

CTL Model Checking

Lecture #4 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 12, 2012

Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws
- CTL model checking
 - recursive descent, backward reachability, complexity
- Comparing LTL and CTL
 - what can be expressed in CTL? what in LTL?, efficiency
- Fairness
 - fair CTL semantics, model checking

Content of this lecture

- ⇒ Computation tree logic
 - syntax, semantics, equational laws
- CTL model checking
 - recursive descent, backward reachability, complexity
- Comparing LTL and CTL
 - what can be expressed in CTL? what in LTL?, efficiency
- Fairness
 - fair CTL semantics, model checking

Linear and branching temporal logic

- *Linear* temporal logic:

“statements about **(all)** paths starting in a state”

- $s \models \Box(x \leq 20)$ iff for all possible paths starting in s always $x \leq 20$

- *Branching* temporal logic:

“statements about **all** or **some** paths starting in a state”

- $s \models \forall \Box(x \leq 20)$ iff for **all** paths starting in s always $x \leq 20$
 - $s \models \exists \Box(x \leq 20)$ iff for **some** path starting in s always $x \leq 20$
 - nesting of path quantifiers is allowed

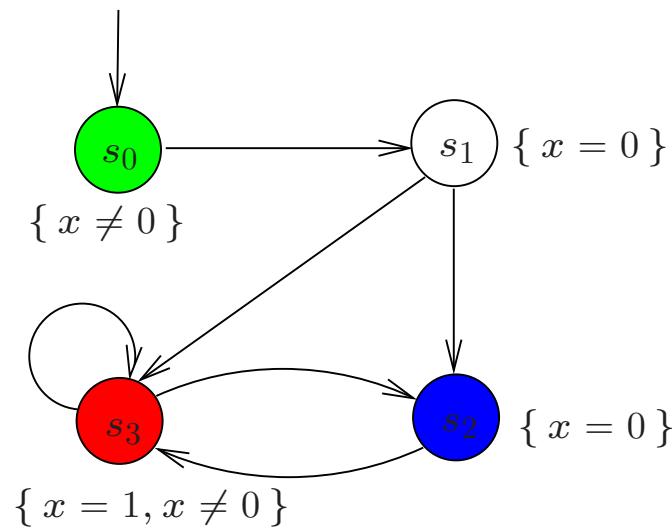
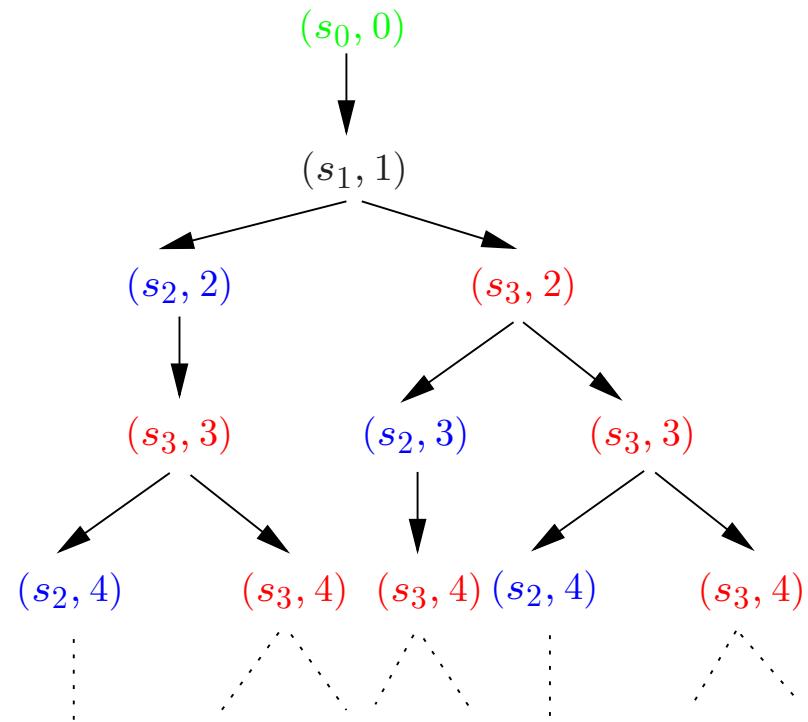
- Checking $\exists \varphi$ in LTL can be done using $\forall \neg \varphi$

- . . . but this does not work for nested formulas such as $\forall \Box \exists \Diamond a$

Linear versus branching temporal logic

- **Semantics** is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one “time instant” may have several possible successor “time instants”
- **Incomparable expressiveness**
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in most branching, but not in LTL
- Distinct **model-checking algorithms**, and their time complexities
- Distinct **equivalences** (pre-orders) on transition systems
 - that correspond to logical equivalence in LTL and branching temporal logics

Transition systems and trees



“behavior” in a state s	path-based: $trace(s)$	state-based: computation tree of s
temporal logic	LTL: path formulas φ $s \models \varphi$ iff $\forall \pi \in Paths(s). \pi \models \varphi$	CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACE-complete $\mathcal{O}(TS \cdot 2^{ \varphi })$	PTIME $\mathcal{O}(TS \cdot \Phi)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)

Computation tree logic

modal logic over infinite **trees** [Clarke & Emerson 1981]

- **Statements over states**

- $a \in AP$ atomic proposition
- $\neg \Phi$ and $\Phi \wedge \Psi$ negation and conjunction
- $\exists \varphi$ there *exists* a path fulfilling φ
- $\forall \varphi$ *all* paths fulfill φ

- **Statements over paths**

- $\bigcirc \Phi$ the next state fulfills Φ
- $\Phi \mathbf{U} \Psi$ Φ holds until a Ψ -state is reached

⇒ note that \bigcirc and \mathbf{U} *alternate* with \forall and \exists

Derived operators

potentially Φ : $\exists \Diamond \Phi$ = $\exists(\text{true} \cup \Phi)$

inevitably Φ : $\forall \Diamond \Phi$ = $\forall(\text{true} \cup \Phi)$

potentially always Φ : $\exists \Box \Phi$:= $\neg \forall \Diamond \neg \Phi$

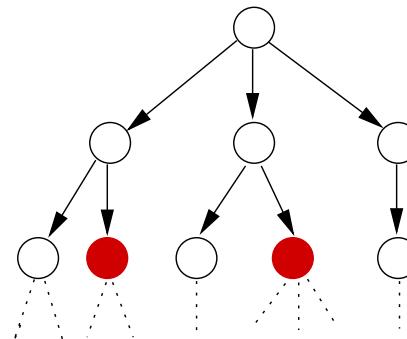
invariantly Φ : $\forall \Box \Phi$ = $\neg \exists \Diamond \neg \Phi$

weak until: $\exists(\Phi W \Psi)$ = $\neg \forall ((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$

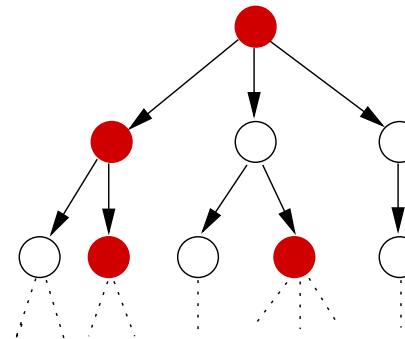
$$\forall(\Phi W \Psi) = \neg \exists((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$$

the boolean connectives are derived as usual

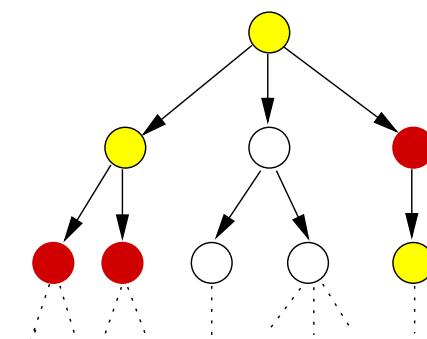
Visualization of semantics



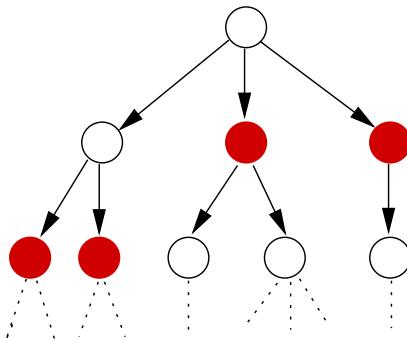
$\exists \diamond red$



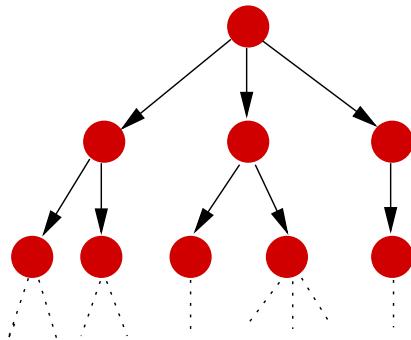
$\exists \square red$



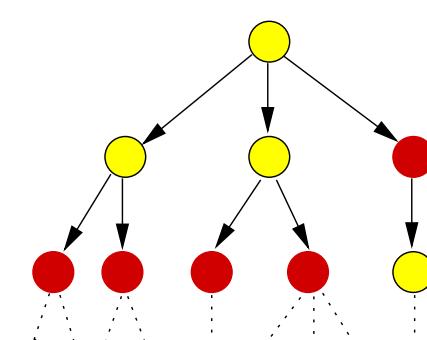
$\exists (yellow \cup red)$



$\forall \diamond red$



$\forall \square red$



$\forall (yellow \cup red)$

Semantics of CTL **state**-formulas

Defined by a relation \models such that

$s \models \Phi$ if and only if formula Φ holds in state s

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \neg(s \models \Phi)$$

$$s \models \Phi \wedge \Psi \quad \text{iff} \quad (s \models \Phi) \wedge (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \textcolor{red}{some} \text{ path } \pi \text{ that starts in } s$$

$$s \models \forall \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \textcolor{red}{all} \text{ paths } \pi \text{ that start in } s$$

Semantics of CTL **path**-formulas

Define a relation \models such that

$\pi \models \varphi$ if and only if path π satisfies φ

$$\pi \models \bigcirc \Phi \quad \text{iff } \pi[1] \models \Phi$$

$$\pi \models \Phi \cup \Psi \quad \text{iff } (\exists j \geq 0. \pi[j] \models \Psi \wedge (\forall 0 \leq k < j. \pi[k] \models \Phi))$$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

- For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi \quad \text{if and only if} \quad \forall s_0 \in I. s_0 \models \Phi$$

- Point of attention:** $TS \not\models \Phi$ and $TS \not\models \neg\Phi$ is possible!
 - because of several initial states, e.g. $s_0 \models \exists \Box \Phi$ and $s'_0 \not\models \exists \Box \Phi$

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are *equivalent*, denoted $\Phi \equiv \Psi$
if and only if $Sat(\Phi) = Sat(\Psi)$ for all transition systems TS over AP

$$\Phi \equiv \Psi \quad \text{iff} \quad (TS \models \Phi \quad \text{if and only if} \quad TS \models \Psi)$$

Expansion laws

Recall in LTL: $\varphi \mathbf{U} \psi \equiv \psi \vee (\varphi \wedge \bigcirc (\varphi \mathbf{U} \psi))$

In CTL:

$$\forall(\Phi \mathbf{U} \Psi) \equiv \Psi \vee (\Phi \wedge \forall \bigcirc \forall(\Phi \mathbf{U} \Psi))$$

$$\forall\Diamond\Phi \equiv \Phi \vee \forall \bigcirc \forall\Diamond\Phi$$

$$\forall\Box\Phi \equiv \Phi \wedge \forall \bigcirc \forall\Box\Phi$$

$$\exists(\Phi \mathbf{U} \Psi) \equiv \Psi \vee (\Phi \wedge \exists \bigcirc \exists(\Phi \mathbf{U} \Psi))$$

$$\exists\Diamond\Phi \equiv \Phi \vee \exists \bigcirc \exists\Diamond\Phi$$

$$\exists\Box\Phi \equiv \Phi \wedge \exists \bigcirc \exists\Box\Phi$$

Distributive laws

Recall in LTL: $\Box(\varphi \wedge \psi) \equiv \Box\varphi \wedge \Box\psi$ and $\Diamond(\varphi \vee \psi) \equiv \Diamond\varphi \vee \Diamond\psi$

In CTL:

$$\forall \Box(\Phi \wedge \Psi) \equiv \forall \Box\Phi \wedge \forall \Box\Psi$$

$$\exists \Diamond(\Phi \vee \Psi) \equiv \exists \Diamond\Phi \vee \exists \Diamond\Psi$$

note that $\exists \Box(\Phi \wedge \Psi) \not\equiv \exists \Box\Phi \wedge \exists \Box\Psi$ and $\forall \Diamond(\Phi \vee \Psi) \not\equiv \forall \Diamond\Phi \vee \forall \Diamond\Psi$

Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws
- ⇒ CTL model checking
 - recursive descent, backward reachability, complexity
- Comparing LTL and CTL
 - what can be expressed in CTL? what in LTL?, efficiency
- Fairness
 - fair CTL semantics, model checking

Existential normal form (ENF)

The set of CTL formulas in *existential normal form* (ENF) is given by:

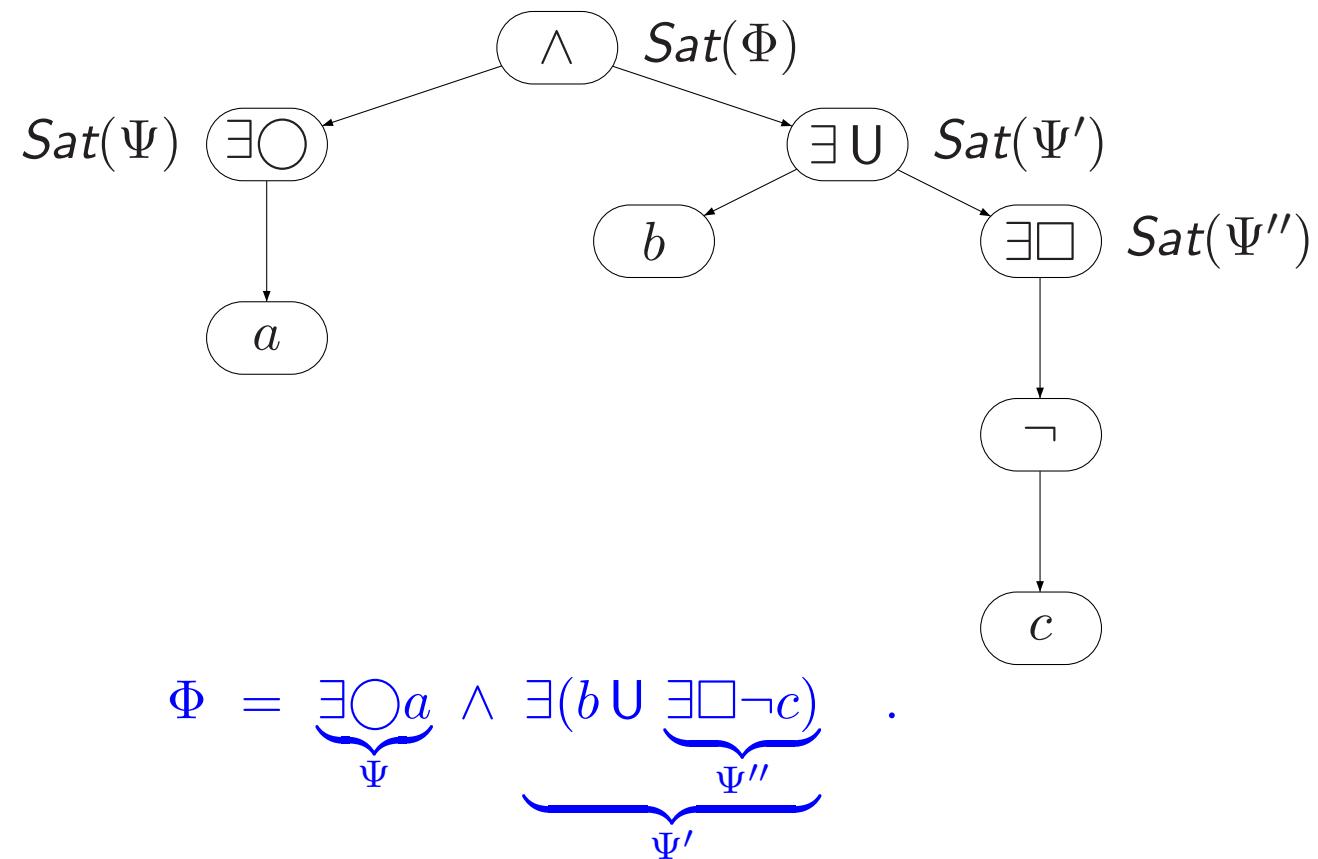
$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \bigcirc \Phi \quad | \quad \exists (\Phi_1 \cup \Phi_2) \quad | \quad \exists \Box \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

Model checking CTL

- Convert the formula Φ' into an equivalent Φ in ENF
- How to check whether TS satisfies Φ ?
 - compute *recursively* the set $Sat(\Phi)$ of states that satisfy Φ
 - check whether all initial states belong to $Sat(\Phi)$
- Recursive **bottom-up** computation:
 - consider the *parse-tree* of Φ
 - start to compute $Sat(a)$, for all leafs in the tree
 - then go one level up in the tree and check the formula of these nodes
 - then go one level up and check the formula of these nodes
 - and so on..... until the root of the tree (i.e., Φ) is checked

Example



Characterization of Sat (1)

For all CTL formulas Φ, Ψ over AP it holds:

$$Sat(\text{true}) = S$$

$$Sat(a) = \{ s \in S \mid a \in L(s) \}, \text{ for any } a \in AP$$

$$Sat(\Phi \wedge \Psi) = Sat(\Phi) \cap Sat(\Psi)$$

$$Sat(\neg\Phi) = S \setminus Sat(\Phi)$$

$$Sat(\exists \bigcirc \Phi) = \{ s \in S \mid Post(s) \cap Sat(\Phi) \neq \emptyset \}$$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

Characterization of Sat (2)

For all CTL formulas Φ, Ψ over AP it holds:

- $Sat(\exists(\Phi \cup \Psi))$ is the smallest subset T of S , such that:
 - (1) $Sat(\Psi) \subseteq T$ and
 - (2) $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \emptyset$ implies $s \in T$
- $Sat(\exists \Box \Phi)$ is the largest subset T of S , such that:
 - (3) $T \subseteq Sat(\Phi)$ and
 - (4) $s \in T$ implies $Post(s) \cap T \neq \emptyset$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

Computation of Sat

switch(Φ):

```

 $a$  : return { $s \in S \mid a \in L(s)$ };

 $\dots$  :

 $\exists \bigcirc \Psi$  : return { $s \in S \mid Post(s) \cap Sat(\Psi) \neq \emptyset$ };

 $\exists(\Phi_1 \cup \Phi_2)$  :  $T := Sat(\Phi_2)$ ; (* compute the smallest fixed point *)
  while  $Sat(\Phi_1) \setminus T \cap Pre(T) \neq \emptyset$  do
    let  $s \in Sat(\Phi_1) \setminus T \cap Pre(T)$ ;
     $T := T \cup \{s\}$ ;
  od;
  return  $T$ ;

 $\exists \square \Psi$  :  $T := Sat(\Psi)$ ; (* compute the greatest fixed point *)
  while  $\exists s \in T. Post(s) \cap T = \emptyset$  do
    let  $s \in \{s \in T \mid Post(s) \cap T = \emptyset\}$ ;
     $T := T \setminus \{s\}$ ;
  od;
  return  $T$ ;

```

end switch

Computing $Sat(\exists(\Phi \cup \Psi))$

Computing $Sat(\exists(\Phi \cup \Psi))$

Input: finite transition system TS with state-set S and CTL-formula $\exists(\Phi \cup \Psi)$

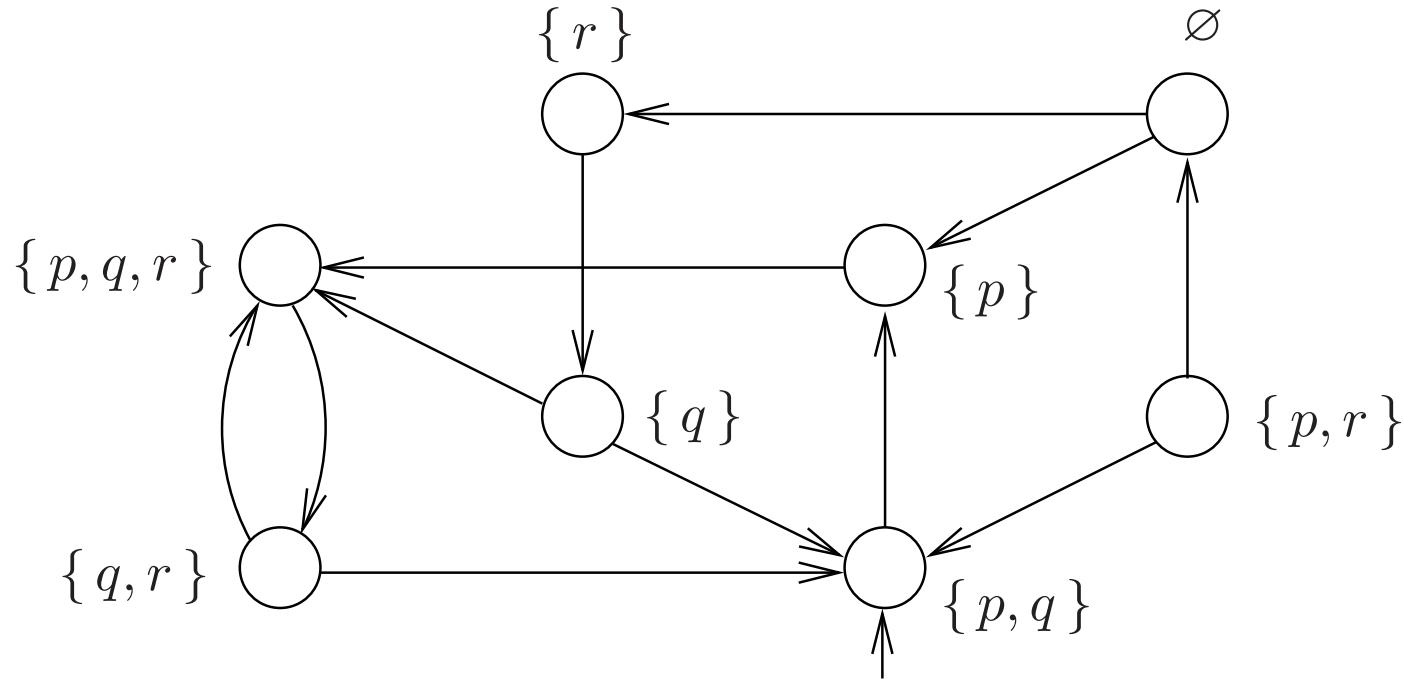
Output: $Sat(\exists(\Phi \cup \Psi))$

```

 $E := Sat(\Psi);$                                 (*  $E$  administers the states  $s$  with  $s \models \exists(\Phi \cup \Psi)$  *)
 $T := E;$                                      (*  $T$  contains the already visited states  $s$  with  $s \models \exists(\Phi \cup \Psi)$  *)
while  $E \neq \emptyset$  do
  let  $s' \in E;$ 
   $E := E \setminus \{ s' \};$ 
  for all  $s \in Pre(s')$  do
    if  $s \in Sat(\Phi) \setminus T$  then  $E := E \cup \{ s \}; T := T \cup \{ s \}$ ; fi
  od
od
return  $T$ 

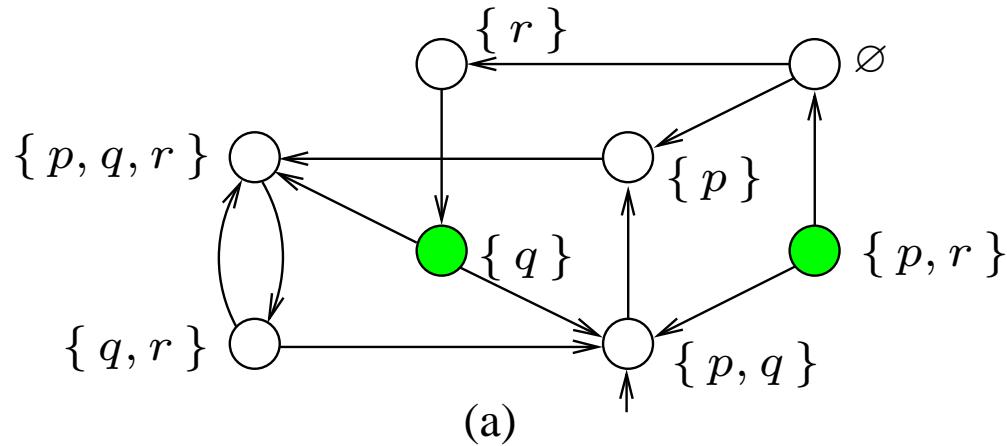
```

Example

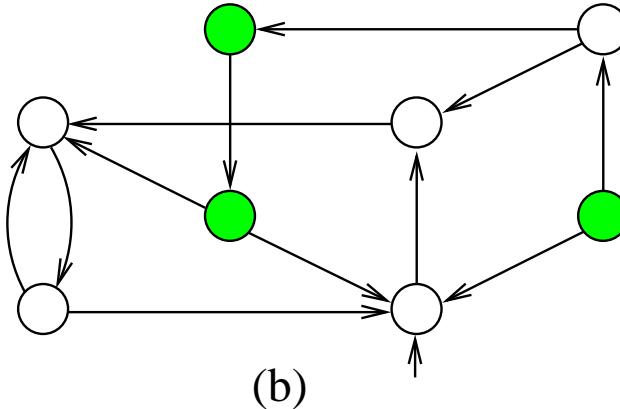


let's check the CTL-formula $\exists \Diamond((p = r) \wedge (p \neq q))$

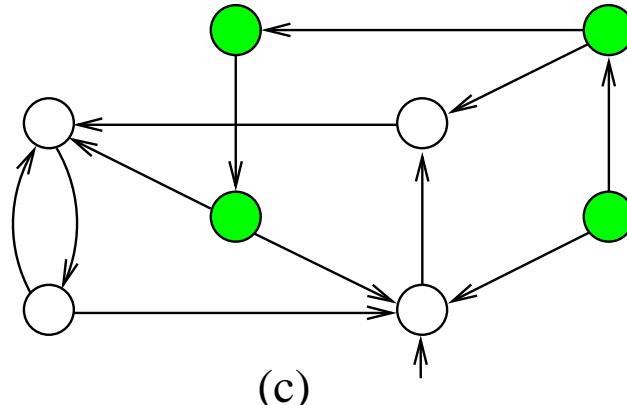
The computation in snapshots



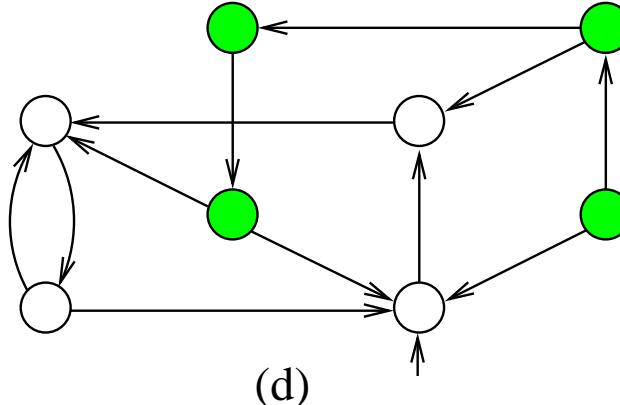
(a)



(b)



(c)



(d)

Computing $Sat(\exists \Box \Phi)$

```

 $E := S \setminus Sat(\Phi);$  (*  $E$  contains any not visited  $s'$  with  $s' \not\models \exists \Box \Phi$  *)
 $T := Sat(\Phi);$  (*  $T$  contains any  $s$  for which  $s \models \exists \Box \Phi$  has not yet been disproven *)
for all  $s \in Sat(\Phi)$  do  $c[s] := |Post(s)|$ ; od (* initialize array  $c$  *)
while  $E \neq \emptyset$  do
  let  $s' \in E$ ;
   $E := E \setminus \{s'\}$ ; (*  $s' \not\models \Phi$  *)
  for all  $s \in Pre(s')$  do
    if  $s \in T$  then
       $c[s] := c[s] - 1$ ; (* update counter  $c[s]$  for predecessor  $s$  of  $s'$  *)
    if  $c[s] = 0$  then
       $T := T \setminus \{s\}$ ;  $E := E \cup \{s\}$ ; (*  $s$  does not have any successor in  $T$  *)
    fi
  fi
od
od
return  $T$ 

```

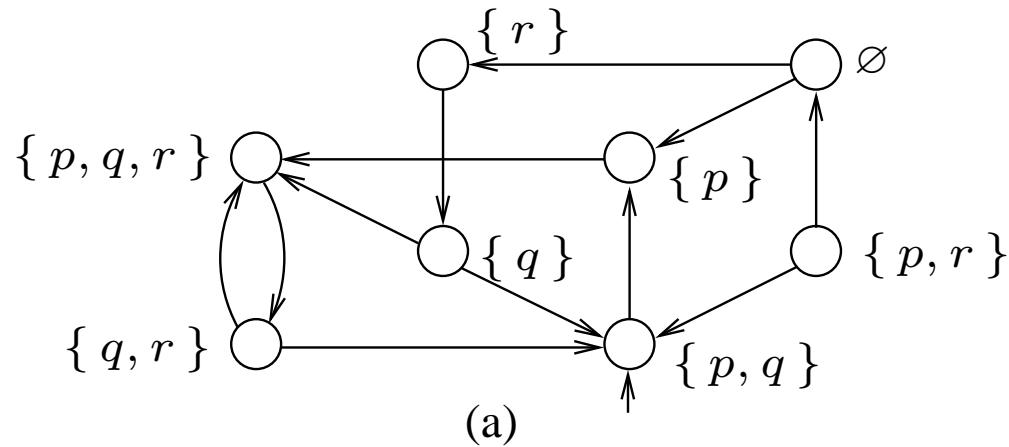
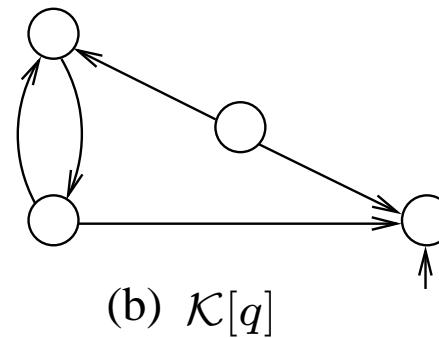
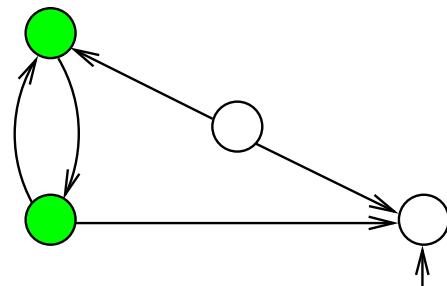
Alternative algorithm

1. Consider only state s if $s \models \Phi$, otherwise *eliminate* s
 - change TS into $TS[\Phi] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(\Phi)$,
 - $\rightarrow' = \rightarrow \cap (S' \times Act \times S')$, $I' = I \cap S'$, and $L'(s) = L(s)$ for $s \in S'$

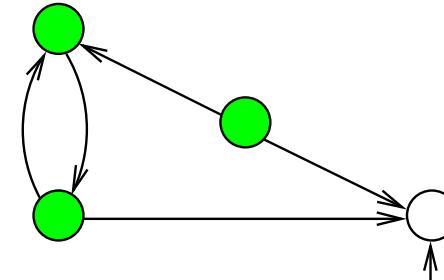
\Rightarrow all removed states will not satisfy $\exists \Box \Phi$, and thus can be safely removed
2. Determine all *non-trivial strongly connected components* in $TS[\Phi]$
 - non-trivial SCC = maximal, connected subgraph with at least one transition

\Rightarrow any state in such SCC satisfies $\exists \Box \Phi$
3. $s \models \exists \Box \Phi$ is equivalent to “some *SCC is reachable* from s ”
 - this search can be done in a backward manner

Example



(c) SCC



(d)

Time complexity

For transition system TS with N states and K transitions,
and CTL formula Φ , the CTL model-checking problem $TS \models \Phi$
can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M))$

this applies to both algorithm for existential until-formulas

Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws
- CTL model checking
 - recursive descent, backward reachability, complexity

⇒ Comparing LTL and CTL

- what can be expressed in CTL?, what in LTL?, efficiency

- Fairness
 - fair CTL semantics, model checking

Equivalence of LTL and CTL formulas

- CTL-formula Φ and LTL-formula φ (both over AP) are *equivalent*, denoted $\Phi \equiv \varphi$, if for any transition system TS over AP :

$$TS \models \Phi \quad \text{if and only if} \quad TS \models \varphi$$

- Let Φ be a CTL-formula, and φ the LTL-formula that is obtained by eliminating all path quantifiers in Φ . Then:

$\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ

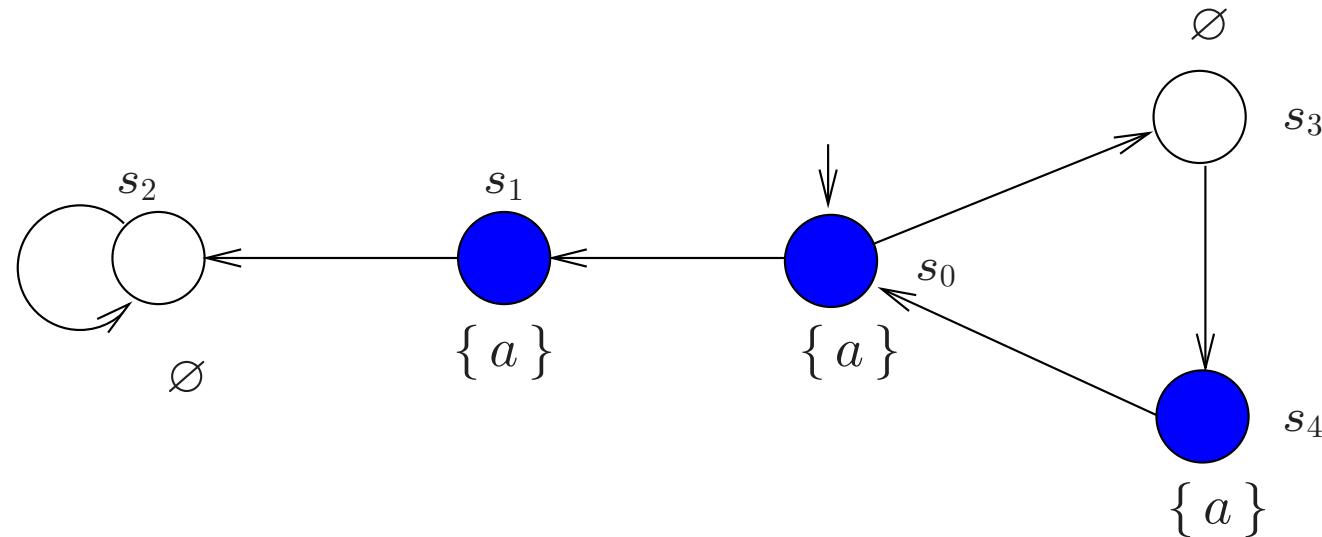
LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - $\Diamond\Box a$
 - $\Diamond(a \wedge \bigcirc a)$
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - $\forall\Diamond\forall\Box a$
 - $\forall\Diamond(a \wedge \forall\bigcirc a)$
 - $\forall\Box\exists\Diamond a$

⇒ Cannot be expressed = there does not exist an **equivalent** formula

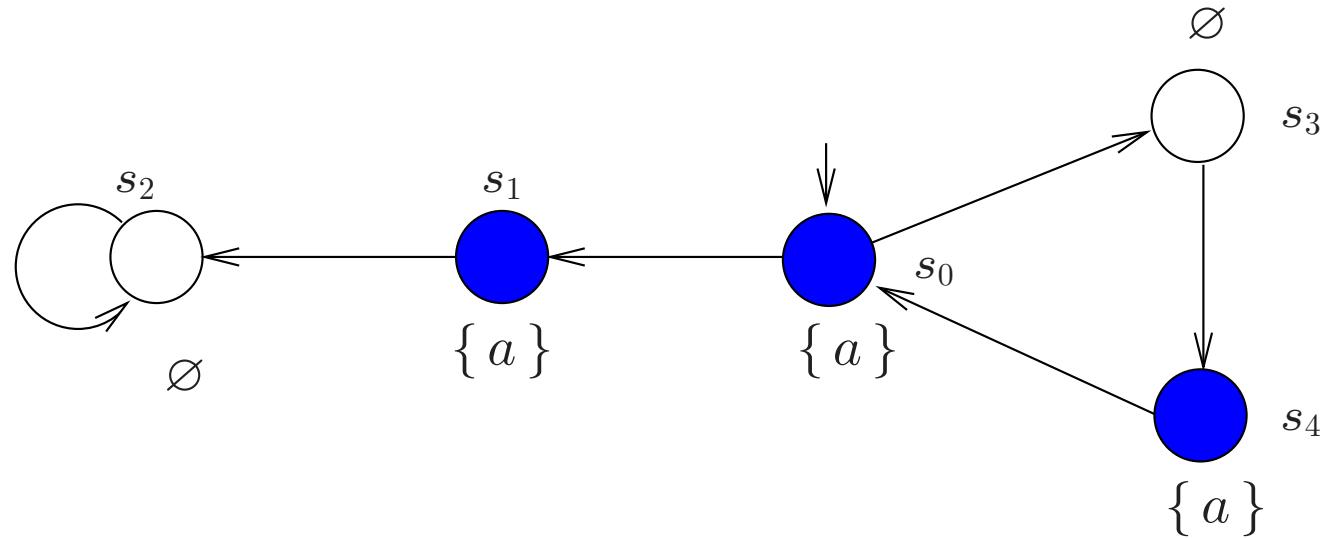
Comparing LTL and CTL (1)

$\Diamond(a \wedge \bigcirc a)$ is not equivalent to $\forall \Diamond(a \wedge \forall \bigcirc a)$



Comparing LTL and CTL (1)

$\Diamond(a \wedge \bigcirc a)$ is not equivalent to $\forall \Diamond(a \wedge \forall \bigcirc a)$

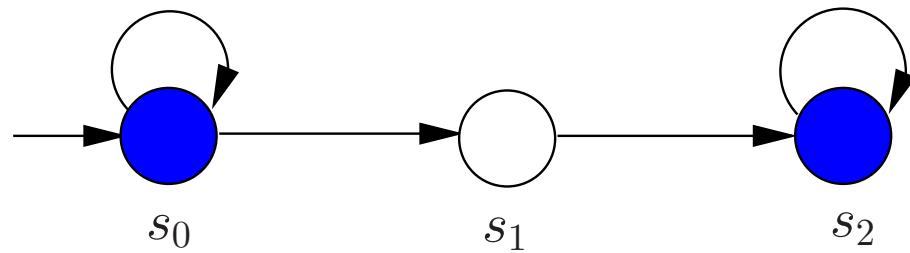


$s_0 \models \Diamond(a \wedge \bigcirc a)$ **but** $s_0 \not\models \forall \Diamond(a \wedge \forall \bigcirc a)$

since path $s_0 s_1 (s_2)^\omega$ violates $\Diamond(a \wedge \forall \bigcirc a)$

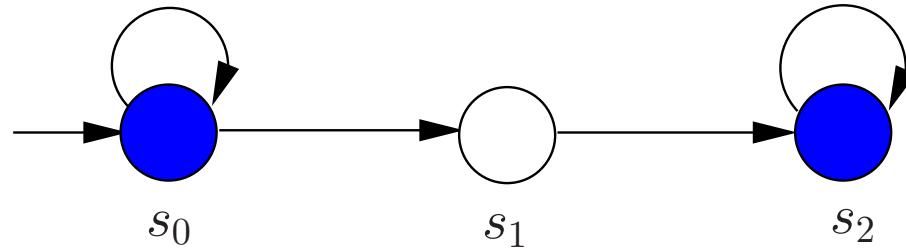
Comparing LTL and CTL (2)

$\forall \Diamond \forall \Box a$ is not equivalent to $\Diamond \Box a$



Comparing LTL and CTL (2)

$\forall \Diamond \forall \Box a$ is not equivalent to $\Diamond \Box a$

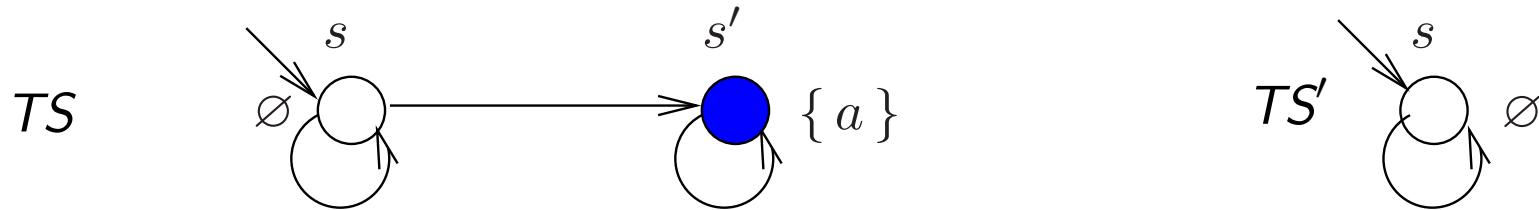


$s_0 \models \Diamond \Box a$ but $s_0 \not\models \forall \Diamond \forall \Box a$

since path s_0^ω violates $\Diamond \forall \Box a$

Comparing LTL and CTL (3)

- No LTL-formula φ is equivalent to $\forall \Box \exists \Diamond a$
- This is shown by contradiction: assume $\varphi \equiv \forall \Box \exists \Diamond a$; let:



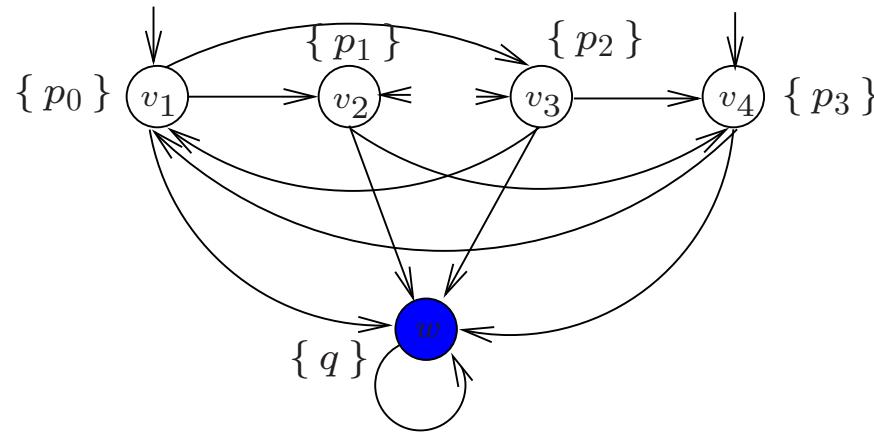
- $TS \models \forall \Box \exists \Diamond a$, and thus—by assumption— $TS \models \varphi$
- $Paths(TS') \subseteq Paths(TS)$, thus $TS' \models \varphi$
- **But** $TS' \not\models \forall \Box \exists \Diamond a$ as path $s^\omega \not\models \Box \exists \Diamond a$

Model-checking LTL versus CTL

- Let TS be a transition system with N states and M transitions
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot 2^{|\Phi|})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot |\Phi|)$
 - linear in the state space of the system model and the formula
- Is model-checking CTL more efficient? No!

Model-checking LTL versus CTL

⇒ LTL-formulae can be *exponentially shorter* than their equivalent in CTL



- Existence of Hamiltonian path in LTL: $\neg ((\Diamond p_0 \wedge \dots \wedge \Diamond p_3) \wedge \bigcirc^4 q)$
- In CTL, all possible ($= 4!$) routes need to be encoded

Content of this lecture

- Computation tree logic
 - syntax, semantics, equational laws
- CTL model checking
 - recursive descent, backward reachability, complexity
- Comparing LTL and CTL
 - what can be expressed in CTL?, what in LTL?, efficiency

⇒ Fairness

- fair CTL semantics, model checking

Fairness constraints in CTL

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is **not** possible!
- Formulas $\forall(fair \rightarrow \varphi)$ and $\exists(fair \wedge \varphi)$ needed
- **But:** boolean combinations of path formulae are not allowed in CTL
- **and:** e.g., strong fairness constraints $\square\lozenge b \rightarrow \square\lozenge c \equiv \lozenge\square\neg b \vee \lozenge\square c$
 - cannot be expressed in CTL since persistence properties cannot
- **Solution:** change the semantics of CTL by ignoring unfair paths

CTL fairness constraints

- A *strong* CTL fairness constraint is a formula of the form:

$$sfair = \bigwedge_{0 < i \leq k} (\square \lozenge \Phi_i \rightarrow \square \lozenge \Psi_i)$$

- where Φ_i and Ψ_i (for $0 < i \leq k$) are CTL-formulas over AP
- weak and unconditional CTL fairness constraints are defined analogously, e.g.

$$ufair = \bigwedge_{0 < i \leq k} \square \lozenge \Psi_i \quad \text{and} \quad wfair = \bigwedge_{0 < i \leq k} (\lozenge \square \Phi_i \rightarrow \square \lozenge \Psi_i)$$

- a CTL fairness assumption $fair$ is a combination of $ufair$, $sfair$ and $wfair$

⇒ a CTL fairness constraint is an LTL formula over CTL state formulas!

- note that $s \models \Phi_i$ and $s \models \Psi_i$ refer to standard (unfair!) CTL semantics

Semantics of fair CTL

For CTL fairness assumption $fair$, relation \models_{fair} is defined by:

$$\begin{aligned}
 s \models_{fair} a &\quad \text{iff } a \in Label(s) \\
 s \models_{fair} \neg \Phi &\quad \text{iff } \neg (s \models_{fair} \Phi) \\
 s \models_{fair} \Phi \vee \Psi &\quad \text{iff } (s \models_{fair} \Phi) \vee (s \models_{fair} \Psi) \\
 s \models_{fair} \exists \varphi &\quad \text{iff } \pi \models_{fair} \varphi \text{ for } \text{some } \textcolor{red}{fair} \text{ path } \pi \text{ that starts in } s \\
 s \models_{fair} \forall \varphi &\quad \text{iff } \pi \models_{fair} \varphi \text{ for } \text{all } \textcolor{red}{fair} \text{ paths } \pi \text{ that start in } s
 \end{aligned}$$

$$\begin{aligned}
 \pi \models_{fair} \bigcirc \Phi &\quad \text{iff } \pi[1] \models_{fair} \Phi \\
 \pi \models_{fair} \Phi \mathbin{\textup{\texttt{U}}} \Psi &\quad \text{iff } (\exists j \geq 0. \pi[j] \models_{fair} \Psi) \wedge (\forall 0 \leq k < j. \pi[k] \models_{fair} \Phi))
 \end{aligned}$$

π is a fair path iff $\pi \models_{LTL} \text{fair}$ for CTL fairness assumption $fair$

Transition system semantics

- For CTL-state-formula Φ , and fairness assumption $fair$:

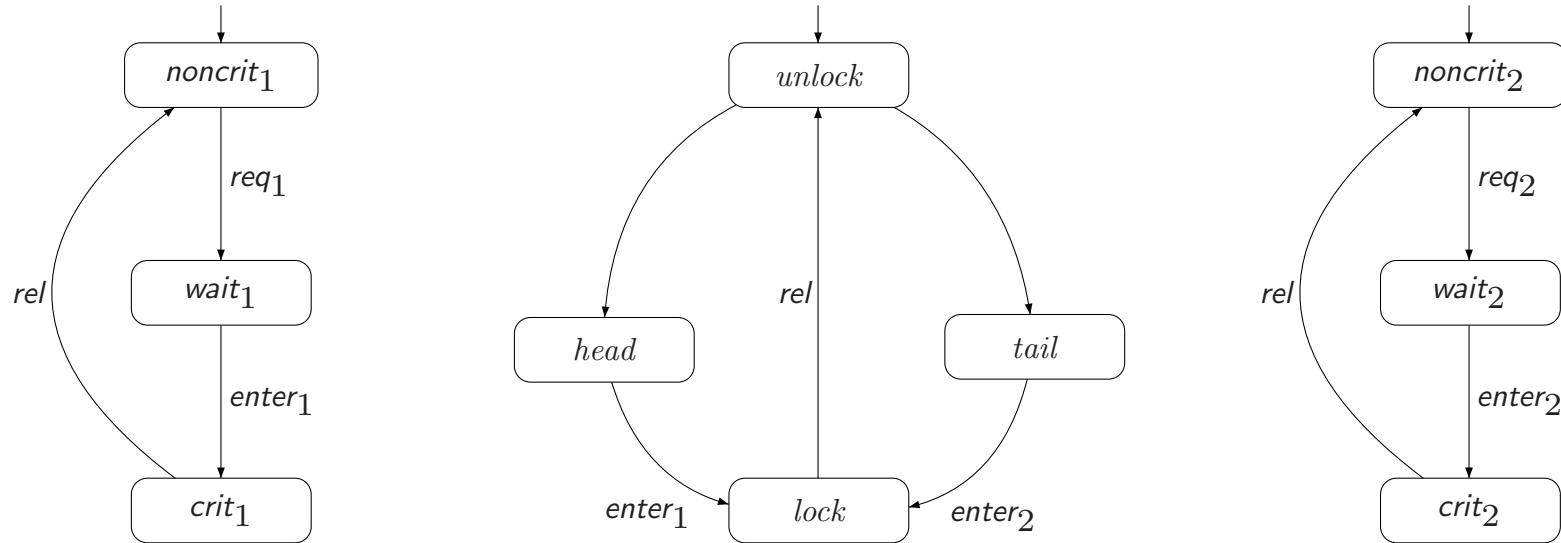
$$Sat_{fair}(\Phi) = \{ s \in S \mid s \models_{fair} \Phi \}$$

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models_{fair} \Phi \quad \text{if and only if} \quad \forall s_0 \in I. s_0 \models_{fair} \Phi$$

- this is equivalent to $I \subseteq Sat_{fair}(\Phi)$

Randomized arbiter



$$TS_1 \parallel \text{Arbiter} \parallel TS_2 \not\models (\forall \Box \forall \Diamond crit_1) \wedge (\forall \Box \forall \Diamond crit_2)$$

But: $TS_1 \parallel \text{Arbiter} \parallel TS_2 \models_{\text{fair}} \forall \Box \forall \Diamond crit_1 \wedge \forall \Box \forall \Diamond crit_2$ with
 $\text{fair} = \Box \Diamond head \wedge \Box \Diamond tail$

Fair CTL model-checking problem

For:

- finite transition system TS without terminal states
- CTL formula Φ in ENF, and
- CTL fairness assumption $fair$

establish whether or not:

$$TS \models_{fair} \Phi$$

use bottom-up procedure à la CTL to determine $Sat_{fair}(\Phi)$
using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

- A *strong CTL fairness constraint*: $sfair = \bigwedge_{0 < i \leq k} (\square\lozenge\Phi_i \rightarrow \square\lozenge\Psi_i)$
 - where Φ_i and Ψ_i (for $0 < i \leq k$) are CTL-formulas over AP
- Replace the CTL state-formulas in $sfair$ by fresh atomic propositions:

$$sfair := \bigwedge_{0 < i \leq k} (\square\lozenge\textcolor{red}{a}_i \rightarrow \square\lozenge\textcolor{blue}{b}_i)$$

- where $\textcolor{red}{a}_i \in L(s)$ if and only if $s \in Sat(\Phi_i)$ (not $Sat_{fair}(\Phi_i)!$)
- $\dots \textcolor{blue}{b}_i \in L(s)$ if and only if $s \in Sat(\Psi_i)$ (not $Sat_{fair}(\Psi_i)!$)
- (for unconditional and weak fairness this goes similarly)

- Note: $\pi \models fair$ iff $\pi[j..] \models fair$ for some $j \geq 0$ iff $\pi[j..] \models fair$ for all $j \geq 0$

Results for \models_{fair} (1)

$s \models_{fair} \exists \bigcirc a$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $FairPaths(s') \neq \emptyset$

$s \models_{fair} \exists (a \cup a')$ if and only if there exists a finite path fragment

$$s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s) \quad \text{with } n \geq 0$$

such that $s_i \models a$ for $0 \leq i < n$, $s_n \models a'$, and $FairPaths(s_n) \neq \emptyset$

Results for \models_{fair} (2)

$s \models_{fair} \exists \bigcirc a$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $\underbrace{FairPaths(s') \neq \emptyset}_{s' \models_{fair} \exists \Box \text{true}}$

$s \models_{fair} \exists(a \cup a')$ if and only if there exists a finite path fragment

$$s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s) \quad \text{with } n \geq 0$$

such that $s_i \models a$ for $0 \leq i < n$, $s_n \models a'$, and $\underbrace{FairPaths(s_n) \neq \emptyset}_{s_n \models_{fair} \exists \Box \text{true}}$

Basic algorithm

- Determine $Sat_{fair}(\exists \Box \text{true}) = \{s \in S \mid FairPaths(s) \neq \emptyset\}$
- Introduce an atomic proposition a_{fair} and adjust labeling where:
 - $a_{fair} \in L(s)$ if and only if $s \in Sat_{fair}(\exists \Box \text{true})$
- Compute the sets $Sat_{fair}(\Psi)$ for all subformulas Ψ of Φ (in ENF) by:

$$\begin{aligned}
 Sat_{fair}(a) &= \{s \in S \mid a \in L(s)\} \\
 Sat_{fair}(\neg a) &= S \setminus Sat_{fair}(a) \\
 Sat_{fair}(a \wedge a') &= Sat_{fair}(a) \cap Sat_{fair}(a') \\
 Sat_{fair}(\exists \bigcirc a) &= \text{Sat}(\exists \bigcirc (a \wedge a_{fair})) \\
 Sat_{fair}(\exists(a \cup a')) &= \text{Sat}(\exists(a \cup (a' \wedge a_{fair}))) \\
 Sat_{fair}(\exists \Box a) &= \dots
 \end{aligned}$$

- Thus: model checking CTL under fairness constraints is
 - CTL model checking + algorithm for computing $Sat_{fair}(\exists \Box a)$!

Model checking CTL with fairness

The model-checking problem for CTL with fairness can be reduced to:

- (1) the model-checking problem for CTL (without fairness), and
- (2) the problem of computing $Sat_{fair}(\exists \Box a)$ for $a \in AP$

note that $\exists \Box \text{true}$ is a special case of $\exists \Box a$
thus a single algorithm suffices for $Sat_{fair}(\exists \Box a)$ and $Sat_{fair}(\exists \Box \text{true})$

Core model-checking algorithm

(* states are assumed to be labeled with a_i and b_i *)

compute $Sat_{fair}(\exists \square \text{true}) = \{ s \in S \mid FairPaths(s) \neq \emptyset \}$

forall $s \in Sat_{fair}(\exists \square \text{true})$ **do** $L(s) := L(s) \cup \{ a_{fair} \}$ **od** (* compute $Sat_{fair}(\Phi)$ *)

for all $0 < i \leq |\Phi|$ **do**

for all $\Psi \in Sub(\Phi)$ with $|\Psi| = i$ **do**

switch(Ψ):

true	:	$Sat_{fair}(\Psi) := S;$
a	:	$Sat_{fair}(\Psi) := \{ s \in S \mid a \in L(s) \};$
$a \wedge a'$:	$Sat_{fair}(\Psi) := \{ s \in S \mid a, a' \in L(s) \};$
$\neg a$:	$Sat_{fair}(\Psi) := \{ s \in S \mid a \notin L(s) \};$
$\exists \bigcirc a$:	$Sat_{fair}(\Psi) := Sat(\exists \bigcirc (a \wedge a_{fair}));$
$\exists (a \cup a')$:	$Sat_{fair}(\Psi) := Sat(\exists (a \cup (a' \wedge a_{fair})));$
$\exists \square a$:	compute $Sat_{fair}(\exists \square a)$

end switch

 replace all occurrences of Ψ (in Φ) by the fresh atomic proposition a_Ψ

forall $s \in Sat_{fair}(\Psi)$ **do** $L(s) := L(s) \cup \{ a_\Psi \}$ **od**

od

od

return $I \subseteq Sat_{fair}(\Phi)$

Characterization of $Sat_{fair}(\exists \Box a)$

$$s \models_{sfair} \exists \Box a \quad \text{where} \quad sfair = \bigwedge_{0 < i \leq k} (\Box \Diamond \textcolor{red}{a_i} \rightarrow \Box \Diamond \textcolor{blue}{b_i})$$

iff there exists a finite path fragment $s_0 \dots s_n$ and a cycle $s'_0 \dots s'_r$ with:

1. $s_0 = s$ and $s_n = s'_0 = s'_r$
2. $s_i \models a$, for any $0 \leq i \leq n$, and $s'_j \models a$, for any $0 \leq j \leq r$, and
3. $Sat(\textcolor{red}{a_i}) \cap \{s'_1, \dots, s'_r\} = \emptyset$ or $Sat(\textcolor{blue}{b_i}) \cap \{s'_1, \dots, s'_r\} \neq \emptyset$ for $0 < i \leq k$

Computing $Sat_{fair}(\exists \Box \textcolor{red}{a})$

- Consider only state s if $s \models \textcolor{red}{a}$, otherwise *eliminate* s
 - change TS into $TS[\textcolor{red}{a}] = (S', \textit{Act}, \rightarrow', I', \textit{AP}, L')$ with $S' = Sat(\textcolor{red}{a})$,
 - $\rightarrow' = \rightarrow \cap (S' \times \textit{Act} \times S')$, $I' = I \cap S'$, and $L'(s) = L(s)$ for $s \in S'$
 - ⇒ each infinite path fragment in $TS[\textcolor{red}{a}]$ satisfies $\Box \textcolor{red}{a}$
- $s \models_{fair} \exists \Box \textcolor{red}{a}$ iff there is a non-trivial SCC D in $TS[\textcolor{red}{a}]$ reachable from s :

$$D \cap Sat(a_i) = \emptyset \quad \text{or} \quad D \cap Sat(b_i) \neq \emptyset \quad \text{for } 0 < i \leq k \quad (*)$$

- $Sat_{sfair}(\exists \Box \textcolor{red}{a}) = \{ s \in S \mid Reach_{TS[\textcolor{red}{a}]}(s) \cap T \neq \emptyset \}$
 - T is the union of all non-trivial SCCs C that contain D satisfying $(*)$

how to compute the set T of SCCs?

Unconditional fairness

$$ufair \equiv \bigwedge_{0 < i \leq k} \square \lozenge b_i$$

Let T be the set union of all non-trivial SCCs C of $TS[\textcolor{red}{a}]$ satisfying

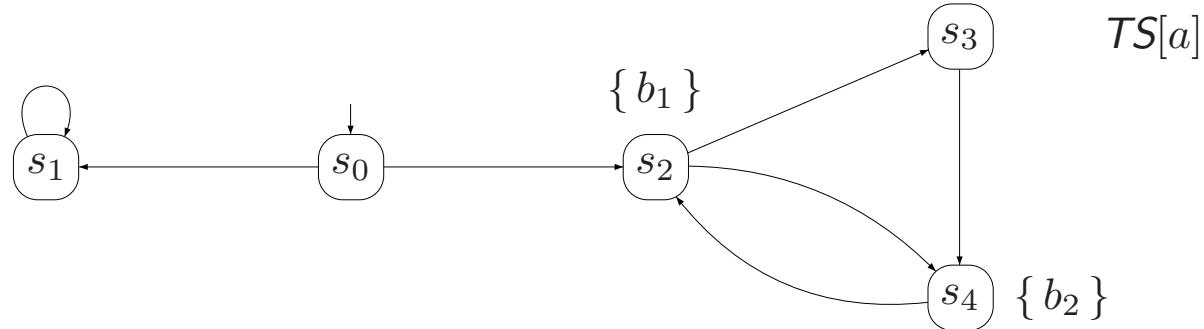
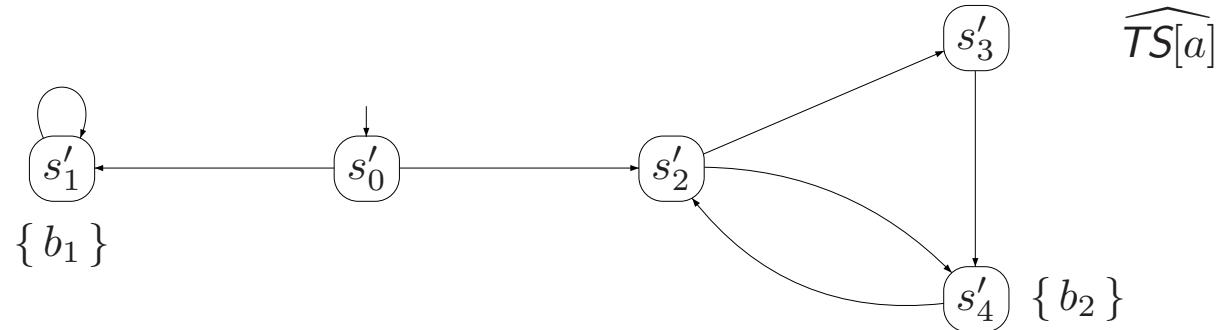
$$C \cap \text{Sat}(\textcolor{blue}{b}_i) \neq \emptyset \quad \text{for all } 0 < i \leq k$$

It now follows:

$$s \models_{ufair} \exists \square a \quad \text{if and only if} \quad \text{Reach}_{TS[\textcolor{red}{a}]}(s) \cap T \neq \emptyset$$

$\Rightarrow T$ can be determined by a simple graph analysis (DFS)

Example



$TS[a] \models_{ufair} \exists \Box a$ but $\widehat{TS[a]} \not\models_{ufair} \exists \Box a$ with $ufair = \Box \Diamond b_1 \wedge \Box \Diamond b_2$

Strong fairness

- $sfair = \square\lozenge a_1 \rightarrow \square\lozenge b_1$, i.e., $k=1$
- $s \models_{sfair} \exists \square a$ iff C is a non-trivial SCC in $TS[a]$ reachable from s with:
 - (1) $C \cap Sat(b_1) \neq \emptyset$, or
 - (2) $D \cap Sat(a_1) = \emptyset$, for some non-trivial SCC D in C
- D is a non-trivial SCC in the graph that is obtained from $C[\neg a_1]$
- For T the union of non-trivial SCCs in satisfying (1) and (2):

$$s \models_{sfair} \exists \square a \quad \text{if and only if} \quad Reach_{TS[a]}(s) \cap T \neq \emptyset$$

for several strong fairness constraints ($k > 1$), this is applied recursively
 T is determined by standard graph analysis (DFS)

Time complexity

For transition system TS with N states and M transitions,
CTL formula Φ , and CTL fairness constraint $fair$ with k conjuncts,
the CTL model-checking problem $TS \models_{fair} \Phi$
can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M) \cdot k)$