
Abstraction – Part 1
Lecture #5 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 29, 2010

c© JPK

Content of this lecture

• Bisimulation

– definition, properties, quotient, CTL∗ equivalence

• Bisimulation minimisation

– partition refinement, efficiency improvement, complexity

• Simulation

– pre-order, simulation equivalence, properties, ∀CTL∗ equivalence

• Checking simulation

– basic idea of algorithm

c© JPK 1

Content of this lecture

⇒ Bisimulation

– definition, properties, quotient, CTL∗ equivalence

• Bisimulation minimisation

– partition refinement, efficiency improvement, complexity

• Simulation

– pre-order, simulation equivalence, properties, ∀CTL∗ equivalence

• Checking simulation

– basic idea of algorithm

c© JPK 2

Abstraction

Reduce (a huge) TS to (a small) T̂S prior or during model checking

Relevant issues:

• What is the formal relationship between TS and T̂S?

• Can T̂S be obtained algorithmically and efficiently?

• Which logical fragment (of LTL, CTL, CTL∗) is preserved?

• And in what sense?

– “strong” preservation: positive and negative results carry over

– “weak” preservation: only positive results carry over

– “match”: logic equivalence coincides with formal relation

c© JPK 3

Bisimulation

R ⊆ S × S is a bisimulation on TS if for any (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

• if s′
2 ∈ Post(s2) then there exists an s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

s1 and s2 are bisimilar, s1 ∼TS s2, if (s1, s2) ∈ R for some bisimulation R for TS

c© JPK 4

Bisimulation

s1 −→ s′1 s1 −→ s′1
R can be completed to R R
s2 s2 −→ s′2

and

s1 s1 −→ s′1
R can be completed to R R
s2 −→ s′2 s2 −→ s′2

c© JPK 5

Example

determine the bisimulation relation ∼TS

c© JPK 6

Bisimulation on paths

For any bisimulation relation R, whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R
t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R
t0 −→ t1 −→ t2 −→ t3 −→ t4

proof: by induction on the length of a path

c© JPK 7

Bisimulation of transition systems

TS1 ∼ TS2, if there exists a bisimulation R on TS1 ⊕ TS2 such that:

∀s1 ∈ I1. (∃s2 ∈ I2. (s1, s2) ∈ R) and ∀s2 ∈ I2. (∃s1 ∈ I1. (s1, s2) ∈ R)

c© JPK 8

Properties

TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

TS1 ∼ TS2 implies TS1 |= P iff TS2 |= P for any LT property P

TS1 ∼ TS2 implies TS1 |= ϕ iff TS2 |= ϕ for any LTL formula ϕ

c© JPK 9

Quotient transition system

Let TS = (S, Act,→, I, AP, L) and bisimulation R ⊆ S × S be an equivalence

The quotient of TS under R is defined by:

TS/R = (S
′
, { τ },→′

, I
′
, AP, L

′
)

where

• S′ = S/R = { [s]R | s ∈ S } with [s]R = { s′ ∈ S | (s, s′) ∈ R}
• I ′ = { [s]R | s ∈ I }
• L′([s]R) = L(s)

• →′ is defined by:
s α−→ s′

[s]R τ−→′
[s

′
]R

note that TS ∼ TS/R Why?

c© JPK 10

Coarsest bisimulation

∼TS is a bisimulation, an equivalence,

and the coarsest bisimulation for TS

The quotient under ∼TS is the smallest

under any bisimulation relation

c© JPK 11

Example

determine the (coarsest) bisimulation quotient TS/∼TS

c© JPK 12

The simplified bakery algorithm

Process 1:

.

while true {
.

n1 : x1 := x2 + 1;

w1 : wait until(x2 = 0 ||x1 < x2) {
c1 : . . . critical section . . .}

x1 := 0;

.

}

Process 2:

.

while true {
.

n2 : x2 := x1 + 1;

w2 : wait until(x1 = 0 || x2 < x1) {
c2 : . . . critical section . . .}

x2 := 0;

.

}

this algorithm can be applied to arbitrarily many processes

c© JPK 13

Example run of bakery algorithm

process P1 process P2 x1 x2 effect

n1 n2 0 0 P1 requests access to critical section
w1 n2 1 0 P2 requests access to critical section
w1 w2 1 2 P1 enters the critical section
c1 w2 1 2 P1 leaves the critical section
n1 w2 0 2 P1 requests access to critical section
w1 w2 3 2 P2 enters the critical section
w1 c2 3 2 P2 leaves the critical section
w1 n2 3 0 P2 requests access to critical section
w1 w2 3 4 P2 enters the critical section
.

c© JPK 14

Bakery algorithm as transition system

n1 n2
x1 � 0
x2 � 0

n1 c2
x1 � 0
x2 � 1

n1 w2
x1 � 0

w1 w2
x1 � 2
x2 � 1

c1 w2
x1 � 1
x2 � 2

c1 n2
x1 � 1
x2 � 0

w1 n2
x1 � 1
x2 � 0

w1 c2

n1 c2
x1 � 0

n1 w2
x1 � 0

x1 � 3

c1 n2

x2 � 0

x2 � 0

x2 � 3
x1 � 0

x2 � 0

x2 � 1

w1 w2
x1 � 1
x2 � 2

x1 � 2
x2 � 1

x2 � 2

x2 � 2

w1 w2

x2 � 2

c1 w2 w1 c2

� � � � � �

n1 w2 w1 n2

� � � � � �

w1 w2
x1 � 2

w1 n2
x1 � 2

x1 � 2

c1 n2
x1 � 3

n1 c2

x2 � 3

� � � � � �

infinite state space due to possible unbounded increase of counters

c© JPK 15

Bisimulation

Function f maps a reachable state of TSBak onto an abstract one in TSabs
Bak

Let s = 〈�1, �2, x1 = b1, x2 = b2〉 be a state of TSBak with �i ∈ {ni, wi, ci } and

bi ∈ IN

Then:

f(s) =

8>>>>>>>><
>>>>>>>>:

〈�1, �2, x1 = 0, x2 = 0〉 if b1 = b2 = 0

〈�1, �2, x1 = 0, x2 > 0〉 if b1 = 0 and b2 > 0

〈�1, �2, x1 > 0, x2 = 0〉 if b1 > 0 and b2 = 0

〈�1, �2, x1 > x2 > 0〉 if b1 > b2 > 0

〈�1, �2, x2 > x1 > 0〉 if b2 > b1 > 0

It follows: R = { (s, f(s)) | s ∈ S } is a bisimulation for (TSBak , TSabs
Bak)

for any subset of AP = { noncriti, waiti, criti | i = 1, 2 }

c© JPK 16

Bisimulation quotient

n1 n2

x1 = 0
x2 = 0

n1 w2

x1 = 0
x2 > 0

w1 n2

x1 > 0
x2 = 0

n1 c2

x1 = 0
x2 > 0

c1 n2

x1 > 0
x2 = 0

w1 w2

x1 > x2 > 0
w1 w2

x2 > x1 > 0

c1 w2

x2 > x1 > 0
w1 c2

x1 > x2 > 0

bisimulation quotient under ∼TS for AP = { crit1, crit2, wait1, wait2 }

c© JPK 17

Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

ϕ ::= Φ
∣∣∣ ϕ1∧ϕ2

∣∣∣ ¬ϕ
∣∣∣ © ϕ

∣∣∣ ϕ1 Uϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL!

c© JPK 18

Relationship between LTL, CTL and CTL∗

♦(a∧ © a)
�♦a

♦(a∧ © a)

∀�∃♦a

LTL CTL

CTL∗

∨
∀�∃♦a

c© JPK 19

CTL∗ equivalence

States s1 and s2 in TS (over AP) are CTL∗-equivalent:

s1 ≡CTL∗ s2 if and only if (s1 |= Φ iff s2 |= Φ)

for all CTL∗ state formulas over AP

TS1 ≡CTL∗ TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

for any sublogic of CTL∗, logical equivalence is defined analogously

c© JPK 20

Bisimulation vs. CTL∗ and CTL equivalence

For any finitely branching transition system TS and s, s′ states in TS:

s ∼TS s′ iff s ≡CTL s′ iff s ≡CTL∗ s′ iff s ≡CTL\U s′

this is proven in three steps: ≡CTL ⊆ ∼TS ⊆ ≡CTL∗ ⊆ ≡CTL

c© JPK 21

Corollary

For any finitely branching transition systems TS and TS′:

TS ∼ TS′ if and only if TS ≡CTL TS′ if and only if TS ≡CTL∗ TS′

⇒ prior to model-check CTL-formula Φ, first minimize TS wrt. ∼

c© JPK 22

Content of this lecture

• Bisimulation

– definition, properties, quotient, CTL∗ equivalence

⇒ Bisimulation minimisation

– partition refinement, efficiency improvement, complexity

• Simulation

– pre-order, simulation equivalence, properties, ∀CTL∗ equivalence

• Checking simulation

– basic idea of algorithm

c© JPK 23

Partitions

• A partition Π = {B1, . . . , Bk } of S satisfies:

– Bi is non-empty; Bi is called a block

– Bi ∩ Bj = ∅ for all i, j with i �= j

– B1 ∪ . . . ∪ Bk = S

• C ⊆ S is a super-block of partition Π of S if

C = Bi1 ∪ . . . ∪ Bil for Bij ∈ Π for 0 < j � l

• Partition Π is finer than partition Π′ if:

∀B ∈ Π. (∃B′ ∈ Π′. B ⊆ B′)

⇒ each block of Π′ equals the disjoint union of a set of blocks in Π

– Π is strictly finer than Π′ if it is finer than Π′ and Π �= Π′

c© JPK 24

Partitions and equivalences

• R is an equivalence on S ⇒ S/R is a partition of S

• Partition Π = {B1, . . . , Bk } of S induces the equivalence relation

RΠ = { (s, t) | ∃Bi ∈ Π. s ∈ Bi ∧ t ∈ Bi }

• S/RΠ = Π

⇒ there is a one-to-one relationship between partitions and equivalences

c© JPK 25

Skeleton for bisimulation checking

from now on, we assume that TS is finite

• Iteratively compute a partition of S

• Initially: Π0 equals ΠAP = { (s, t) ∈ S × S | L(s) = L(t) }

• Repeat until no change: Πi+1 := Refine(Πi)

– loop invariant: Πi is coarser than S/∼ and finer than {S }

• Return Πi

– termination: S × S ⊇ RΠ0
� RΠ1

� RΠ2
� . . . � RΠi

= ∼TS

– time complexity: maximally |S | iterations needed (why?)

this is a partition-refinement algorithm

c© JPK 26

Theorem

1. S/∼ is the coarsest partition Π of S such that

(i) Π is finer than the initial partition ΠAP, and

(ii) B ∩ Pre(C) = ∅ or B ⊆ Pre(C) for all B, C ∈ Π

2. If (ii) holds for Π, then it holds for all B ∈ Π and all superblocks C of Π

c© JPK 27

The refinement operator

• Let: Refine(Π, C) =
⋃

B∈Π Refine(B,C) for C a superblock of Π

– where Refine(B, C) =
n

B ∩ Pre(C), B \ Pre(C)
o

\ {∅}

block B superblock C

B\Pre(C)

B∩Pre(C)

• Basic properties:

– for Π finer than ΠAP and coarser than S/∼:

Refine(Π, C) is finer than Π and Refine(Π, C) is coarser than S/∼

– Π is strictly coarser than S/∼ if and only if there exists a splitter for Π

c© JPK 28

Splitters

• Let Π be a partition of S and C a superblock of Π

• C is a splitter of Π if for some B ∈ Π:

B ∩ Pre(C)
= ∅ ∧ B \ Pre(C)
= ∅

• Block B is stable wrt. C if

B ∩ Pre(C) = ∅ ∧ B \ Pre(C) = ∅

• Π is stable wrt. C if any B ∈ Π is stable wrt. C

c© JPK 29

Algorithm skeleton

Input: finite transition system TS over AP with state space S

Output: bisimulation quotient space S/∼

Π := ΠAP;

while there exists a splitter for Π do
choose a splitter C for Π;

Π := Refine(Π, C); (* Refine(Π, C) is strictly finer than Π *)

od
return Π

c© JPK 30

Which splitter to take?

How to determine a splitter for partition Πi+1?

1. Simple strategy: O(|S|·M)

use any block of Πi as splitter candidate

2. Advanced strategy: O(log |S|·M)

use only “smaller” blocks of Πi as splitter candidates

and apply “simultaneous” refinement

c© JPK 31

Advanced strategy

• Not necessary to refine with respect to all blocks C ∈ Πold

⇒ Consider only the “smaller” subblocks of a previous refinement

• Step i: refine C′ into C1 = C ′ ∩ Pre(D) and C2 = C ′ \ Pre(D)

• Step i+1: use the smallest C ∈ {C1, C2 } as splitter

– let C be such that |C| � |C′|/2, thus |C| � |C′ \ C|
– combine the refinement steps with respect to C and C′ \ C

• Refine(Π, C, C ′ \ C) = Refine
“

Refine(Π, C), C′ \ C
”

where |C| � |C′ \ C|

– the decomposed blocks are stable with respect to C and C′ \ C

c© JPK 32

The new refinement operator

• Let: Refine(Π, C,C′ \ C) =
⋃

B∈Π Refine(B,C,C′ \ C)

– where Refine(B, C, C ′ \ C) = {B1, B2, B3 } \ {∅ } with:

B1 = B ∩ Pre(C) ∩ Pre(C′ \ C) to both C and C \ C′

B2 = (B ∩ Pre(C)) \ Pre(C′ \ C) only to C

B3 = (B ∩ Pre(C′ \ C)) \ Pre(C) only to C′ \ C

⇒ blocks B1, B2, B3 are stable with respect to C and C′ \ C

block B

B3
B1

B2
C

C′ \C

c© JPK 33

Improved partition-refinement algorithm

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/∼

Πold := {S };

Π := Refine(ΠAP, S);

(* loop invariant: Π is coarser than S/∼ and finer than ΠAP and Πold , *)

(* and Π is stable with respect to any block in Πold *)

repeat

choose block C′ ∈ Πold \ Π and block C ∈ Π with C ⊆ C′ and |C| � |C′|
2 ;

Πold := Π;

Π := Refine(Π, C, C ′ \ C);

until Π = Πold

return Π

c© JPK 34

Content of this lecture

• Bisimulation

– definition, properties, quotient, CTL∗ equivalence

• Bisimulation minimisation

– partition refinement, efficiency improvement, complexity

⇒ Simulation

– pre-order, simulation equivalence, properties, ∀CTL∗ equivalence

• Checking simulation

– basic idea of algorithm

c© JPK 35

Simulation relation

• R ⊆ S × S is a simulation relation on TS if for any (s1, s2) ∈ R:

– L(s1) = L(s2)

– if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

• s2 simulates s1, written s1 �TS s2

– if (s1, s2) ∈ R for some simulation relation R on TS

• TS1 � TS2 iff ∀s1 ∈ I1.∃s2 ∈ I2. s1 �TS1⊕TS2 s2

Facts: �TS is a preorder and the coarsest simulation for TS

c© JPK 36

Simulation order

s1 −→ s′1 s1 −→ s′1
R can be completed to R R
s2 s2 −→ s′2

but not necessarily:

s1 s1 −→ s′1
R can be completed to R R
s2 −→ s′2 s2 −→ s′2

c© JPK 37

Abstraction function

• f : S → Ŝ is an abstraction function if f(s) = f(s′) ⇒ L(s) = L(s′)

– S is a set of concrete states and bS a set of abstract states, i.e. |bS| << |S|

• Abstraction functions are useful for:

– data abstraction: abstract from values of program or control variables

f : concrete data domain → abstract data domain

– predicate abstraction: use predicates over the program variables

f : state → valuations of the predicates

– localization reduction: partition program variables into visible and invisible

f : all variables → visible variables

c© JPK 38

Abstract transition system

For TS = (S,Act,→, I,AP, L) and abstraction function f : S → Ŝ let:

TSf = (Ŝ, Act,→f , If ,AP, Lf), the abstraction of TS under f

where

• →f is defined by:
s α−−→ s′

f(s) α−−→f f(s′)

• If = { f(s) | s ∈ I }

• Lf(f(s)) = L(s); for s ∈ Ŝ \ f(S), labeling is undefined

c© JPK 39

Abstract transition system

For TS = (S,Act,→, I,AP, L) and abstraction function f : S → Ŝ let:

TSf = (Ŝ, Act,→f , If ,AP, Lf), the abstraction of TS under f

where

• →f is defined by:
s α−−→ s′

f(s) α−−→f f(s′)

• If = { f(s) | s ∈ I }

• Lf(f(s)) = L(s); for s ∈ Ŝ \ f(S), labeling is undefined

R = { (s, f(s)) | s ∈ S } is a simulation for (TS, TSf)

c© JPK 40

Abstraction example

c© JPK 41

Abstraction example

c© JPK 42

Simulation equivalence

TS1 and TS2 are simulation equivalent, denoted TS1 � TS2,

if TS1 � TS2 and TS2 � TS1

c© JPK 43

Simulation quotient

For TS = (S,Act,→, I,AP, L) and simulation equivalence � ⊆ S × S let

TS/� = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under �

where

• S′ = S/�= { [s]� | s ∈ S } and I ′ = { [s]� | s ∈ I }

• →′ is defined by:
s α−−→ s′

[s]� τ−→′ [s′]�

• L′([s]�) = L(s)

it follows that TS � TS/�

c© JPK 44

Trace, bisimulation, and simulation equivalence

simulation equivalence

bisimulation equivalence

trace equivalence
Traces(TS1) = Traces(TS2)

TS1 ∼ TS2

finite trace inclusion

finite trace equivalence
Tracesfin(TS1) = Tracesfin(TS2)

Tracesfin(TS1) ⊆ Tracesfin(TS2)

TS1 � TS2

TS1 � TS2

simulation order trace inclusion
Traces(TS1) ⊆ Traces(TS2)

c© JPK 45

Similar but not bisimilar

s1 { a }

s2 ∅ s3 ∅

s4 { b } s5 { c }

t1 { a }

t2 ∅

t3 { b } t4 { c }

TSleft � TSright but TSleft �∼ TSright

c© JPK 46

Simulation vs. trace equivalence

• TS1 � TS2 implies Tracesfin(TS1) = Tracesfin(TS2)

• If TS1 and TS2 do not have terminal states:

TS1 � TS2 implies Traces(TS1) ⊆ Traces(TS2)

• If TS1 and TS2 are AP-deterministic:

TS1 � TS2 iff Traces(TS1) = Traces(TS2) iff TS1 ∼ TS2

TS is AP-deterministic if there all initial states are labeled differently,

and this also applies to all direct successors of any state in TS

c© JPK 47

Logical characterization of �TS

• Negation of formulas is problematic as �TS is not symmetric

• Let L be a fragment of CTL∗ which is closed under negation

• And assume L weakly matches �TS, that is:

s1 �TS s2 iff for all state formulae Φ of L: s2 |= Φ =⇒ s1 |= Φ.

• Let s1 �TS s2. Then, for any state formula Φ of L:

s1 |= Φ =⇒ s1
|= ¬Φ =⇒ s2
|= ¬Φ =⇒ s2 |= Φ.

• Hence, s2 �TS s1 which requires �TS to be symmetric

c© JPK 48

Universal fragment of CTL∗

∀CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ false

∣∣∣ a
∣∣∣ ¬a

∣∣∣ Φ1 ∧Φ2

∣∣∣ Φ1 ∨ Φ2

∣∣∣ ∀ϕ

where a ∈ AP and ϕ is a path-formula

∀CTL∗ path-formulas are formed according to:

ϕ ::= Φ
∣∣∣ © ϕ

∣∣∣ ϕ1∧ϕ2

∣∣∣ ϕ1 ∨ ϕ2

∣∣∣ ϕ1 U ϕ2

∣∣∣ ϕ1 R ϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in ∀CTL, the only path operators are ©Φ, Φ1 U Φ2 and Φ1 R Φ2

c© JPK 49

Universal CTL∗ contains LTL

For every LTL formula there exists an equivalent ∀CTL∗ formula

c© JPK 50

Simulation order and ∀CTL∗

For any finitely branching transition system TS and s, s′ states in TS:

(1) s �TS s′ iff

(2) for any ∀CTL∗-formula Φ: s′ |= Φ implies s |= Φ iff

(3) for any ∀CTL-formula Φ: s′ |= Φ implies s |= Φ iff

(4) for any ∀CTL\U, R-formula Φ: s′ |= Φ implies s |= Φ

c© JPK 51

Content of this lecture

• Bisimulation

– definition, properties, quotient, CTL∗ equivalence

• Bisimulation minimisation

– partition refinement, efficiency improvement, complexity

• Simulation

– pre-order, simulation equivalence, properties, ∀CTL∗ equivalence

⇒ Checking simulation

– basic idea of algorithm

c© JPK 52

Skeleton for simulation preorder checking

Input: finite transition system TS over AP with state space S

Output: simulation order �TS

R := { (s1, s2) | L(s1) = L(s2) };

while R is not a simulation do
let (s1, s2) ∈ R such that s1 → s′

1 and ∀s′
2. s2 → s′

2 implies (s′
1, s′

2) �∈ R;

R := R \ { (s1, s2) };

od
return R

The number of iterations is bounded above by |S|2, since:

S × S ⊇ R0 � R1 � R2 � . . . � Rn = �TS

c© JPK 53

Algorithm to compute � (1)

for all s1 ∈ S do
Sim(s1) := { s2 ∈ S | L(s1) = L(s2) }; (* initialization *)

od

while ∃(s1, s2) ∈ S × Sim(s1). ∃s′
1 ∈ Post(s1) with Post(s2) ∩ Sim(s′

1) = ∅ do
choose such a pair of states (s1, s2); (* s1 ��TS s2 *)

Sim(s1) := Sim(s1) \ { s2 };

od
(* Sim(s) = SimTS(s) for any s *)

return { (s1, s2) | s2 ∈ Sim(s1) }

SimR(s) = { s′ | (s, s′) ∈ R}, the upward closure of s under R
∅ ⊇ SimR0(s) ⊇ SimR1(s) ⊇ . . . ⊇ SimRn(s) = Sim�TS

(s)

c© JPK 54

Time complexity

Time complexity of computing ≺TS is O
“

M ·|S|2
”

in each iteration a single pair is deleted; can we do better?

c© JPK 55

A simple observation

s1 −→ s′1
R R
s2 −→ s′2

• Assume: s′2 is the only successor of s2 related to s′1 (∗)
– SimR(s′

1) ∩ Post(s2) = { s′
2 } where SimR(s′

1) = { s ∈ S | (s′
1, s) ∈ R}

• Removing (s′1, s
′
2) from R implies that s1
� s2

⇒ (s1, s2) can thus also safely be removed from R

• This applies to all direct predecessors of s′2 satisfying (∗)

c© JPK 56

Algorithm to compute � (2)

Input: finite transition system TS over AP with state space S

Output: simulation order �TS

for all s1 ∈ S do
Simold(s1) := S;

Sim(s1) := { s2 ∈ S | L(s1) = L(s2) };

od
while (∃s ∈ S with Simold(s) �= Sim(s)) do

choose s′
1 such that Simold(s

′
1) �= Sim(s′

1);

Remove(s′
1) := Pre

“
Simold(s

′
1)

”
\ Pre

“
Sim(s′

1)
”

; (* predecessors that �� s′
1 *)

for all s1 ∈ Pre(s′
1) do

Sim(s1) := Sim(s1) \ Remove(s′
1);

od
Simold(s

′
1) := Sim(s′

1);

od
return { (s1, s2) | s2 ∈ Sim(s1) }

c© JPK 57

Implementation details

• Introduce for any state s′1 the set Remove(s′1)

– contains all states s2 to be removed from Sim(s1) for s1 ∈ Pre(s′
1):

Remove(s
′
1) = Pre(Simold(s

′
1)) \ Pre(Sim(s

′
1))

⇒ the sets Simold are superfluous

⇒ termination condition: Remove(s′
1) = ∅ for all s′

1 ∈ S

– adapt the sets Remove on modifying Sim(s1)

• Let s2 ∈ Remove(s′1) and s1 ∈ Pre(s′1)

– then s1 → s′
1 but no transition s2 → s′

2 with s′
2 ∈ Sim(s′

1)

– then s1 �� s2, so s2 can be removed from Sim(s1):

⇒ extend Remove(s1) with s ∈ Pre(s2) and Post(s) ∩ Sim(s1) = ∅

c© JPK 58

Algorithm to compute � (3)
for all s1 ∈ S do

Sim(s1) := { s2 ∈ S | L(s1) = L(s2) }; (* initialization *)
Remove(s1) := S \ Pre(Sim(s1));

od
(* loop invariant: Remove(s′1) = Pre

`
Simold(s

′
1)

´ \ Pre
`
Sim(s′1)

´
*)

while (∃s′1 ∈ S with Remove(s′1) �= ∅) do
choose s′1 such that Remove(s′1) �= ∅;
for all s2 ∈ Remove(s′1) do

for all s1 ∈ Pre(s′1) do
if s2 ∈ Sim(s1) then

Sim(s1) := Sim(s1) \ { s2 }; (* s2 ∈ Simold(s1) \ Sim(s1) *)
for all s ∈ Pre(s2) with Post(s) ∩ Sim(s1) = ∅ do

(* s ∈ Pre (Simold(s1)) \ Pre(Sim(s1)) *)
Remove(s1) := Remove(s1) ∪ { s };

od
fi

od
od
Remove(s′1) := ∅; (* Simold(s

′
1) := Sim(s′1) *)

od
return { (s1, s2) | s2 ∈ Sim(s1) }

c© JPK 59

Time complexity

Time complexity of computing �TS is O
“

M ·|S|
”

c© JPK 60

Summary

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete O(M · log |S|) O(M ·|S|)

logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

c© JPK 61

