�¬ψ

• Until and weak until satisfy the same expansion law

– but until is the smallest, and weak until the largest solution!

c© JPK 22

Expansion for weak until

P = Words(ϕWψ) satisfies:

P = Words(ψ) ∪ {
A0A1A2 . . . ∈ Words(ϕ) | A1A2 . . . ∈ P

}

and is the largest LT-property such that:

Words(ψ) ∪ {
A0A1A2 . . . ∈ Words(ϕ) | A1A2 . . . ∈ P

} ⊇ P (∗∗)

largest LT-property satisfying condition (**) means that:

P ⊇ Words(ϕWψ) satisfies (**) and Words(ϕWψ) ⊇ P for each P satisfying (**)

c© JPK 23

LTL fairness constraints
Let Φ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = �♦Ψ

2. A strong LTL fairness condition is of the form:

sfair = �♦Φ −→ �♦Ψ

3. A weak LTL fairness constraint is of the form:

wfair = ♦�Φ −→ �♦Ψ

Φ stands for “something is enabled”; Ψ for “something is taken”

c© JPK 24

LTL fairness assumption

• LTL fairness assumption = conjunction of LTL fairness constraints

– the fairness constraints are of any arbitrary type

• Strong fairness assumption: sfair =
∧

0<i�k

(
�♦Φi −→ �♦Ψi

)
– compare this to an action-based strong fairness constraint over A with |A| = k

• General format: fair = ufair ∧ sfair ∧ wfair

• Rules of thumb:

– strong (or unconditional) fairness assumptions are useful for solving contentions

– weak fairness suffices for resolving nondeterminism resulting from interleaving

c© JPK 25

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPathsfair(s) =
{
π ∈ Paths(s) | π |= fair

}
FairTracesfair(s) =

{
trace(π) | π ∈ FairPathsfair(s)

}

For LTL-formula ϕ, and LTL fairness assumption fair :

s |=fair ϕ if and only if ∀π ∈ FairPathsfair(s). π |=ϕ and

TS |=fair ϕ if and only if ∀s0 ∈ I. s0 |=fair ϕ

|=fair is the fair satisfaction relation for LTL; |= the standard one for LTL

c© JPK 26

Randomized arbiter

noncrit1

wait1

crit1

req1

enter1

rel

noncrit2

wait2

crit2

req2

enter2

rel

unlock

tail

lock enter2

rel

head

enter1

TS1 ‖ Arbiter ‖ TS2 �|= �♦ crit1

But: TS1 ‖ Arbiter ‖ TS2 |=fair �♦crit1 ∧ �♦crit2 with fair = �♦head ∧ �♦tail

c© JPK 27

Reducing |=fair to |=

For:

• transition system TS without terminal states

• LTL formula ϕ, and

• LTL fairness assumption fair

it holds:

TS |=fair ϕ if and only if TS |= (fair → ϕ)

verifying an LTL-formula under a fairness assumption can be done

using standard verification algorithms for LTL

c© JPK 28

Content of this lecture

• Linear temporal logic

– syntax, semantics, specifying properties

• Equivalences and fairness

– weak until, fairness in LTL

⇒ LTL model checking

– GNBA, from LTL to GNBA, complexity

c© JPK 29

LTL model-checking problem

The following decision problem:

Given finite transition system TS and LTL-formula ϕ:

yields “yes” if TS |= ϕ, and “no” (plus a counterexample) if TS �|= ϕ

c© JPK 30

NBA for LTL-formulae

c© JPK 31

A first attempt

TS |= ϕ if and only if Traces(TS) ⊆ Words(ϕ)︸ ︷︷ ︸
Lω(Aϕ)

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅

but complementation of NBA is quadratically exponential

if A has n states, A has cn
2
states in worst case

c© JPK 32

Observation

TS |= ϕ if and only if Traces(TS) ⊆ Words(ϕ)

if and only if Traces(TS) ∩ (
(2AP)ω \Words(ϕ)

)
= ∅

if and only if Traces(TS) ∩ Words(¬ϕ)︸ ︷︷ ︸
Lω(A¬ϕ)

= ∅

if and only if TS⊗A¬ϕ |= ♦�¬F

LTL model checking is thus reduced to persistence checking!

c© JPK 33

Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system
TS⊗A¬ϕ

TS⊗A¬ϕ |= Ppers(A¬ϕ)

LTL-formula ¬ϕ

Büchi automaton A¬ϕ

Generalised Büchi automaton G¬ϕ

System

‘Yes’

c© JPK 34

Generalized Büchi automata

• NBA are as expressive as ω-regular languages

• Variants of NBA exist that are equally expressive

– Muller, Rabin, Streett automata, and eneralized Büchi automata (GNBA)

• GNBA are like NBA, but have a distinct acceptance criterion

– a GNBA requires to visit several sets F1, . . . , Fk (k � 0) infinitely often

– for k=0, all runs are accepting; for k=1 it behaves like an NBA

• GNBA are useful to relate temporal logic and automata

c© JPK 35

Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q,Σ, δ,Q0,F) where:

• Q, Σ, δ and Q0 are as before, and

• F = {F1, . . . , Fk } is a (possibly empty) subset of 2Q

c© JPK 36

Language of a GNBA

• GNBA G = (Q,Σ, δ,Q0,F) and word σ = A0A1A2 . . . ∈ Σω

• A accepted run for σ in G is an infinite sequence q0 q1 q2 . . . such that:

– q0 ∈ Q0 and qi
Ai−−→ qi+1 for all 0 � i, and

– for all F ∈ F : qi ∈ F for infinitely many i

• Lω(G) =
{
σ ∈ Σω | there exists an accepting run for σ in G }

c© JPK 37

Example

q0q1 q2

true

crit2

truecrit1

true

A GNBA for the property ”both processes are infinitely often in their critical section”

F = { { q1 }, { q2 } }

c© JPK 38

From GNBA to NBA

For any GNBA G there exists an NBA A with:

Lω(G) = Lω(A) and |A| = O(|G| · |F|)
where F denotes the set of acceptance sets in G

Sketch of transformation GNBA (with |F| = k) into equivalent NBA:

– make k copies of the GNBA

– initial states of NBA := the initial states in the first copy

– final states of NBA := accept set F1 in the first copy

– on visiting in i-th copy a state in Fi, then move to the (i+1)-st copy

c© JPK 39

Example

〈q0, 1〉〈q1, 1〉 〈q2, 1〉

true

crit2

true

crit1

〈q1, 2〉 〈q0, 2〉 〈q2, 2〉

true
true

crit1

true crit2

true

c© JPK 40

From LTL to GNBA

GNBA Gϕ over 2AP for LTL-formula ϕ with Lω(Gϕ) = Words(ϕ):

• Assume ϕ only contains the operators ∧, ¬, © and U

• States are elementary sets of sub-formulas in ϕ

– for σ = A0A1A2 . . . ∈ Words(ϕ), “expand” Ai ⊆ AP with sub-formulas of ϕ

– . . . to obtain σ̄ = B0B1B2 . . . such that

ψ ∈ Bi if and only if σ
i
= AiAi+1Ai+2 . . . |= ψ

– σ̄ is intended to be a run in GNBA Gϕ for σ

• Transitions are derived from semantics © and expansion law for U

• Accept sets guarantee that: σ̄ is an accepting run for σ iff σ |= ϕ

c© JPK 41

From LTL to GNBA: the states (example)

• Let ϕ = a U (¬a∧ b) and σ = { a } { a, b } { b } . . .
– Bi is a subset of { a, b,¬a ∧ b, ϕ } ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ }
– this set of formulas is also called the closure of ϕ

• Extend A0 = { a } , A1 = { a, b }, A2 = { b }, . . . as follows:
– extend A0 with ¬b, ¬(¬a ∧ b), and ϕ as they hold in σ0 = σ (and no others)

– extend A1 with ¬(¬a ∧ b) and ϕ as they hold in σ1 (and no others)

– extend A2 with ¬a, ¬a ∧ b and ϕ as they hold in σ2 (and no others)

– . . . and so forth

– this is not effective and is performed on the automaton (not on words)

• Result:

– σ̄ = { a,¬b,¬(¬a ∧ b), ϕ }︸ ︷︷ ︸
B0

{ a, b,¬(¬a ∧ b), ϕ }︸ ︷︷ ︸
B1

{¬a, b,¬a ∧ b, ϕ }︸ ︷︷ ︸
B2

. . .

c© JPK 42

Closure

For LTL-formula ϕ, the set closure(ϕ)

consists of all sub-formulas ψ of ϕ and their negation ¬ψ
(where ψ and ¬¬ψ are identified)

for ϕ = aU (¬a∧ b), closure(ϕ) = { a, b,¬a,¬b,¬a ∧ b,¬(¬a ∧ b), ϕ,¬ϕ }

can we take Bi as any subset of closure(ϕ)? no! they must be elementary

c© JPK 43

Elementary sets of formulae

B ⊆ closure(ϕ) is elementary if:

1. B is logically consistent if for all ϕ1∧ϕ2, ψ ∈ closure(ϕ):

• ϕ1 ∧ ϕ2 ∈ B ⇔ ϕ1 ∈ B and ϕ2 ∈ B
• ψ ∈ B ⇒ ¬ψ �∈ B
• true ∈ closure(ϕ) ⇒ true ∈ B

2. B is locally consistent if for all ϕ1Uϕ2 ∈ closure(ϕ):

• ϕ2 ∈ B ⇒ ϕ1 Uϕ2 ∈ B
• ϕ1 Uϕ2 ∈ B and ϕ2 �∈ B ⇒ ϕ1 ∈ B

3. B is maximal , i.e., for all ψ ∈ closure(ϕ):

• ψ /∈ B ⇒ ¬ψ ∈ B

c© JPK 44

Examples

c© JPK 45

The GNBA of LTL-formula ϕ

For LTL-formula ϕ, let Gϕ = (Q, 2AP, δ,Q0,F) where

• Q = all elementary sets B ⊆ closure(ϕ) , Q0 = {B ∈ Q | ϕ ∈ B }

• F =
{{

B ∈ Q | ϕ1Uϕ2 �∈ B or ϕ2 ∈ B
} | ϕ1Uϕ2 ∈ closure(ϕ)

}

• The transition relation δ : Q× 2AP → 2Q is given by:

– If A �= B ∩ AP then δ(B,A) = ∅

– δ(B,B ∩ AP) is the set B′ of all elementary sets of formulas satisfying:

(i) For every©ψ ∈ closure(ϕ): ©ψ ∈ B ⇔ ψ ∈ B′, and
(ii) For every ϕ1 Uϕ2 ∈ closure(ϕ):

ϕ1 Uϕ2 ∈ B ⇔
(
ϕ2 ∈ B ∨ (ϕ1 ∈ B ∧ ϕ1 Uϕ2 ∈ B′)

)

c© JPK 46

GNBA for LTL-formula © a

{ a,© a }
B1

{ a,¬© a }
B2

{¬a,© a }
B3

{¬a,¬© a }
B4

a

¬a

a

a

¬a

¬a

¬a

a

Q0 = {B1,B3 } since© a ∈ B1 and© a ∈ B3

δ(B2, { a }) = {B3,B4 } as B2 ∩ { a } = { a }, ¬© a =©¬a ∈ B2, and ¬a ∈ B3,B4

δ(B1, { a }) = {B1, B2 } as B1 ∩ { a } = { a },© a ∈ B1 and a ∈ B1, B2

δ(B4, { a }) = ∅ since B4 ∩ { a } = ∅ �= { a }

The set F is empty, since ϕ =© a does not contain an until-operator

c© JPK 47

GNBA for LTL-formula aU b

{ a, b, aU b }
B1

{¬a,¬b,¬(aU b) }
B4

{ a,¬b,¬(aU b) }
B5

{¬a, b, aU b }
B2

{ a,¬b, aU b }
B3

justification: on the black board

c© JPK 48

NBA are more expressive than LTL

Corollary: every LTL-formula expresses an ω-regular property

But: there exist ω-regular properties that cannot be expressed in LTL

Example: there is no LTL formula ϕ with Words(ϕ) = P for the LT-property:

P =

{
A0A1A2 . . . ∈

(
2
{ a })ω | a ∈ A2i for i � 0

}

But there exists an NBA A with Lω(A) = P

⇒ there are ω-regular properties that cannot be expressed in LTL!

c© JPK 49

Complexity for LTL to NBA

For any LTL-formula ϕ (over AP) there exists an NBA Aϕ
with Words(ϕ) = Lω(Aϕ) and

which can be constructed in time and space in 2O(|ϕ|· log |ϕ|)

Justification complexity: next slide

c© JPK 50

Time and space complexity

• States GNBA Gϕ are elementary sets of formulae in closure(ϕ)

– sets B can be represented by bit vectors with single bit per subformula ψ of ϕ

• The number of states in Gϕ is bounded by 2|subf(ϕ)|

– where subf(ϕ) denotes the set of all subformulae of ϕ

– |subf(ϕ)| � 2·|ϕ|; so, the number of states in Gϕ is bounded by 2O(|ϕ|)

• The number of accepting sets of Gϕ is bounded above by O(|ϕ|)

• The number of states in NBA Aϕ is thus bounded by 2O(|ϕ)| · O(|ϕ|)

• 2O(|ϕ|) · O(|ϕ|) = 2O(|ϕ| log |ϕ|) qed

c© JPK 51

Lower bound

There exists a family of LTL formulas ϕn with |ϕn| = O(poly(n))

such that every NBA Aϕn for ϕn has at least 2n states

c© JPK 52

Proof (1)

Let AP be non-empty, that is, |2AP| � 2 and:

Ln =
{
A1 . . .An A1 . . .An σ | Ai ⊆ AP∧ σ ∈

(
2AP

)ω }
, for n � 0

It follows Ln = Words(ϕn) where ϕn =
∧
a∈AP

∧
0�i<n

(©i a←→©n+i a)

ϕn is an LTL formula of polynomial length: |ϕn| ∈ O
(
|AP| · n

)
However, any NBA A with Lω(A) = Ln has at least 2n states

c© JPK 53

Proof (2)

Claim: any NBA A for
∧
a∈AP

∧
0�i<n

(©i a←→©n+i a) has at least 2n states

Words of the form A1 . . .An A1 . . .An∅∅∅ . . . are accepted by A
A thus has for every word A1 . . .An of length n, a state q(A1 . . .An), say,

which can be reached from an initial state by consuming A1 . . .An

From q(A1 . . .An), it is possible to visit an accept state infinitely often

by accepting the suffix A1 . . .An∅∅∅ . . .

If A1 . . .An �= A′1 . . .A
′
n then

A1 . . .An A
′
1 . . .A

′
n∅∅∅ . . . /∈ Ln = Lω(A)

Therefore, the states q(A1 . . . An) are all pairwise different

Given |2AP| possible sequences A1 . . .An, NBA A has �
(∣∣∣2AP∣∣∣)n � 2n states

c© JPK 54

Complexity for LTL model checking

The time and space complexity of LTL model checking is in O
(
|TS|·2|ϕ|

)

c© JPK 55

Theoretical complexity

The LTL model-checking problem is PSPACE-complete

c© JPK 56

