
CTL Model Checking
Lecture #4 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 12, 2012

c© JPK

Content of this lecture

• Computation tree logic

– syntax, semantics, equational laws

• CTL model checking

– recursive descent, backward reachability, complexity

• Comparing LTL and CTL

– what can be expressed in CTL? what in LTL?, efficiency

• Fairness

– fair CTL semantics, model checking

c© JPK 1

Content of this lecture

⇒ Computation tree logic

– syntax, semantics, equational laws

• CTL model checking

– recursive descent, backward reachability, complexity

• Comparing LTL and CTL

– what can be expressed in CTL? what in LTL?, efficiency

• Fairness

– fair CTL semantics, model checking

c© JPK 2

Linear and branching temporal logic

• Linear temporal logic:

“statements about (all) paths starting in a state”

– s |= �(x � 20) iff for all possible paths starting in s always x � 20

• Branching temporal logic:

“statements about all or some paths starting in a state”

– s |= ∀�(x � 20) iff for all paths starting in s always x � 20

– s |= ∃�(x � 20) iff for some path starting in s always x � 20

– nesting of path quantifiers is allowed

• Checking ∃ϕ in LTL can be done using ∀¬ϕ
– . . . but this does not work for nested formulas such as ∀�∃♦a

c© JPK 3

Linear versus branching temporal logic

• Semantics is based on a branching notion of time

– an infinite tree of states obtained by unfolding transition system

– one “time instant” may have several possible successor “time instants”

• Incomparable expressiveness

– there are properties that can be expressed in LTL, but not in CTL

– there are properties that can be expressed in most branching, but not in LTL

• Distinct model-checking algorithms, and their time complexities

• Distinct equivalences (pre-orders) on transition systems

– that correspond to logical equivalence in LTL and branching temporal logics

c© JPK 4

Transition systems and trees

s0

s2s3 { x = 0 }

{ x = 0 }
{ x �= 0 }

{ x = 1, x �= 0 }

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4) (s2, 4) (s3, 4)

s1

c© JPK 5

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s

temporal LTL: path formulas ϕ CTL: state formulas
logic s |= ϕ iff existential path quantification ∃ϕ

∀π ∈ Paths(s). π |= ϕ universal path quantification: ∀ϕ

complexity of the PSPACE–complete PTIME
model checking

problems O
(
|TS| · 2|ϕ|

)
O (|TS| · |Φ|)

implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)

c© JPK 6

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

• Statements over states

– a ∈ AP atomic proposition

– ¬Φ and Φ∧Ψ negation and conjunction

– ∃ϕ there exists a path fulfilling ϕ

– ∀ϕ all paths fulfill ϕ

• Statements over paths

– ©Φ the next state fulfills Φ

– ΦUΨ Φ holds until a Ψ-state is reached

⇒ note that © and U alternate with ∀ and ∃

c© JPK 7

Derived operators

potentially Φ: ∃♦Φ = ∃(trueUΦ)

inevitably Φ: ∀♦Φ = ∀(trueUΦ)

potentially always Φ: ∃�Φ := ¬∀♦¬Φ
invariantly Φ: ∀�Φ = ¬∃♦¬Φ

weak until: ∃(ΦWΨ) = ¬∀((Φ∧¬Ψ)U (¬Φ∧¬Ψ)
)

∀(ΦWΨ) = ¬∃((Φ∧¬Ψ)U (¬Φ∧¬Ψ)
)

the boolean connectives are derived as usual

c© JPK 8

Visualization of semantics

∀♦red ∀(yellowU red)

∃(yellowU red)∃�red

∀�red

∃♦red

c© JPK 9

Semantics of CTL state-formulas

Defined by a relation |= such that

s |= Φ if and only if formula Φ holds in state s

s |= a iff a ∈ L(s)

s |= ¬Φ iff ¬ (s |= Φ)

s |= Φ∧Ψ iff (s |= Φ)∧ (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some path π that starts in s

s |= ∀ϕ iff π |= ϕ for all paths π that start in s

c© JPK 10

Semantics of CTL path-formulas

Define a relation |= such that

π |= ϕ if and only if path π satisfies ϕ

π |= ©Φ iff π[1] |= Φ

π |= ΦUΨ iff (∃ j � 0. π[j] |= Ψ ∧ (∀ 0 � k < j. π[k] |= Φ))

where π[i] denotes the state si in the path π

c© JPK 11

Transition system semantics

• For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

• Point of attention: TS �|= Φ and TS �|= ¬Φ is possible!

– because of several initial states, e.g. s0 |= ∃�Φ and s′0 �|= ∃�Φ

c© JPK 12

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are equivalent, denoted Φ ≡ Ψ

if and only if Sat(Φ) = Sat(Ψ) for all transition systems TS over AP

Φ ≡ Ψ iff (TS |= Φ if and only if TS |= Ψ)

c© JPK 13

Expansion laws

Recall in LTL: ϕUψ ≡ ψ ∨ (ϕ∧ © (ϕUψ))

In CTL:
∀(ΦUΨ) ≡ Ψ ∨ (Φ ∧ ∀© ∀(ΦUΨ))

∀♦Φ ≡ Φ ∨ ∀© ∀♦Φ
∀�Φ ≡ Φ ∧ ∀© ∀�Φ

∃(ΦUΨ) ≡ Ψ ∨ (Φ ∧ ∃© ∃(ΦUΨ))

∃♦Φ ≡ Φ ∨ ∃© ∃♦Φ
∃�Φ ≡ Φ ∧ ∃© ∃�Φ

c© JPK 14

Distributive laws

Recall in LTL: �(ϕ ∧ ψ) ≡ �ϕ ∧ �ψ and ♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ
In CTL:

∀�(Φ∧Ψ) ≡ ∀�Φ ∧ ∀�Ψ

∃♦(Φ ∨Ψ) ≡ ∃♦Φ ∨ ∃♦Ψ

note that ∃�(Φ ∧ Ψ) �≡ ∃�Φ ∧ ∃�Ψ and ∀♦(Φ ∨ Ψ) �≡ ∀♦Φ ∨ ∀♦Ψ

c© JPK 15

Content of this lecture

• Computation tree logic

– syntax, semantics, equational laws

⇒ CTL model checking

– recursive descent, backward reachability, complexity

• Comparing LTL and CTL

– what can be expressed in CTL? what in LTL?, efficiency

• Fairness

– fair CTL semantics, model checking

c© JPK 16

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃©Φ

∣∣∣ ∃(Φ1UΦ2)
∣∣∣ ∃�Φ

For each CTL formula, there exists an equivalent CTL formula in ENF

c© JPK 17

Model checking CTL

• Convert the formula Φ′ into an equivalent Φ in ENF

• How to check whether TS satisfies Φ?

– compute recursively the set Sat(Φ) of states that satisfy Φ

– check whether all initial states belong to Sat(Φ)

• Recursive bottom-up computation:

– consider the parse-tree of Φ

– start to compute Sat(a), for all leafs in the tree

– then go one level up in the tree and check the formula of these nodes

– then go one level up and check the formula of these nodes

– and so on....... until the root of the tree (i.e., Φ) is checked

c© JPK 18

Example

∧ Sat(Φ)

∃©Sat(Ψ) ∃U Sat(Ψ′)

a

b ∃� Sat(Ψ′′)

¬

c

Φ = ∃©a︸ ︷︷ ︸
Ψ

∧ ∃(bU ∃�¬c)︸ ︷︷ ︸
Ψ′′︸ ︷︷ ︸

Ψ′

.

c© JPK 19

Characterization of Sat (1)

For all CTL formulas Φ,Ψ over AP it holds:

Sat(true) = S

Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)
Sat(∃©Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) �= ∅ }

where TS = (S,Act,→, I, AP, L) is a transition system without terminal states

c© JPK 20

Characterization of Sat (2)

For all CTL formulas Φ,Ψ over AP it holds:

• Sat(∃(ΦUΨ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and

(2) s ∈ Sat(Φ) and Post(s) ∩ T �= ∅ implies s ∈ T

• Sat(∃�Φ) is the largest subset T of S, such that:

(3) T ⊆ Sat(Φ) and

(4) s ∈ T implies Post(s) ∩ T �= ∅

where TS = (S,Act,→, I, AP, L) is a transition system without terminal states

c© JPK 21

Computation of Sat

switch(Φ):

a : return { s ∈ S | a ∈ L(s) };
. . . :
∃©Ψ : return { s ∈ S | Post(s) ∩ Sat(Ψ) �= ∅ };
∃(Φ1 UΦ2) : T := Sat(Φ2); (* compute the smallest fixed point *)

while Sat(Φ1) \ T ∩ Pre(T) �= ∅ do
let s ∈ Sat(Φ1) \ T ∩ Pre(T);
T := T ∪ { s };

od;
return T ;

∃�Ψ : T := Sat(Ψ); (* compute the greatest fixed point *)
while ∃s ∈ T. Post(s) ∩ T = ∅ do

let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch

c© JPK 22

Computing Sat(∃(ΦUΨ))

c© JPK 23

Computing Sat(∃(ΦUΨ))

Input: finite transition system TS with state-set S and CTL-formula ∃(ΦUΨ)

Output: Sat(∃(ΦUΨ))

E := Sat(Ψ); (* E administers the states s with s |= ∃(ΦUΨ) *)

T := E; (* T contains the already visited states s with s |= ∃(ΦUΨ) *)

while E �= ∅ do
let s′ ∈ E;

E := E \ { s′ };
for all s ∈ Pre(s′) do
if s ∈ Sat(Φ) \ T then E := E ∪ { s };T := T ∪ { s }; fi

od
od
return T

c© JPK 24

Example

{ p, q, r }

{ q, r }

{ q }

{ r } ∅

{ p }

{ p, r }

{ p, q }

let’s check the CTL-formula ∃♦((p = r)∧ (p �= q))

c© JPK 25

The computation in snapshots

(c)

(a) (b)

(d)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }
{ p }

{ q }

{ r }
∅

c© JPK 26

Computing Sat(∃�Φ)

E := S \ Sat(Φ); (* E contains any not visited s′ with s′ �|= ∃�Φ *)

T := Sat(Φ); (* T contains any s for which s |= ∃�Φ has not yet been disproven *)

for all s ∈ Sat(Φ) do c[s] := | Post(s) |; od (* initialize array c *)

while E �= ∅ do
(* loop invariant: c[s] = | Post(s) ∩ (T ∪ E) | *)

let s′ ∈ E; (* s′ �|= Φ *)
E := E \ { s′ }; (* s′ has been considered *)
for all s ∈ Pre(s′) do

if s ∈ T then
c[s] := c[s] − 1; (* update counter c[s] for predecessor s of s′ *)
if c[s] = 0 then
T := T \ { s }; E := E ∪ { s }; (* s does not have any successor in T *)

fi
fi

od
od
return T

c© JPK 27

Alternative algorithm

1. Consider only state s if s |= Φ, otherwise eliminate s

• change TS into TS[Φ] = (S′,Act,→′, I ′, AP, L′) with S′ = Sat(Φ),

• →′ = → ∩ (S′ × Act × S′), I ′ = I ∩ S′, and L′(s) = L(s) for s ∈ S′

⇒ all removed states will not satisfy ∃�Φ, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[Φ]

• non-trivial SCC = maximal, connected subgraph with at least one transition

⇒ any state in such SCC satisfies ∃�Φ

3. s |= ∃�Φ is equivalent to “some SCC is reachable from s”

• this search can be done in a backward manner

c© JPK 28

Example

(a)

(d)

(b)

(c)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }
{ p }

{ q }

{ r }
∅

K[q]

SCC

c© JPK 29

Time complexity

For transition system TS with N states and K transitions,

and CTL formula Φ, the CTL model-checking problem TS |= Φ

can be determined in time O(|Φ |·(N + M))

this applies to both algorithm for existential until-formulas

c© JPK 30

Content of this lecture

• Computation tree logic

– syntax, semantics, equational laws

• CTL model checking

– recursive descent, backward reachability, complexity

⇒ Comparing LTL and CTL

– what can be expressed in CTL?, what in LTL?, efficiency

• Fairness

– fair CTL semantics, model checking

c© JPK 31

Equivalence of LTL and CTL formulas

• CTL-formula Φ and LTL-formula ϕ (both over AP) are equivalent,
denoted Φ ≡ ϕ, if for any transition system TS over AP:

TS |= Φ if and only if TS |= ϕ

• Let Φ be a CTL-formula, and ϕ the LTL-formula that is obtained by
eliminating all path quantifiers in Φ. Then:

Φ ≡ ϕ or there does not exist any LTL-formula that is equivalent to Φ

c© JPK 32

LTL and CTL are incomparable

• Some LTL-formulas cannot be expressed in CTL, e.g.,

– ♦�a

– ♦(a ∧ © a)

• Some CTL-formulas cannot be expressed in LTL, e.g.,

– ∀♦∀�a

– ∀♦(a∧∀©a)

– ∀�∃♦a

⇒ Cannot be expressed = there does not exist an equivalent formula

c© JPK 33

Comparing LTL and CTL (1)

♦(a ∧ © a) is not equivalent to ∀♦(a ∧ ∀©a)

{ a }

∅

s0

s3

s4

s1s2

{ a } { a }
∅

c© JPK 34

Comparing LTL and CTL (1)

♦(a ∧ © a) is not equivalent to ∀♦(a ∧ ∀©a)

{ a }

∅

s0

s3

s4

s1s2

{ a } { a }
∅

s0 |= ♦(a ∧ © a) but s0 �|= ∀♦(a ∧ ∀©a)

since path s0 s1 (s2)
ω violates ♦(a ∧ ∀©a)

c© JPK 35

Comparing LTL and CTL (2)

∀♦∀�a is not equivalent to ♦�a

s0 s2s1

c© JPK 36

Comparing LTL and CTL (2)

∀♦∀�a is not equivalent to ♦�a

s0 s2s1

s0 |= ♦�a but s0 �|= ∀♦∀�a
since path sω0 violates ♦∀�a

c© JPK 37

Comparing LTL and CTL (3)

• No LTL-formula ϕ is equivalent to ∀�∃♦a

• This is shown by contradiction: assume ϕ ≡ ∀�∃♦a; let:

TS′TS ∅{ a }
s s′

∅

s

• TS |= ∀�∃♦a, and thus—by assumption—TS |= ϕ

• Paths(TS′) ⊆ Paths(TS), thus TS′ |= ϕ

• But TS′ �|= ∀�∃♦a as path sω �|= �∃♦a

c© JPK 38

Model-checking LTL versus CTL

• Let TS be a transition system with N states and M transitions

• Model-checking LTL-formula Φ has time-complexity O((N+M)·2|Φ |)

– linear in the state space of the system model

– exponential in the length of the formula

• Model-checking CTL-formula Φ has time-complexity O((N+M)·|Φ |)
– linear in the state space of the system model and the formula

• Is model-checking CTL more efficient? No!

c© JPK 39

Model-checking LTL versus CTL

⇒ LTL-formulae can be exponentially shorter than their equivalent in CTL

v1 v2 v3 v4

w

{ p3 }{ p0 }
{ p1 } { p2 }

{ q }

• Existence of Hamiltonian path in LTL: ¬ (
(♦p0∧ . . . ∧♦p3) ∧ ©4 q

)

• In CTL, all possible (= 4!) routes need to be encoded

c© JPK 40

Content of this lecture

• Computation tree logic

– syntax, semantics, equational laws

• CTL model checking

– recursive descent, backward reachability, complexity

• Comparing LTL and CTL

– what can be expressed in CTL?, what in LTL?, efficiency

⇒ Fairness

– fair CTL semantics, model checking

c© JPK 41

Fairness constraints in CTL

• For LTL it holds: TS |=fair ϕ if and only if TS |= (fair → ϕ)

• An analogous approach for CTL is not possible!

• Formulas form ∀(fair → ϕ) and ∃(fair ∧ϕ) needed

• But: boolean combinations of path formulae are not allowed in CTL

• and: e.g., strong fairness constraints �♦b→ �♦c ≡ ♦�¬b ∨ ♦�c
– cannot be expressed in CTL since persistence properties cannot

• Solution: change the semantics of CTL by ignoring unfair paths

c© JPK 42

CTL fairness constraints

• A strong CTL fairness constraint is a formula of the form:

sfair =
∧

0<i�k

(�♦Φi → �♦Ψi)

– where Φi and Ψi (for 0 < i � k) are CTL-formulas over AP

– weak and unconditional CTL fairness constraints are defined analogously, e.g.

ufair =
∧

0<i�k

�♦Ψi and wfair =
∧

0<i�k

(♦�Φi → �♦Ψi)

– a CTL fairness assumption fair is a combination of ufair , sfair and wfair

⇒ a CTL fairness constraint is an LTL formula over CTL state formulas!

– note that s |= Φi and s |= Ψi refer to standard (unfair!) CTL semantics

c© JPK 43

Semantics of fair CTL

For CTL fairness assumption fair , relation |=fair is defined by:

s |=fair a iff a ∈ Label(s)

s |=fair ¬Φ iff ¬ (s |=fair Φ)

s |=fair Φ ∨ Ψ iff (s |=fair Φ) ∨ (s |=fair Ψ)

s |=fair ∃ϕ iff π |=fair ϕ for some fair path π that starts in s

s |=fair ∀ϕ iff π |=fair ϕ for all fair paths π that start in s

π |=fair ©Φ iff π[1] |=fair Φ

π |=fair ΦUΨ iff (∃ j � 0. π[j] |=fair Ψ ∧ (∀ 0 � k < j. π[k] |=fair Φ))

π is a fair path iff π |=LTL fair for CTL fairness assumption fair

c© JPK 44

Transition system semantics

• For CTL-state-formula Φ, and fairness assumption fair:

Satfair(Φ) = { s ∈ S | s |=fair Φ }

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |=fair Φ if and only if ∀s0 ∈ I. s0 |=fair Φ

– this is equivalent to I ⊆ Satfair(Φ)

c© JPK 45

Randomized arbiter

noncrit1

wait1

crit1

req1

enter1

rel

noncrit2

wait2

crit2

req2

enter2

rel

unlock

tail

lock enter2

rel

head

enter1

TS1 ‖ Arbiter ‖ TS2 �|= (∀�∀♦ crit1) ∧ (∀�∀♦ crit2)

But: TS1 ‖ Arbiter ‖ TS2 |=fair ∀�∀♦crit1 ∧ ∀�∀♦crit2 with

fair = �♦head ∧ �♦tail

c© JPK 46

Fair CTL model-checking problem

For:

• finite transition system TS without terminal states

• CTL formula Φ in ENF, and

• CTL fairness assumption fair

establish whether or not:

TS |=fair Φ

use bottom-up procedure à la CTL to determine Satfair(Φ)

using as much as possible standard CTL model-checking algorithms

c© JPK 47

CTL fairness constraints

• A strong CTL fairness constraint: sfair =
∧

0<i�k

(�♦Φi → �♦Ψi)

– where Φi and Ψi (for 0 < i � k) are CTL-formulas over AP

• Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair :=
∧

0<i�k

(�♦ai → �♦bi)

– where ai ∈ L(s) if and only if s ∈ Sat(Φi) (not Satfair(Φi)!)

– . . . bi ∈ L(s) if and only if s ∈ Sat(Ψi) (not Satfair(Ψi)!)

– (for unconditional and weak fairness this goes similarly)

• Note: π |= fair iff π[j..] |= fair for some j � 0 iff π[j..] |= fair for all j � 0

c© JPK 48

Results for |=fair (1)

s |=fair ∃©a if and only if ∃s′ ∈ Post(s) with s′ |= a and FairPaths(s′) �= ∅

s |=fair ∃(aU a′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n � 0

such that si |= a for 0 � i < n, sn |= a′, and FairPaths(sn) �= ∅

c© JPK 49

Results for |=fair (2)

s |=fair ∃©a if and only if ∃s′ ∈ Post(s) with s′ |= a and FairPaths(s′) �= ∅︸ ︷︷ ︸
s′ |=fair ∃�true

s |=fair ∃(aU a′) if and only if there exists a finite path fragment

s0 s1 s2 . . . sn−1sn ∈ Pathsfin(s) with n � 0

such that si |= a for 0 � i < n, sn |= a′, and FairPaths(sn) �= ∅︸ ︷︷ ︸
sn |=fair ∃�true

c© JPK 50

Basic algorithm

• Determine Satfair(∃�true) = { s ∈ S | FairPaths(s) �= ∅ }
• Introduce an atomic proposition afair and adjust labeling where:

– afair ∈ L(s) if and only if s ∈ Satfair(∃�true)

• Compute the sets Satfair(Ψ) for all subformulas Ψ of Φ (in ENF) by:

Satfair(a) = { s ∈ S | a ∈ L(s) }
Satfair(¬a) = S \ Satfair(a)

Satfair(a ∧ a′) = Satfair(a) ∩ Satfair(a
′)

Satfair(∃©a) = Sat (∃©(a ∧ afair))

Satfair(∃(a U a′)) = Sat
(∃(aU (a′ ∧ afair))

)
Satfair(∃�a) =

• Thus: model checking CTL under fairness constraints is

– CTL model checking + algorithm for computing Satfair(∃�a)!

c© JPK 51

Model checking CTL with fairness

The model-checking problem for CTL with fairness can be reduced to:

(1) the model-checking problem for CTL (without fairness), and

(2) the problem of computing Satfair(∃�a) for a ∈ AP

note that ∃�true is a special case of ∃�a

thus a single algorithm suffices for Satfair(∃�a) and Satfair(∃�true)

c© JPK 52

Core model-checking algorithm
(* states are assumed to be labeled with ai and bi *)

compute Satfair(∃�true) = { s ∈ S | FairPaths(s) �= ∅ }
forall s ∈ Satfair(∃�true) do L(s) := L(s) ∪ { afair } od

(* compute Satfair(Φ) *)
for all 0 < i � |Φ | do
for all Ψ ∈ Sub(Φ) with |Ψ | = i do

switch(Ψ):
true : Satfair(Ψ) := S;

a : Satfair(Ψ) := { s ∈ S | a ∈ L(s) };
a ∧ a′ : Satfair(Ψ) := { s ∈ S | a, a′ ∈ L(s) };
¬a : Satfair(Ψ) := { s ∈ S | a �∈ L(s) };
∃©a : Satfair(Ψ) := Sat(∃©(a ∧ afair));

∃(aU a′) : Satfair(Ψ) := Sat(∃(aU (a′ ∧ afair)));

∃�a : compute Satfair(∃�a)
end switch
replace all occurrences of Ψ (in Φ) by the fresh atomic proposition aΨ
forall s ∈ Satfair(Ψ) do L(s) := L(s) ∪ { aΨ } od

od
od
return I ⊆ Satfair(Φ)

c© JPK 53

Characterization of Satfair(∃�a)

s |=sfair ∃�a where sfair =
∧

0<i�k

(�♦ai → �♦bi)

iff there exists a finite path fragment s0 . . . sn and a cycle s′0 . . . s
′
r with:

1. s0 = s and sn = s′0 = s′r

2. si |= a, for any 0 � i � n, and s′j |= a, for any 0 � j � r, and

3. Sat(ai) ∩ { s′1, . . . , s′r } = ∅ or Sat(bi) ∩ { s′1, . . . , s′r } �= ∅ for 0 < i � k

c© JPK 54

Computing Satfair(∃�a)

• Consider only state s if s |= a, otherwise eliminate s

– change TS into TS[a] = (S′,Act,→′, I ′,AP, L′) with S′ = Sat(a),

– →′ = → ∩ (S′ × Act × S′), I ′ = I ∩ S′, and L′(s) = L(s) for s ∈ S′

⇒ each infinite path fragment in TS[a] satisfies �a

• s |=fair ∃�a iff there is a non-trivial SCC D in TS[a] reachable from s:

D ∩ Sat(ai) = ∅ or D ∩ Sat(bi) �= ∅ for 0 < i � k (*)

• Satsfair(∃�a) = { s ∈ S | ReachTS[a](s) ∩ T �= ∅ }
– T is the union of all non-trivial SCCs C that contain D satisfying (*)

how to compute the set T of SCCs?

c© JPK 55

Unconditional fairness

ufair ≡
∧

0<i�k

�♦bi

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

C ∩ Sat(bi) �= ∅ for all 0 < i � k

It now follows:

s |=ufair ∃�a if and only if ReachTS[a](s) ∩ T �= ∅

⇒ T can be determined by a simple graph analysis (DFS)

c© JPK 56

Example

s1 s0 s2

{ b1 }
s3 TS[a]

s4 { b2 }

s′1
{ b1 }

s′0 s′2

s′3 T̂S[a]

s′4 { b2 }

TS[a] |=ufair ∃�a but T̂S[a] �|=ufair ∃�a with ufair = �♦b1 ∧ �♦b2

c© JPK 57

Strong fairness

• sfair = �♦a1 → �♦b1, i.e., k=1

• s |=sfair ∃�a iff C is a non-trivial SCC in TS[a] reachable from s with:

(1) C ∩ Sat(b1) �= ∅, or

(2) D ∩ Sat(a1) = ∅, for some non-trivial SCC D in C

• D is a non-trivial SCC in the graph that is obtained from C[¬a1]

• For T the union of non-trivial SCCs in satisfying (1) and (2):

s |=sfair ∃�a if and only if ReachTS[a](s) ∩ T �= ∅

for several strong fairness constraints (k > 1), this is applied recursively

T is determined by standard graph analysis (DFS)

c© JPK 58

Time complexity

For transition system TS with N states and M transitions,

CTL formula Φ, and CTL fairness constraint fair with k conjuncts,

the CTL model-checking problem TS |=fair Φ

can be determined in time O(|Φ |·(N + M)·k)

c© JPK 59

