© JPK

CTL Model Checking
Lecture #4 of Principles of Model Checking

Joost-Pieter Katoen
Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 12, 2012

Content of this lecture

Computation tree logic

— syntax, semantics, equational laws

CTL model checking

— recursive descent, backward reachability, complexity

Comparing LTL and CTL

— what can be expressed in CTL? what in LTL?, efficiency

Fairness

— fair CTL semantics, model checking

© JPK

Content of this lecture

= Computation tree logic

— syntax, semantics, equational laws

e CTL model checking

— recursive descent, backward reachability, complexity

e Comparing LTL and CTL

— what can be expressed in CTL? what in LTL?, efficiency

e Fairness

— fair CTL semantics, model checking

© JPK

Linear and branching temporal logic

e [inear temporal logic:

“statements about (all) paths starting in a state”

— s = O(x < 20) iff for all possible paths starting in s always = < 20

e Branching temporal logic:
“statements about all or some paths starting in a state”

— s = VO(x < 20) iff for all paths starting in s always z < 20
— s = J0(x < 20) iff for some path starting in s always < 20
— nesting of path quantifiers is allowed

e Checking 4y in LTL can be done using V-

— ... but this does not work for nested formulas such as V[3d0a

© JPK 3

Linear versus branching temporal logic

e Semantics is based on a branching notion of time

— an infinite tree of states obtained by unfolding transition system
— one “time instant” may have several possible successor “time instants”

e Incomparable expressiveness

— there are properties that can be expressed in LTL, but not in CTL
— there are properties that can be expressed in most branching, but not in LTL

e Distinct model-checking algorithms, and their time complexities

e Distinct equivalences (pre-orders) on transition systems

— that correspond to logical equivalence in LTL and branching temporal logics

© JPK 4

‘ '
(s1,1)
s1){x=0} L T
{z#0} (s2,2) (s3,2)
v N
om0y (s3,3) (s2,3) (s3,3)
{z=1,z#0} ¢ /\

© JPK 5

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s
temporal LTL: path formulas ¢ CTL: state formulas
logic s =@ iff existential path quantification J¢

V7 € Paths(s). 7 |= ¢

universal path quantification: Vo

complexity of the
model checking

problems

PSPACE—-complete

C)(|Tg|.2wﬂ)

PTIME

O(IT] - [@])

implementation-
relation

trace inclusion and the like
(proof is PSPACE-complete)

simulation and bisimulation
(proof in polynomial time)

© JPK

Computation tree

modal logic over

e Statements over states

— a € AP
— = Pand PA VY

—- Jo
~- Yo

e Statements over paths

- O
- oUW

= note that () and U alternate with V and 4

logic

infinite trees [Clarke & Emerson 1981]

atomic proposition

negation and conjunction
there exists a path fulfilling ¢
all paths fulfill ¢

the next state fulfills ®
® holds until a W-state is reached

© JPK

Derived operators

potentially ®: 0P = J(trueU @)

inevitably &: VO = V(trueU o)

potentially always ®: dLIP = VO P

invariantly ®: VP = 30—

weak until: IOWT) = —V(2A-T)U (=D A-T))
V@eWT) = —-3(2A-T)U(-PA-T))

the boolean connectives are derived as usual

© JPK 8

Visualization of semantics

AOred J0red I(yellow U red)

eIl dedss dad

VOred VDred Y (yellow U red)

© JPK 9

Semantics of CTL state-formulas

Defined by a relation = such that

s = @ if and only if formula ® holds in state s

skEa iff a e L(s)

sE - iff —(sE=)

sEPAV iff (sEP)A(sE V)

s = dp iff 7 = ¢ for some path 7 that starts in s
s = Vo iff 7 = o for all paths 7 that start in s

© JPK

10

Semantics of CTL path-formulas

Define a relation = such that

7 = @ if and only if path 7 satisfies ¢

TEO® iffx[l] @
TEOUT iff (3507 ET A (VO< k< j.alk] = ®))

where 7[i] denotes the state s; in the path 7

© JPK 11

Transition system semantics

e For CTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {seS|sE=d}

e 7S satisfies CTL-formula ® iff ® holds in all its initial states:

TSE® ifandonlyif Vsgel.so =@

e Point of attention: TS = ® and TS [~ —® is possible!

— because of several initial states, e.g. so = 30P and s;, = I0P

© JPK 12

CTL equivalence

CTL-formulas ® and ¥ (over AP) are equivalent, denoted & = ¥
if and only if Sat(®) = Sat(W) for all transition systems TS over AP

¢ =v iff (TSE® ifandonlyif TSE W)

© JPK 13

Expansion laws

Recall in LTL: Uy = ¢ V (@A O (pU))

In CTL:
V(e U W)

VOP
vUo

3 U D)
1O
100

14
o
o

KA

V (& AN VOVY(@UW))
vV VO VoD
A YO VOP

V(@ A 3O IPUTD))
v 3030
INEIOERT:

© JPK

14

Distributive laws

Recall in LTL: O(p A ¥) = Op A Oy and O V ¥) = Qp V QU

In CTL:

VO(® A D) vOP A VOU

A0(P Vv V) 300 Vv IOU

note that 3L1(® A W) Z J0OP A JOW and VO(P VvV) £ VO V VOU

© JPK 15

Content of this lecture

Computation tree logic

— syntax, semantics, equational laws

CTL model checking

— recursive descent, backward reachability, complexity

Comparing LTL and CTL

— what can be expressed in CTL? what in LTL?, efficiency

Fairness

— fair CTL semantics, model checking

© JPK

16

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

o

= true) a) B A Do ‘ ~@ ‘ 300) 3@, Ud,) | 300

For each CTL formula, there exists an equivalent CTL formula in ENF

© JPK

17

Model checking CTL

e Convert the formula ®’ into an equivalent ® in ENF

e How to check whether TS satisfies &7

— compute recursively the set Sat(®P) of states that satisfy &
— check whether all initial states belong to Sat(®)

e Recursive bottom-up computation:

— consider the parse-tree of ®

— start to compute Sat(a), for all leafs in the tree

— then go one level up in the tree and check the formula of these nodes
— then go one level up and check the formula of these nodes

— and so on....... until the root of the tree (i.e., ®) is checked

© JPK 18

¢ = d0a A F(bU F0—c)
v/

© JPK 19

Characterization of Sat (1)

For all C'T'L formulas @, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {se€S|a€L(s)}, foranyaec AP
Sat(P AW) = Sat(P) N Sat(V)
Sat(—=®) = S\ Sat(P)
Sat(30OP) = {se€ S| Post(s) N Sat(®) # < }

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 20

Characterization of Sat (2)

For all C'T'L formulas ®, ¥ over AP it holds:

o Sat(I(PUW)) is the smallest subset T" of .S, such that:

(1) Sat(¥) C T and

(2) s € Sat(P) and Post(s) N'T # & implies s € T

e Sat(dLId) is the largest subset T' of S, such that:

(3) T C Sat(P) and

(4) s € T implies Post(s) NT # &

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 21

switch(®):

a
30T
3(d1 U Do)

00w

end switch

Computation of Sat

return {s € S |a € L(s) };

return { s € S | Post(s) N Sat(V) # @ };

T := Sat(P2); (* compute the smallest fixed point *)
while Sat(®1) \ T'N Pre(T") # & do
let s € Sat(®1) \ T N Pre(T);
T:=T U {s}
od;
return 1';

T := Sat(V); (* compute the greatest fixed point *)
while Js € T'. Post(s) N T = @ do

let s€ {seT | Post(s)NT = };
T:=T\{s}
od;
return 7T';

© JPK

22

Computing Sat(3(® U V))

© JPK 23

Computing Sat(3(® U V))

Input: finite transition system TS with state-set S and CTL-formula 3(® U V)
Output: Sat(3(P U WV))

E = Sat(V); (* E administers the states s with s |= 3(® U V) *)
T := F, (* T contains the already visited states s with s = 3(® U ¥) *)
while £ # & do

let s’ € E;

E:=FE\{s};

for all s € Pre(s’) do
if s€ Sat(®)\ T then E:=F U {s}hT:=T U {s}; fi
od
od
return T

© JPK 24

Example
{r} 9
O= A
(par}) Oy
{q} /{p,r}
te,r} {p,q}

let’s check the CTL-formula 3Q((p =) A (p # q))

© JPK 25

The computation in snapshots
T !

%]
{P,Qﬂ“} O{ } Q
{q}l‘ {p,7}
tar) P {pr.a} M
(a) (

!

SENES

b)
(€) (d)

!

o)

e

© JPK 26

Computing Sat(d0]P)

E := S\ Sat(®); (* E contains any not visited s’ with s [z 30® *)
T := Sat(P); (* T contains any s for which s |= 300® has not yet been disproven *)
for all s € Sat(®) do c[s] := | Post(s) |; od (* initialize array c *)

while £ # @ do
(* loop invariant: ¢[s] = | Post(s) N (T'U E) | *)

let s’ € E; (* s = @ *)
E:=E\{s}; (* s’ has been considered *)
for all s € Pre(s’) do
if s € T then
c[s] == c[s] — 1; (* update counter c[s] for predecessor s of s’ *)
if c[s] = O then
T:=T\{s}h E:=FEU{s} (* s does not have any successor in T" *)
fi
fi
od
od
return T

© JPK 27

Alternative algorithm

1. Consider only state s if s = ®, otherwise eliminate s

e change TS into TS[®] = (S', Act, =, I', AP, L") with S’ = Sat(®),
o ' == NS xXActx S"), I'=1InN S and L'(s) = L(s) fors € S’
= all removed states will not satisfy 4L 1P, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS|®|

e non-trivial SCC = maximal, connected subgraph with at least one transition
= any state in such SCC satisfies 1P

3. s = dJ0® is equivalent to “some SCC is reachable from s”

e this search can be done in a backward manner

© JPK

28

Example
ot /O®
{P,q,"“} Q{p}
{a} {p,7r}
la,r} {p,q}
(a (b) Klq]
]
(©) scc (d)

© JPK 29

Time complexity

For transition system TS with N states and K transitions,
and CTL formula ®, the CTL model-checking problem TS |= &
can be determined in time O(| ® |- (N + M))

this applies to both algorithm for existential until-formulas

© JPK 30

Content of this lecture

e Computation tree logic

— syntax, semantics, equational laws

e CTL model checking

— recursive descent, backward reachability, complexity

= Comparing LTL and CTL

— what can be expressed in CTL?, what in LTL?, efficiency

e Fairness

— fair CTL semantics, model checking

© JPK

31

Equivalence of LTL and CTL formulas

e CTL-formula ® and LTL-formula ¢ (both over AP) are equivalent,
denoted ® = o, if for any transition system TS over AP:

TSE® ifandonlyif TSE ¢

e Let & be a CTL-formula, and ¢ the LTL-formula that is obtained by
eliminating all path quantifiers in ®. Then:

® = ¢ or there does not exist any LTL-formula that is equivalent to &

© JPK 32

LTL and CTL are incomparable

e Some LTL-formulas cannot be expressed in CTL, e.g.,

- OUa
- O0(a A Oa)

e Some CTL-formulas cannot be expressed in LTL, e.g.,

- YOVUa
- VO(a AVOa)
- YO3d0a

= Cannot be expressed = there does not exist an equivalent formula

© JPK 33

Comparing LTL and CTL (1)

O(a A (O a) is not equivalent to VO(a A V(a)

)
S9 S1 \l/

or
GO T €

. (a) {a}\‘

ta}

© JPK 34

Comparing LTL and CTL (1)

O(a A (O a) is not equivalent to VO(a A V(a)

%)
S2 S1 \l/

or
gom= g

. (a} {a\

ta}

soEQ@ AN Oa) but soEVO(a A VOa)
since path sg s (s2)“ violates O(a A V(a)

© JPK 35

Comparing LTL and CTL (2)

VYOVUa is not equivalent to Qlla

e |

© JPK 36

Comparing LTL and CTL (2)

VYOVUa is not equivalent to Qlla

e |

S92

so =QOUa but sg = VOVUa

since path s§ violates OVlla

© JPK 7

Comparing LTL and CTL (3)

e No LTL-formula ¢ is equivalent to V[L1d0a

e This is shown by contradiction: assume ¢ = VLId0a; let:

\S

TS @@ é{a} TS’%@

e 7S = VU30a, and thus—by assumption—TS = ¢

o Paths(TS') C Paths(TS), thus TS | ¢

e But TS }£ V30a as path s¥ = 030a

© JPK 38

Model-checking LTL versus CTL

e Let TS be a transition system with N states and M transitions

e Model-checking LTL-formula ® has time-complexity O((N+M)-2/®1)

— linear in the state space of the system model
— exponential in the length of the formula

e Model-checking CTL-formula ® has time-complexity O((N+M)-| ® |)

— linear in the state space of the system model and the formula

e |s model-checking CTL more efficient? No!

© JPK 39

Model-checking LTL versus CTL

= LTL-formulae can be exponentially shorter than their equivalent in CTL

e Existence of Hamiltonian path in LTL: — (((}po/\ ... AOp3) A O CI)

e In CTL, all possible (= 4!) routes need to be encoded

© JPK 40

Content of this lecture

e Computation tree logic

— syntax, semantics, equational laws

e CTL model checking

— recursive descent, backward reachability, complexity

e Comparing LTL and CTL

— what can be expressed in CTL?, what in LTL?, efficiency

= Fairness

— fair CTL semantics, model checking

© JPK

41

Fairness constraints in CTL

e For LTL it holds: TS =i ¢ if and only if TS = (fair — ¢)
e An analogous approach for CTL is not possible!
e Formulas form V(fair — ¢) and 3(fair A) needed

e But: boolean combinations of path formulae are not allowed in CTL

e and: e.g., strong fairness constraints LIOb — [L10c = OLI-b VvV OLc

— cannot be expressed in CTL since persistence properties cannot

e Solution: change the semantics of CTL by ignoring unfair paths

© JPK

42

CTL fairness constraints

e A strong CTL fairness constraint is a formula of the form:

sfair = /\ (OO0, — OW,)

0<i<k

— where ®; and W, (for 0 < ¢ < k) are CTL-formulas over AP
— weak and unconditional CTL fairness constraints are defined analogously, e.g.

ufair =\ D0, and wfair = N\ (00®; — O0;)

0<i<k 0<i<k

— a CTL fairness assumption fair is a combination of ufair, sfair and wfair

= a CTL fairness constraint is an LTL formula over CTL state formulas!

— note that s |= ®; and s |= U, refer to standard (unfair!) CTL semantics

© JPK 43

Semantics of fair CTL

For CTL fairness assumption fair, relation |=y,, is defined by:

S Ffuir @ iff a € Label(s)

S Ftair =P iff = (s Fpur P)

S Ffr ® V¥ iff (s =pr @) V (s Fpr P)

S Ffair 3 iff 7 [=fur o for some fair path 7 that starts in s
S Ffair Ve iff 7 [=fur o for all fair paths 7 that start in s

s ‘:fair Oq) iff 7T[1] ‘:fair P
T Epr @UT iff (352 0. 7] Eur ¥ A (VO < k < j.w[k] Epr @)

7 is a fair path iff m = fair for CTL fairness assumption fair

© JPK 44

Transition system semantics

e For CTL-state-formula ®, and fairness assumption fair:

Satpir(®) = {s€ S| s FEppir P}

e 7S satisfies CTL-formula ® iff ® holds in all its initial states:
TS Epir © ifand only if Vsg € I.s0 =i ©

— this is equivalent to I C Satj,;,(P)

© JPK 45

Randomized arbiter

noncrit1 noncrit2

unlock

rel rel

TSy || Arbiter || TSe = (VOVO crity) A (VOVO crito)

But: TS || Arbiter || TSz |=fur YOVOcrity A YOVcrity with
fair = OOhead A Otail

© JPK 46

Fair CTL model-checking problem

For:

e finite transition system TS without terminal states
e CTL formula ® in ENF, and

e CTL fairness assumption fair

establish whether or not:

TS ‘: faz'r (I)

use bottom-up procedure a la CTL to determine Saty,;, (P)
using as much as possible standard CTL model-checking algorithms

© JPK e

CTL fairness constraints
e A strong CTL fairness constraint: sfair = [\ (OO®; — OOW,)
0<i<k

— where ®; and W, (for 0 < ¢ < k) are CTL-formulas over AP

e Replace the CTL state-formulas in sfair by fresh atomic propositions:

sfair := /\ (O0a; — LOby)

0<i<k
— where a; € L(s) if and only if s € Sat(P;) (not Sats, (Pi)!)
— ... b; € L(s) if and only if s € Sat(\V;) (not Satfyr(W;)!)

— (for unconditional and weak fairness this goes similarly)

® Note: 7 |= fair iff w[j..] = fair for some j > 0 iff w[j..] |= fair forall 5 > 0

© JPK 48

Results for =, (1)

$ Efuir 30a if and only if 3s” € Post(s) with s’ = a and FairPaths(s") # @

s Epir 3(aUa’) if and only if there exists a finite path fragment
S0 S152...5,—18n € Pathsg,(s) withn >0

such that s; =a for 0 < i <n, s, = d, and FairPaths(s,,) # &

© JPK 49

Results for =, (2)

s Ffair 30aif and only if 35" € Post(s) with s” |= a and FairPaths(s') # @

s’ [=fqir 0true

S Eir 3(aUa’) if and only if there exists a finite path fragment
$S081S82...8,-1S, € Pathsﬁn(s) with n = 0

such that s; Eafor0<i<n, s, Ed, and FairPaths(s,,) # @

sn Efaiy true

© JPK 50

Basic algorithm

e Determine Saty,;, (30true) = {s €S | FairPaths(s) # @ }

e Introduce an atomic proposition ay,;, and adjust labeling where:

— afir € L(s) ifandonly if s & Saty,,(30true)

e Compute the sets Saty,, (V) for all subformulas ¥ of & (in ENF) by:

Satjr(a) = {s€S|ae€L(s)}
Satfmr(—la> = S \ Satfair(a)

Satyir(a AN a') = Satpi(a) N Saty,(a)
Satiiy (3Oa) = Sat(IO(a A ajuir))
Satpir(3(aUa’)) = Sat(3(aVU(a' A apu)))

Satfair(HDa,) = ...

e Thus: model checking CTL under fairness constraints is

— CTL model checking + algorithm for computing Saty-(30a)!

© JPK 51

Model checking CTL with fairness

The model-checking problem for CTL with fairness can be reduced to:
(1) the model-checking problem for CTL (without fairness), and
(2) the problem of computing Saty,,(30a) for a € AP

note that dlJtrue is a special case of dlla
thus a single algorithm suffices for Saty,;-(30a) and Saty,,(Itrue)

© JPK

52

Core model-checking algorithm

(* states are assumed to be labeled with a; and b; *)
compute Saty,;.(I0true) = {s € S | FairPaths(s) # @ }
forall s € Saty,;.(30true) do L(s) := L(s) U { afy, } od
(* compute Satgy; - (P) *)
forall0 < i< |®| do
for all U € Sub(®) with | V| = 7 do

switch(V):
true D Satp, (V) =S,
a o Satpg (V) :={s € S|ae€L(s)}
a A d o Satp (V) :={s€S]|a, a' € L(s)};
—a o Satp (V) :={s€S|a¢gL(s)}
30a D Satg (W) := Sat(30(a A agyr));
d(aUd) Satf,ir (V) := Sat(3(a U (a’ A Afair)));
J0a : compute Saty,;.(I0a)

end switch

replace all occurrences of W (in @) by the fresh atomic proposition ay
forall s € Saty,; (V) do L(s) := L(s)U{ay } od
od
od
return I C Saty,;.(P)

© JPK 53

Characterization of Sat,;,(30a)

S FEsfair 30a where sfair = /\ (H0a; — LIOb;)
0<i<k

iff there exists a finite path fragment s¢...s, and a cycle s ... s’ with:

_ Y A
l. sp=s and s, =s5=Ss5,

2. si = a, forany 0 <1i < n, ands;- = a, for any 0 < j <, and

3. Sat(a;)) N {sy,...,s.} =orSatlb;) N{s},...,s.} #Dfor0<i<k

© JPK ”

Computing Saty,;,(30a)

e Consider only state s if s = a, otherwise eliminate s

— change TS into TS[a] = (S’, Act, =', I', AP, L") with S’ = Sat(a),
- ='== NS xActx S), I'=1nNn S and L'(s) = L(s) fors € S’

=> each infinite path fragment in TS[a] satisfies Ua

® s =,y 30a iff there is a non-trivial SCC D in TS|a] reachable from s:

D N Sat(a;) = @ or D N Sat(b;)) #@ for 0<i<k (*)

o Saty,,(Ia) = {s € S| Reachrs,(s) NT # 3}

— T is the union of all non-trivial SCCs C' that contain D satisfying (*)

how to compute the set T" of SCCs?

© JPK 55

Unconditional fairness

ufair = /\ C1Ob;

Let T be the set union of all non-trivial SCCs C' of TS|a] satisfying

C' N Sat(b;)) # @ forall 0 <i <k

It now follows:

s Fufeir 30a if and only if Reachysq)(s) N'T # &

= T can be determined by a simple graph analysis (DFS)

© JPK 56

Example
53 TS|al
{01}
@ Gb S2
N/
S4 { b }
i) TSl
s fsjm st
1 S0 2
{01}
sy) {b2}

e

TS|la] Fufeir 30a but TS[a] Eupir 30a with ufair = O0b; A OOy

© JPK

57

Strong fairness

o sfarr = UOa; — U0, ie., k=1

® s = 3a iff C is a non-trivial SCC in TS|a] reachable from s with:
(1) C N Sat(by) # @, or

(2) D N Sat(a,) = @, for some non-trivial SCC D in C
e D is a non-trivial SCC in the graph that is obtained from C'[—a]
e For T' the union of non-trivial SCCs in satisfying (1) and (2):
s F=sfair 30a i and only if Reachysq)(s) N'T # &

for several strong fairness constraints (k > 1), this is applied recursively
T is determined by standard graph analysis (DFS)

© JPK 58

Time complexity

For transition system TS with N states and M transitions,

CTL formula @, and CTL fairness constraint fair with k conjuncts,

the CTL model-checking problem TS =y, ®
can be determined in time O(| ® |- (N + M)-k)

© JPK

59

