© JPK

Abstraction — Part 1
Lecture #5 of Principles of Model Checking

Joost-Pieter Katoen
Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 29, 2010

Content of this lecture

Bisimulation

— definition, properties, quotient, CTL™ equivalence

Bisimulation minimisation

— partition refinement, efficiency improvement, complexity

Simulation

— pre-order, simulation equivalence, properties, VCTL" equivalence

Checking simulation

— basic idea of algorithm

© JPK

Content of this lecture

= Bisimulation

— definition, properties, quotient, CTL™ equivalence

e Bisimulation minimisation

— partition refinement, efficiency improvement, complexity

e Simulation

— pre-order, simulation equivalence, properties, VCTL" equivalence

e Checking simulation

— basic idea of algorithm

© JPK 2

Abstraction

Reduce (a huge) TS to (a small) TS prior or during model checking

Relevant issues:
e What is the formal relationship between TS and TS?
e Can TS be obtained algorithmically and efficiently?

e Which logical fragment (of LTL, CTL, CTL*) is preserved?

e And in what sense?

— “strong” preservation: positive and negative results carry over
— “weak” preservation: only positive results carry over
— “match”: logic equivalence coincides with formal relation

© JPK 3

Bisimulation

R C S x S'is a bisimulation on TS if for any (s1, s2) € R:

o [(s1) = L(s2)

® if s] € Post(sy) then there exists an s, € Post(s2) with (s, s,) € R
® if s, € Post(sz) then there exists an s} € Post(s1) with (s, s,) € R

s1 and so are bisimilar, s1 ~1s s2, if (s1, s2) € R for some bisimulation R for TS

© JPK 4

and

S1

S92

Bisimulation

can be completed to

can be completed to

S1

R

R

S92

© JPK

Example

determine the bisimulation relation ~ g

© JPK 6

Bisimulation on paths
For any bisimulation relation R, whenever we have:

S0 — S1 — S92 — S3 — S4......

R
to

this can be completed to

S0 — S1 — S92 — S3 — S4......
R R R R R

t() — tl — t2 — t3 — t4

proof: by induction on the length of a path

© JPK .

Bisimulation of transition systems

TS; ~ TSy, if there exists a bisimulation R on TS; @ TS, such that:

Vs, € 1. (382 c I>. (81, 82) - R) and Vso € Is. (381 c 1. (81, 82) - R)

© JPK 8

Properties
TSy ~ TSy implies Traces(TS1) = Traces(TSs2)
TS, ~ TSy implies TS, |= P iff TSy |= P for any LT property P
TSy ~ TS, implies TS = ¢ iff TSy = ¢ for any LTL formula ¢

© JPK

Quotient transition system

Let TS = (S, Act, —, I, AP, L) and bisimulation R C S X S be an equivalence
The quotient of TS under R is defined by:

TS/R = (S, {r},—=',T,AP, L)
where
o ' =S/R = {[s]lp|s€ S}twith[s]g = {s' €S| (s,5)eR}

o I'={[s]lr|s€l}
o L'([s]r) = L(s)

/
s % s

e —' is defined by: ,

[slr = [s']»

note that TS ~ TS/R Why?

© JPK 10

Coarsest bisimulation

~ 75 is a bisimulation, an equivalence,

and the coarsest bisimulation for TS

The quotient under ~ 1s is the smallest

under any bisimulation relation

© JPK

11

Example

determine the (coarsest) bisimulation quotient TS/,

© JPK

12

The simplified bakery algorithm

Process 1:

ni : 1 = x9 + 1;
wait until(zo = 0 ||x] < z2){
c1 : . . . critical section . . .}

L1 =Y,

Process 2:

no : xro = x1 + 1;
wait until(z1 =0 || z9 < z1) {
co : .. . critical section . . .}

2 = U;

this algorithm can be applied to arbitrarily many processes

© JPK

13

Example run of bakery algorithm

process Pq

process Po

8
—

8
N\

effect

ni

€1
ni

n2
na

C2

W wwworrmrkr#eHEOo

PP ODNDNMNDNDNDNOO

P; requests access to critical section
P requests access to critical section
Py enters the critical section
P leaves the critical section
P; requests access to critical section
P> enters the critical section
P> leaves the critical section
P> requests access to critical section
P enters the critical section

© JPK

14

Bakery algorithm as transition system

infinite state space due to possible

unbounded increase of counters

© JPK

15

Bisimulation

Function f maps a reachable state of TSp,; onto an abstract one in TS%lfk

Let s = <£1,€2,$1 = b1,y = b2> be a state of TSp, with ¢; € {ni,w,j,ci} and

b, € IN
Then:

It follows: R = { (s,

\

{
{
(
(
{

b1, 05,21 = 0,25 > 0)
l1,0o, 21 > 0,29 = 0)
l1,0s, 21 > xo > 0)
b1,02, 290 > 1 > 0)

if by = by =0
if by =0 and by > 0
if b > 0 and by = 0
if by > b2 >0
if bo > b1 >0

f(s)) | s € S} is a bisimulation for (TSga, TSW?.)

for any subset of AP = { noncrit;, wait;, crit; | i = 1,2 }

© JPK

16

Bisimulation quotient

bisimulation quotient under ~1s for AP = { crity, crity, waity, waity }

© JPK

17

Syntax of CTL"

CTL" state-formulas are formed according to:
O = true | a | O, A Dy ‘ - ‘ I

where a € AP and ¢ is a path-formula

CTL"™ path-formulas are formed according to the grammar:
p = ‘ 1 N\ P2 ‘ T ‘ O ‘ 1 U w2

where ® is a state-formula, and ¢, 1 and 5 are path-formulas

in CTL™: Vo = —3d-. This does not hold in CTL!

© JPK 18

Relationship between LTL, CTL and CTL*

o V

Sl O30

Olan Oa) 0a vO30a

© JPK

19

CTL* equivalence

States s; and sy in TS (over AP) are CTL"-equivalent:
S1 =cTL* S2 if and onIy If (81 ’: ® iff S9 ’: (I))

for all CTL" state formulas over AP

TSl =CTL* T52 if and onIy If (T51): d iff T52): (I))

for any sublogic of CTL*, logical equivalence is defined analogously

© JPK

20

Bisimulation vs. CTL* and CTL equivalence

/

S ~Ts S/ iff s =CTL S/ iff s —=CTL* S/ iff s ECTL\U S

For any finitely branching transition system TS and s, s’ states in TS:

this is proven in three steps: =c1. € ~75 C = C =cTL

© JPK

21

Corollary

For any finitely branching transition systems TS and TS
TS ~ TS ifandonlyif TS =cr. TS ifandonlyif TS ==

TS

= prior to model-check CTL-formula ®, first minimize TS wrt. ~

© JPK

22

Content of this lecture

e Bisimulation

— definition, properties, quotient, CTL™ equivalence

= Bisimulation minimisation

— partition refinement, efficiency improvement, complexity

e Simulation

— pre-order, simulation equivalence, properties, VCTL" equivalence

e Checking simulation

— basic idea of algorithm

© JPK 23

Partitions

e A partition Il ={ By, ..., By } of S satisfies:

— B, is non-empty; B; is called a block
— B, N B; =@ forall i,j with i # j
— 31U UBk:S

e (' C S is a super-block of partition II of S if
C:Bilu---UBz’l fOI’B@'jEHfOI’O<j<l

e Partition Il is finer than partition II" if:

VBell. (3B €ll'. B C B')

= each block of IT’ equals the disjoint union of a set of blocks in II
— I is strictly finer than IT’ if it is finer than II" and II £ IT

© JPK 24

Partitions and equivalences

e R is an equivalenceon S = S/R is a partition of §

e Partition Il = { By,..., Bi } of S induces the equivalence relation

Ruo=1{(s,t)|3B;e€ll.s€ B; A t€ B;}

— there is a one-to-one relationship between partitions and equivalences

© JPK 25

Skeleton for bisimulation checking

from now on, we assume that 75 is finite
e lteratively compute a partition of S

e Initially: Iy equals ITap = { (s,t) € S x S| L(s) = L(¢) }

e Repeat until no change: | 11,11 := Refine(1l,)

— loop invariant: II; is coarser than S/ ~ and finer than { S }

e Return II;

— termination: S X S O Rpy 2 Ry 2 R, 2 --- 2 R, = ~71s
— time complexity: maximally | S | iterations needed (why?)

this is a partition-refinement algorithm

© JPK 26

Theorem

1. S/~ is the coarsest partition IT of S such that
(i) II is finer than the initial partition I 4p, and
(i) BN Pre(C) =@ or BC Pre(C) forall B,C €1l
2. If (ii) holds for II, then it holds for all B € II and all superblocks C' of II

© JPK

27

The refinement operator
o Let: Refine(1l,C) = |Jgy Refine(B,C) for C' a superblock of II

— where Refine(B,C) = {B N Pre(C), B\ Pre(C)} \ {2}

block B superblock C

e Basic properties:

— for IT finer than IT4p and coarser than S/~:
Refine(11, C) is finer than II and Refine(11, C) is coarser than S/~

— II is strictly coarser than S/~ if and only if there exists a splitter for 11

© JPK 28

Splitters

e Let II be a partition of .S and C' a superblock of II

e (' is a splitter of II if for some B € II:

BN Pre(C)# @ N B\ Pre(C) # @

e Block B is stable wrt. C if

BN Pre(C)=2 N B\ Pre(C) =9

e II is stable wrt. C' if any B € II is stable wrt. C

© JPK

29

Algorithm skeleton

Input: finite transition system TS over AP with state space S
Output: bisimulation quotient space S/~

II := HAP;
while there exists a splitter for IT do
choose a splitter C for II;

IT := Refine(11, C); (* Refine(I1, C) is strictly finer than IT *)
od
return II

© JPK 30

Which splitter to take?

How to determine a splitter for partition II; 17
1. Simple strategy: O(|S|-M)
use any block of II; as splitter candidate
2. Advanced strategy: O(log|S|-M)

use only “smaller” blocks of II; as splitter candidates

and apply “simultaneous” refinement

© JPK 31

Advanced strategy

e Not necessary to refine with respect to all blocks C' € 11,

= Consider only the “smaller” subblocks of a previous refinement
e Step i: refine C' into C; = C" N Pre(D) and Co = C" \ Pre(D)

e Step i+1: use the smallest C € {C1,Cs } as splitter

— let C be such that |[C] < |C’']/2, thus |C| < |C"\ C]
— combine the refinement steps with respect to C and C' \ C

® Refine(I1,C,C'\ C) = Refine(Refine(I1, C), C'\ C) where |C| < |C'\ C|

— the decomposed blocks are stable with respect to C and C’ \ C

© JPK 32

The new refinement operator

o Let: Refine(IL,C,C"\ C) = Ugepy Refine(B,C,C"\ C)
— where Refine(B,C,C'"\ C) = { By, By, B3} \ {9} with:

By = BnNPre(C)N Pre(C'\ C) toboth C and C\ C’
By = (BnNPre(C))\ Pre(C"\ O) only to C
Bz = (BnPre(C'\ C))\ Pre(0) only to C"\ C

= blocks B1, Bs, Bs are stable with respect to C and C' \ C

T e

B1

block B

© JPK

33

Improved partition-refinement algorithm

Input: finite transition system TS with state space S
Output: bisimulation quotient space S/~

g = { S };
IT := Refine(Il4p, S);

(* loop invariant: IT is coarser than S/~ and finer than Il 4p and I1,4, *)
(* and IT is stable with respect to any block in IT,;; *)

repeat

choose block C" € II,4 \ II and block C' € II with C C C’ and |C| < %;
Iy := II;
I1 := Refine(I1, C, C" \ O);

until IT = 11,4

return II

© JPK 34

Content of this lecture

e Bisimulation

— definition, properties, quotient, CTL™ equivalence

e Bisimulation minimisation

— partition refinement, efficiency improvement, complexity

= Simulation

— pre-order, simulation equivalence, properties, VCTL" equivalence

e Checking simulation

— basic idea of algorithm

© JPK 35

Simulation relation

e R C S xS isa simulation relation on TS if for any (s1,s2) € R:

- L(Sl) = L(Sg)
— if s| € Post(sy) then there exists an s, € Post(s3) with (s, s5) € R

® S, simulates sy, written s1 << So

— if (s1, s2) € R for some simulation relation R on TS

o 7S5 X TSy, iff Vsy € Iy.dsy € I5. 8 j751@752 S9

Facts: <75 is a preorder and the coarsest simulation for TS

© JPK 36

592

Simulation order

can be completed to

but not necessarily:

can be completed to

R

592

© JPK

37

Abstraction function

o f:S — Sis an abstraction function if f(s) = f(s') = L(s) = L(s)
— S is a set of concrete states and S a set of abstract states, i.e. |S| < |S]
e Abstraction functions are useful for:
— data abstraction: abstract from values of program or control variables
f : concrete data domain — abstract data domain
— predicate abstraction: use predicates over the program variables
f : state — valuations of the predicates
— localization reduction: partition program variables into visible and invisible

f : all variables — visible variables

© JPK 38

Abstract transition system
For TS = (S, Act,—, I, AP, L) and abstraction function f: S — S let:

TSy = (§,Act, —r, 1y, AP, Ly), the abstraction of TS under f

where

s 25 ¢

f(s) % f(5)

e — ¢ is defined by:

o« [j={f(s)|sel}

o L:(f(s)) = L(s); fors e S\ f(9), labeling is undefined

© JPK 39

Abstract transition system
For TS = (S, Act,—, I, AP, L) and abstraction function f: S — S let:

TSy = (§,Act, —¢,1s, AP, L), the abstraction of TS under f

where

s 254

f(s) == f(s)

e — is defined by:

o Iy ={f(s)[sel}

o Li(f(s)) = L(s); for s € S\ f(9), labeling is undefined

R =A{(s,f(s)) | s €S} isasimulation for (TS, TSy)

© JPK 40

Abstraction example

/ \ / \ / \
(€0, 0)y——({£1,0)) (75,0)) |
' l | , ,
' .
' 1 | I
\@’ 1 /I ‘\= €1, 1 ({2, 1 ,1 . 63
) d\d, { open }

(0.2) S)

{ alarm }

© JPK o

Abstraction example

{ alarm }

© JPK

42

Simulation equivalence

TS: and TS, are simulation equivalent, denoted TS; ~ TS5,
if TS <X TSy and TS, <X TS

© JPK

43

Simulation quotient

For TS = (S, Act, —, 1, AP, L) and simulation equivalence ~ C S x S let
TS/~ = (S, {7},=',I'/AP,L"), the quotient of TS under ~
where

o S'=5/~= {[s|l~|seS}tand I'={][s]~|s€l}

s 254

e —' is defined by:

[s]~ = [5']=

o L'([s]l~) = L(s)

it follows that TS ~ TS/~

© JPK 44

Trace, bisimulation, and simulation equivalence

bisimulation equivalence

/ TSl - T52 \

simulation equivalence

trace equivalence

751 ~ 157 Traces(TS1) = Traces(TS9)

\ finite trace equivalence

Tracesﬁn(TSl) = Tracesﬁn(TSQ)

simulation order

/

trace inclusion

TS1 XTS5 Traces(TSy1) C Traces(TS9)

\ finite trace inclusion /

Tracesg, (TS1) C Tracesg, (TS9)

© JPK

45

Similar but not bisimilar

(s){a} (t){a}
(52 (53)2 OF

Faj{b} (s5){c} (ts){b} (ta){c}

TSleft =~ TSm’ght but TSleﬁ 7(“ Tsm'ght

© JPK

46

Simulation vs. trace equivalence
o 7S5, ~ TS, implies Tracesp,(TS1) = Tracesp,(TS2)
o If TS; and TS5 do not have terminal states:

TS; X TS, implies Traces(TS;) C Traces(TSs)

o If TS; and TS, are AP-deterministic:

TS ~ TSy iff Traces(TS1) = Traces(TSs) iff TSy ~ TS,

TS is AP-deterministic if there all initial states are labeled differently,

and this also applies to all direct successors of any state in TS

© JPK

47

Logical characterization of =<

e Negation of formulas is problematic as <5 is not symmetric

e Let L be a fragment of CTL™ which is closed under negation
e And assume L weakly matches <5, that is:

s1 275 s iff for all state formulae @ of L: s = ® = s1 &= ®.
o Let s; <45 59. Then, for any state formula ® of L:
81):(:[) — 81\;&_'(1) — 82\;'5_'(1) — 82‘:(1).

e Hence, so <1551 which requires <5 to be symmetric

© JPK 48

Universal fragment of CTL*

VCTL" state-formulas are formed according to:
d ::= true ‘ false ‘ a ‘ —a ‘ d; N Py | b, Vv Py Vo

where a € AP and ¢ is a path-formula

VCTL™ path-formulas are formed according to:

p = D ‘ O ‘ ©1 N\ P2 | ©1 V 2 | ©1 U o | ©1 R o

where @ is a state-formula, and ¢, 1 and ¢y are path-formulas

in VCTL, the only path operators are ()P, &1 U ®5 and &1 R P,

© JPK 49

Universal CTL* contains LTL

For every LTL formula there exists an equivalent VCTL" formula

© JPK

50

Simulation order and VCTL"

For any finitely branching transition system TS and s, s’ states in TS:
(1) s <75 s iff

(2) for any VCTL*-formula ®: s’ |= ® implies s = @ iff

(3) for any VCTL-formula ®: s’ |= ® implies s |= ® iff

(4) for any VCTL\y g-formula ®: s" |= ® implies s |= ®

© JPK

51

Content of this lecture

e Bisimulation

— definition, properties, quotient, CTL™ equivalence

e Bisimulation minimisation

— partition refinement, efficiency improvement, complexity

e Simulation

— pre-order, simulation equivalence, properties, VCTL" equivalence

= Checking simulation

— basic idea of algorithm

© JPK 52

Skeleton for simulation preorder checking

Input: finite transition system TS over AP with state space S
Output: simulation order <ts

R = {(81, 82) ‘ L(Sl) = L(Sz) };

while R is not a simulation do
let (s1, s2) € R such that s; — s| and Vsj,. so — s5 implies (s, s5) € R;
R :=R\{(s1,s2) };

od

return R

The number of iterations is bounded above by |S|?, since:

S xS QRQ ;Rl DRQ ;

— DRn:jTS

=

© JPK 53

Algorithm to compute < (1)

for all s; € S do
Sim(sy) := {s2 €S| L(s1) = L(s2) }; (* initialization *)
od

while 3(s1, s2) € S X Sim(sy). 3s| € Post(s1) with Post(s2) N Sim(s}) = @ do

choose such a pair of states (s1, s2); (* s1 A7s 82 %)
Sim(sl) = S/m(sl) \ {82 };
od

(* Sim(s) = Simrs(s) for any s *)
return { (s1,52) | s2 € Sim(s1) }

Simr(s) = {s | (s,s") € R}, the upward closure of s under R
g D Simpy(s) 2 Simg,(s) 2 ... 2 Simg,(s) = Sim<,(s)

© JPK 54

Time complexity

Time complexity of computing <75 is O (M|S|2)

in each iteration a single pair is deleted; can we do better?

© JPK

55

A simple observation

e Assume: s, is the only successor of so related to s}

— Simgr(s}) N Post(sy) = { s}, } where Simp(sy) = {s € S| (s],s) E R}

e Removing (s’,s5) from R implies that s; £ so

= (s1, s2) can thus also safely be removed from R

e This applies to all direct predecessors of s/, satisfying ()

(%)

© JPK

56

Algorithm to compute < (2)

Input: finite transition system TS over AP with state space S
Output: simulation order <ts

for all s; € S do
Simold(sl) = S;
Sim(s1) :={s2 € S| L(s1) = L(s2) };
od
while (s € S with Sim,4(s) # Sim(s)) do
choose s/ such that Sim,(s}) # Sim(s));
Remove(s)) 1= Pre(Simold(sll)) \ Pre(Sim(s'l)); (* predecessors that A s/ *)
for all s; € Pre(s}) do
Sim(sy1) := Sim(s1) \ Remove(s));
od
Simya(sy) := Sim(s});
od
return { (s1, s2) | s2 € Sim(s1) }

© JPK 57

Implementation details

e Introduce for any state s/ the set Remove(s/)

— contains all states s to be removed from Sim(sy) for s; € Pre(s}):
Remove(s}) = Pre(Sim,(s})) \ Pre(Sim(s)))

= the sets Sim,;; are superfluous
= termination condition: Remove(s}) = @ for all s} € S

— adapt the sets Remove on modifying Sim(s1)

o Let so € Remove(s]) and s; € Pre(s))

— then s; — s} but no transition sy — s, with s € Sim(s})
— then s1 A s9, so s2 can be removed from Sim(s1):
= extend Remove(si) with s € Pre(s3) and Post(s) N Sim(s1) = @

© JPK 58

Algorithm to compute < (3)

for all s1 € S do
Sim(s1) :={s2 € S| L(s1) = L(s2) }; (* initialization *)
Remove(s1) := S \ Pre(Sim(s1));
od
(* loop invariant: Remove(s]) = Pre (Simold(s’l)) \ Pre (Sim(s’l)) *)
while (3s| € S with Remove(s)) # @) do
choose 3/1 such that Remove(s’l) + &;
for all s, € Remove(s)) do
for all s; € Pre(s]) do
if so € Sim(s1) then
Sim(sy) := Sim(s1) \ { s2 }; (* s2 € Simyg(s1) \ Sim(s1) *)
for all s € Pre(so) with Post(s) N Sim(s1) = & do
(* s € Pre(Sim,y(s1)) \ Pre(Sim(s1)) *)
Remove(sy) := Remove(s1) U { s };
od
fi
od
od
Remove(s]) := @, (* Simyg(sh) = Sim(s]) *)
od
return { (s, s2) | s2 € Sim(s1) }

© JPK 59

Time complexity

Time complexity of computing <7sis O (M\S\)

© JPK

60

Summary

formal relation trace equivalence bisimulation simulation
complexity PSPACE-complete | O(M-log |S|) | O(M-|S|)

logical fragment || LTL CTL" VCTL"
preservation strong strong match weak match

© JPK

61

