

Abstraction – Part 1

Lecture #5 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 29, 2010

Content of this lecture

- **Bisimulation**
 - definition, properties, quotient, CTL^* equivalence
- **Bisimulation minimisation**
 - partition refinement, efficiency improvement, complexity
- **Simulation**
 - pre-order, simulation equivalence, properties, $\forall CTL^*$ equivalence
- **Checking simulation**
 - basic idea of algorithm

Content of this lecture

⇒ Bisimulation

- definition, properties, quotient, CTL^* equivalence

● Bisimulation minimisation

- partition refinement, efficiency improvement, complexity

● Simulation

- pre-order, simulation equivalence, properties, $\forall CTL^*$ equivalence

● Checking simulation

- basic idea of algorithm

Abstraction

Reduce (a huge) TS to (a small) \widehat{TS} prior or during model checking

Relevant issues:

- What is the formal **relationship** between TS and \widehat{TS} ?
- Can \widehat{TS} be obtained algorithmically and **efficiently**?
- Which logical fragment (of LTL, CTL, CTL*) is **preserved**?
- And in what sense?
 - “strong” preservation: **positive** and **negative** results carry over
 - “weak” preservation: only **positive** results carry over
 - “match”: logic equivalence coincides with formal relation

Bisimulation

$\mathcal{R} \subseteq S \times S$ is a *bisimulation* on TS if for any $(s_1, s_2) \in \mathcal{R}$:

- $L(s_1) = L(s_2)$
- if $s'_1 \in Post(s_1)$ then there exists an $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
- if $s'_2 \in Post(s_2)$ then there exists an $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

s_1 and s_2 are *bisimilar*, $s_1 \sim_{TS} s_2$, if $(s_1, s_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

Bisimulation

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2$$

can be completed to

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

and

$$s_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

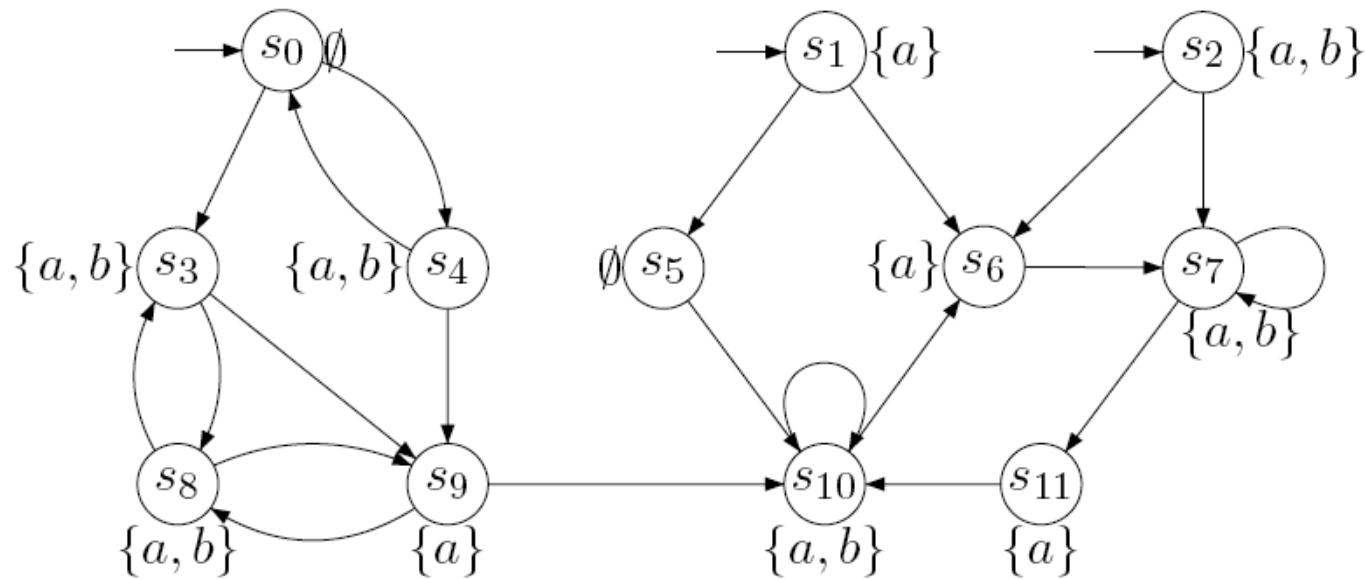
can be completed to

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

Example



determine the bisimulation relation \sim_{TS}

Bisimulation on paths

For any bisimulation relation \mathcal{R} , whenever we have:

$$\begin{array}{ccccccc}
 s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \rightarrow s_4 \dots \dots \\
 \mathcal{R} & & & & & & \\
 t_0 & & & & & &
 \end{array}$$

this can be completed to

$$\begin{array}{ccccccc}
 s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \rightarrow s_4 \dots \dots \\
 \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} \\
 t_0 & \rightarrow & t_1 & \rightarrow & t_2 & \rightarrow & t_3 \rightarrow t_4 \dots \dots
 \end{array}$$

proof: by induction on the length of a path

Bisimulation of transition systems

$TS_1 \sim TS_2$, if there exists a bisimulation \mathcal{R} on $TS_1 \oplus TS_2$ such that:

$$\forall s_1 \in I_1. (\exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}) \quad \text{and} \quad \forall s_2 \in I_2. (\exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R})$$

Properties

$TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$

$TS_1 \sim TS_2$ implies $TS_1 \models P$ iff $TS_2 \models P$ for any LT property P

$TS_1 \sim TS_2$ implies $TS_1 \models \varphi$ iff $TS_2 \models \varphi$ for any LTL formula φ

Quotient transition system

Let $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\mathcal{R} \subseteq S \times S$ be an *equivalence*

The *quotient* of TS under \mathcal{R} is defined by:

$$TS/\mathcal{R} = (S', \{\tau\}, \rightarrow', I', AP, L')$$

where

- $S' = S/\mathcal{R} = \{ [s]_{\mathcal{R}} \mid s \in S \}$ with $[s]_{\mathcal{R}} = \{ s' \in S \mid (s, s') \in \mathcal{R} \}$
- $I' = \{ [s]_{\mathcal{R}} \mid s \in I \}$
- $L'([s]_{\mathcal{R}}) = L(s)$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\mathcal{R}} \xrightarrow{\tau'} [s']_{\mathcal{R}}}$$

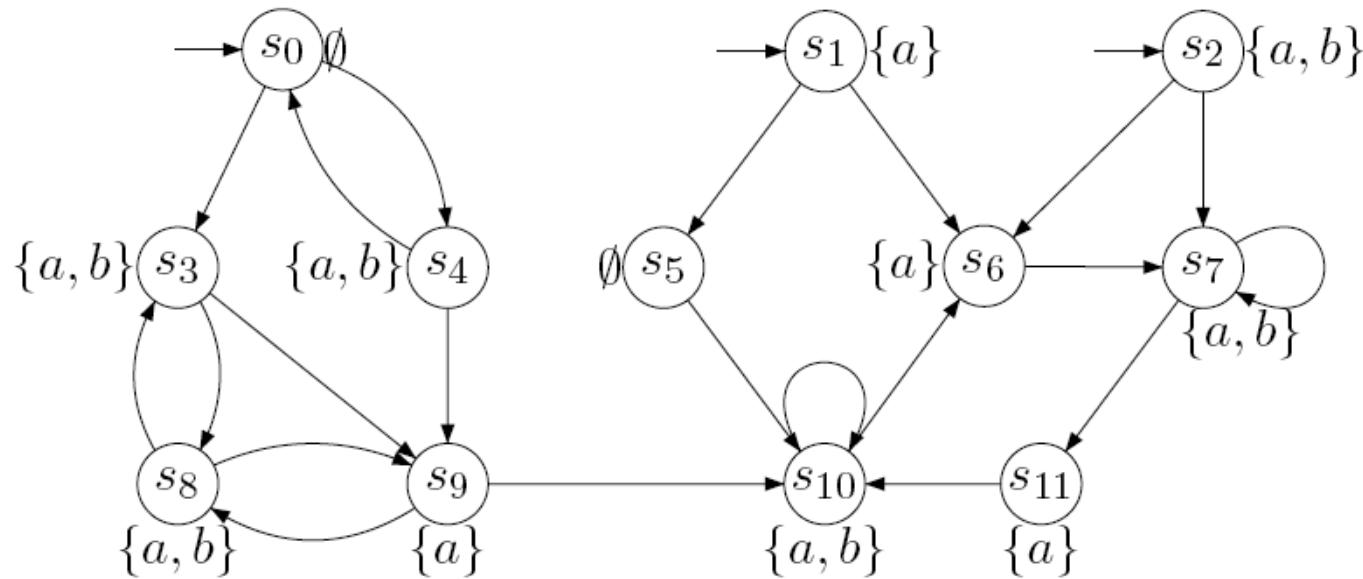
note that $TS \sim TS/\mathcal{R}$ Why?

Coarsest bisimulation

\sim_{TS} is a bisimulation, an equivalence,
and the coarsest bisimulation for TS

The quotient under \sim_{TS} is the smallest
under any bisimulation relation

Example



determine the (coarsest) bisimulation quotient TS/\sim_{TS}

The simplified bakery algorithm

Process 1:

```
.....
while true  {
    .....
    n1 :       $x_1 := x_2 + 1;$ 
    w1 :      wait until( $x_2 = 0 \mid\mid x_1 < x_2$ ) {
    c1 :          ... critical section ...
     $x_1 := 0;$ 
    .....
}
```



```
.....
while true  {
    .....
    n2 :       $x_2 := x_1 + 1;$ 
    w2 :      wait until( $x_1 = 0 \mid\mid x_2 < x_1$ ) {
    c2 :          ... critical section ...
     $x_2 := 0;$ 
    .....
}
```

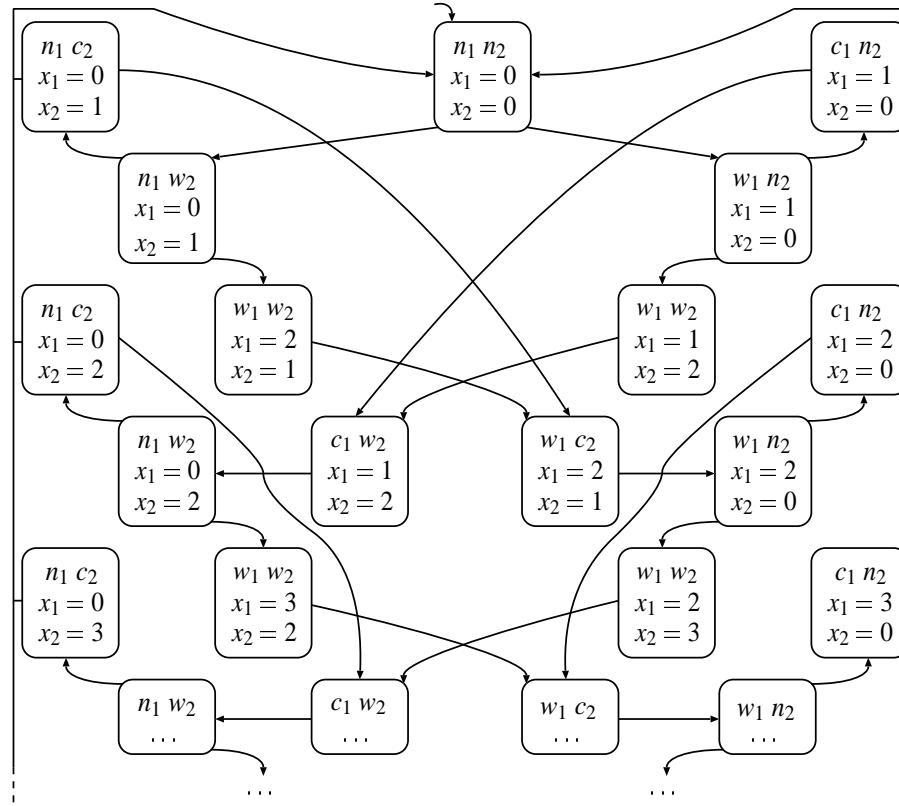
Process 2:

this algorithm can be applied to arbitrarily many processes

Example run of bakery algorithm

process P_1	process P_2	x_1	x_2	effect
n_1	n_2	0	0	P_1 requests access to critical section
w_1	n_2	1	0	P_2 requests access to critical section
w_1	w_2	1	2	P_1 enters the critical section
c_1	w_2	1	2	P_1 leaves the critical section
n_1	w_2	0	2	P_1 requests access to critical section
w_1	w_2	3	2	P_2 enters the critical section
w_1	c_2	3	2	P_2 leaves the critical section
w_1	n_2	3	0	P_2 requests access to critical section
w_1	w_2	3	4	P_2 enters the critical section
...

Bakery algorithm as transition system



infinite state space due to possible unbounded increase of counters

Bisimulation

Function f maps a reachable state of TS_{Bak} onto an abstract one in TS_{Bak}^{abs}

Let $s = \langle \ell_1, \ell_2, x_1 = b_1, x_2 = b_2 \rangle$ be a state of TS_{Bak} with $\ell_i \in \{ \textcolor{blue}{n}_i, \textcolor{green}{w}_i, \textcolor{red}{c}_i \}$ and $b_i \in \mathbb{N}$

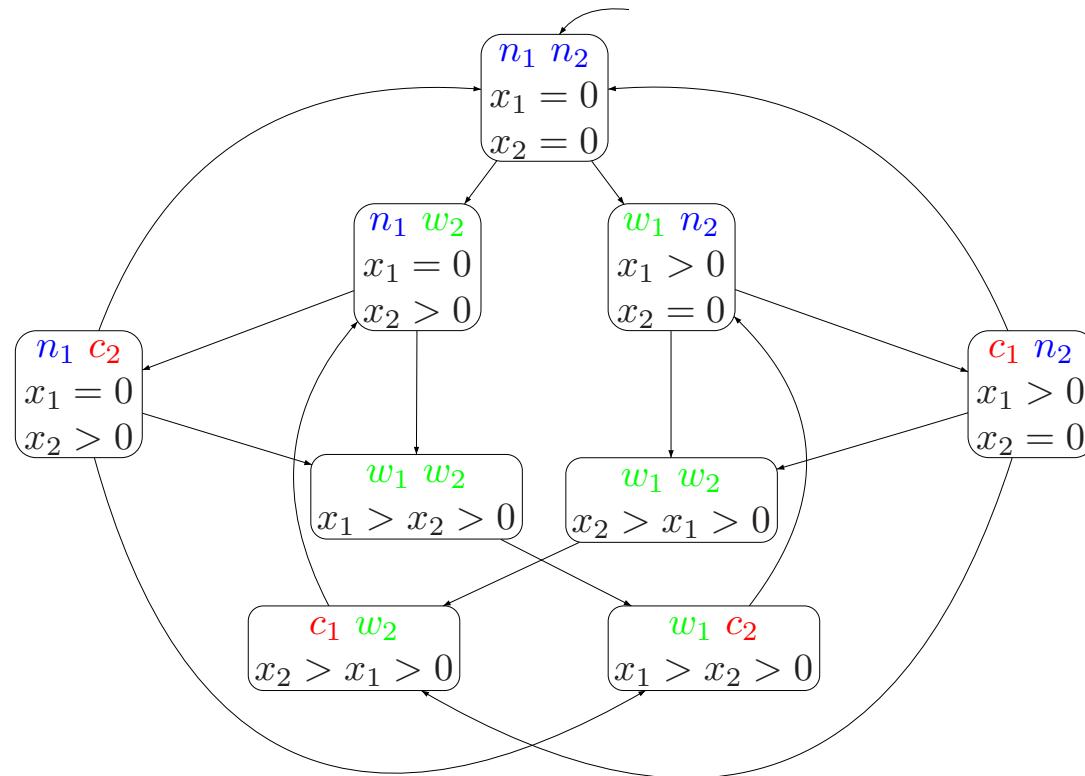
Then:

$$f(s) = \begin{cases} \langle \ell_1, \ell_2, x_1 = 0, x_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 = 0, x_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, x_1 > 0, x_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 > x_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, x_2 > x_1 > 0 \rangle & \text{if } b_2 > b_1 > 0 \end{cases}$$

It follows: $\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$

for any subset of $AP = \{ \textcolor{blue}{noncrit}_i, \textcolor{blue}{wait}_i, \textcolor{blue}{crit}_i \mid i = 1, 2 \}$

Bisimulation quotient



bisimulation quotient under \sim_{TS} for $AP = \{ crit_1, crit_2, wait_1, wait_2 \}$

Syntax of CTL*

CTL* *state-formulas* are formed according to:

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \varphi$$

where $a \in AP$ and φ is a path-formula

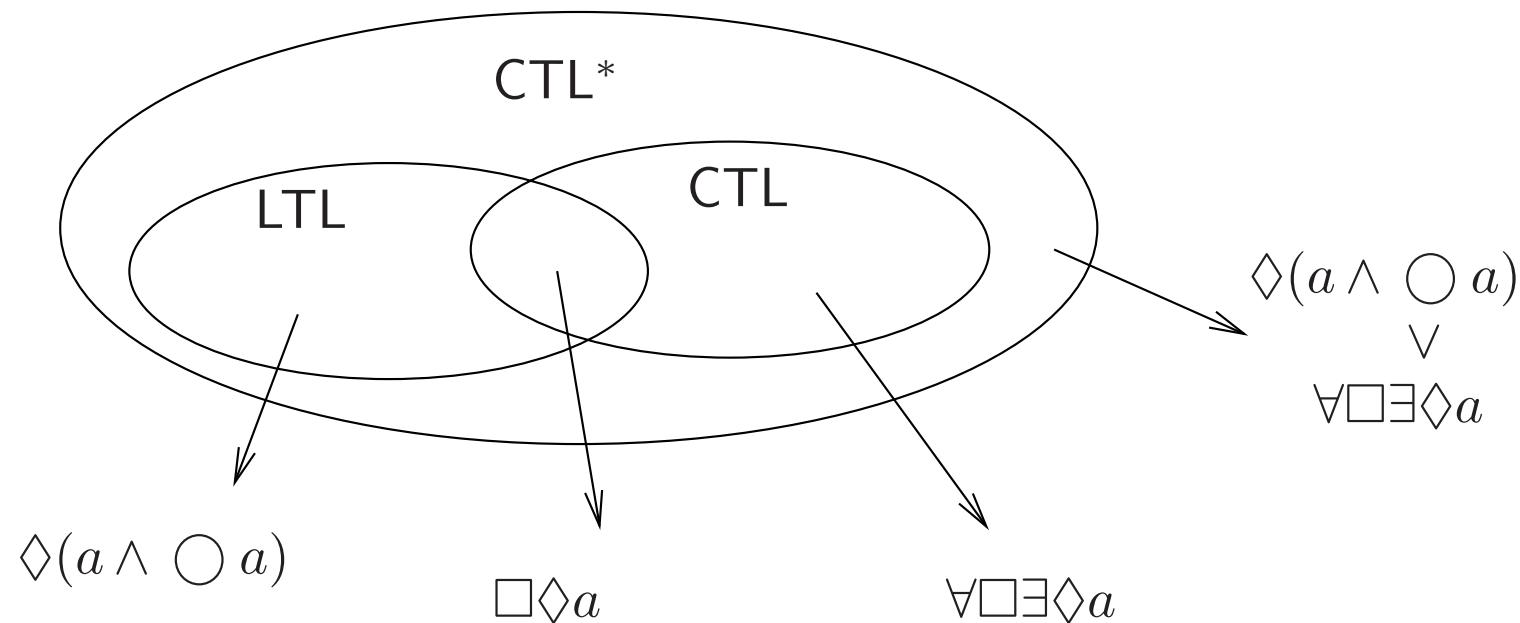
CTL* *path-formulas* are formed according to the grammar:

$$\varphi ::= \Phi \quad | \quad \varphi_1 \wedge \varphi_2 \quad | \quad \neg \varphi \quad | \quad \bigcirc \varphi \quad | \quad \varphi_1 \bigcup \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!

Relationship between LTL, CTL and CTL*



CTL* equivalence

States s_1 and s_2 in TS (over AP) are **CTL*-equivalent**:

$$s_1 \equiv_{CTL^*} s_2 \quad \text{if and only if} \quad (s_1 \models \Phi \text{ iff } s_2 \models \Phi)$$

for all CTL* state formulas over AP

$$TS_1 \equiv_{CTL^*} TS_2 \quad \text{if and only if} \quad (TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$$

for any sublogic of CTL, logical equivalence is defined analogously*

Bisimulation vs. CTL^* and CTL equivalence

For any finitely branching transition system TS and s, s' states in TS :

$$s \sim_{TS} s' \text{ iff } s \equiv_{\text{CTL}} s' \text{ iff } s \equiv_{\text{CTL}^*} s' \text{ iff } s \equiv_{\text{CTL} \setminus U} s'$$

this is proven in three steps: $\equiv_{\text{CTL}} \subseteq \sim_{TS} \subseteq \equiv_{\text{CTL}^*} \subseteq \equiv_{\text{CTL}}$

Corollary

For any finitely branching transition systems TS and TS' :

$TS \sim TS'$ if and only if $TS \equiv_{\text{CTL}} TS'$ if and only if $TS \equiv_{\text{CTL}^*} TS'$

⇒ prior to model-check CTL-formula Φ , first minimize TS wrt. \sim

Content of this lecture

- **Bisimulation**
 - definition, properties, quotient, CTL^* equivalence
- ⇒ **Bisimulation minimisation**
 - partition refinement, efficiency improvement, complexity
- **Simulation**
 - pre-order, simulation equivalence, properties, $\forall CTL^*$ equivalence
- **Checking simulation**
 - basic idea of algorithm

Partitions

- A partition $\Pi = \{ B_1, \dots, B_k \}$ of S satisfies:

- B_i is non-empty; B_i is called a *block*
- $B_i \cap B_j = \emptyset$ for all i, j with $i \neq j$
- $B_1 \cup \dots \cup B_k = S$

- $C \subseteq S$ is a *super-block* of partition Π of S if

$$C = B_{i_1} \cup \dots \cup B_{i_l} \quad \text{for } B_{i_j} \in \Pi \text{ for } 0 < j \leq l$$

- Partition Π is *finer than* partition Π' if:

$$\forall B \in \Pi. \ (\exists B' \in \Pi'. B \subseteq B')$$

\Rightarrow each block of Π' equals the disjoint union of a set of blocks in Π

- Π is strictly finer than Π' if it is finer than Π' and $\Pi \neq \Pi'$

Partitions and equivalences

- \mathcal{R} is an equivalence on $S \Rightarrow S/\mathcal{R}$ is a partition of S
- Partition $\Pi = \{ B_1, \dots, B_k \}$ of S induces the equivalence relation

$$\mathcal{R}_\Pi = \{ (s, t) \mid \exists B_i \in \Pi. s \in B_i \wedge t \in B_i \}$$

- $S/\mathcal{R}_\Pi = \Pi$

\Rightarrow there is a one-to-one relationship between partitions and equivalences

Skeleton for bisimulation checking

from now on, we assume that TS is finite

- Iteratively compute a partition of S
- Initially: Π_0 equals $\Pi_{AP} = \{ (s, t) \in S \times S \mid L(s) = L(t) \}$
- Repeat until no change: $\boxed{\Pi_{i+1} := \text{Refine}(\Pi_i)}$
 - loop invariant: Π_i is coarser than S/\sim and finer than $\{S\}$
- Return Π_i
 - termination: $S \times S \supseteq \mathcal{R}_{\Pi_0} \supsetneq \mathcal{R}_{\Pi_1} \supsetneq \mathcal{R}_{\Pi_2} \supsetneq \dots \supsetneq \mathcal{R}_{\Pi_i} = \sim_{TS}$
 - time complexity: maximally $|S|$ iterations needed (why?)

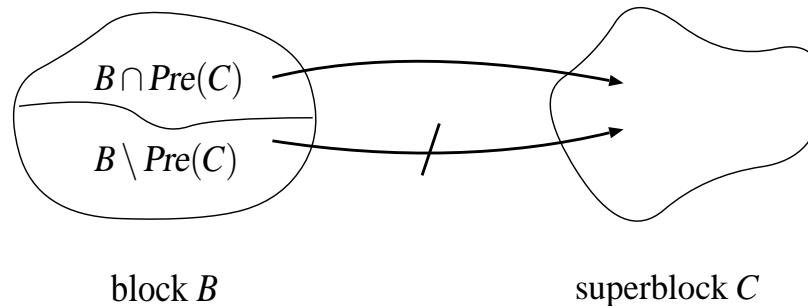
this is a partition-refinement algorithm

Theorem

1. S/\sim is the coarsest partition Π of S such that
 - (i) Π is finer than the initial partition Π_{AP} , and
 - (ii) $B \cap \text{Pre}(C) = \emptyset$ or $B \subseteq \text{Pre}(C)$ for all $B, C \in \Pi$
2. If (ii) holds for Π , then it holds for all $B \in \Pi$ and all superblocks C of Π

The refinement operator

- Let: $\text{Refine}(\Pi, C) = \bigcup_{B \in \Pi} \text{Refine}(B, C)$ for C a superblock of Π
 - where $\text{Refine}(B, C) = \{B \cap \text{Pre}(C), B \setminus \text{Pre}(C)\} \setminus \{\emptyset\}$



- Basic properties:
 - for Π finer than Π_{AP} and coarser than S/\sim :

$\text{Refine}(\Pi, C)$ is finer than Π and $\text{Refine}(\Pi, C)$ is coarser than S/\sim

 - Π is strictly coarser than S/\sim if and only if there exists a *splitter* for Π

Splitters

- Let Π be a partition of S and C a superblock of Π
- C is a **splitter** of Π if for some $B \in \Pi$:

$$B \cap \text{Pre}(C) \neq \emptyset \wedge B \setminus \text{Pre}(C) \neq \emptyset$$

- Block B is **stable** wrt. C if

$$B \cap \text{Pre}(C) = \emptyset \wedge B \setminus \text{Pre}(C) = \emptyset$$

- Π is **stable** wrt. C if any $B \in \Pi$ is stable wrt. C

Algorithm skeleton

Input: finite transition system TS over AP with state space S

Output: bisimulation quotient space S/\sim

```
 $\Pi := \Pi_{AP};$ 
while there exists a splitter for  $\Pi$  do
  choose a splitter  $C$  for  $\Pi$ ;
   $\Pi := \text{Refine}(\Pi, C);$                                 (*  $\text{Refine}(\Pi, C)$  is strictly finer than  $\Pi$  *)
od
return  $\Pi$ 
```

Which splitter to take?

How to determine a splitter for partition Π_{i+1} ?

1. Simple strategy: $\mathcal{O}(|S| \cdot M)$

use any block of Π_i as splitter candidate

2. Advanced strategy: $\mathcal{O}(\log |S| \cdot M)$

use only “smaller” blocks of Π_i as splitter candidates
and apply “simultaneous” refinement

Advanced strategy

- Not necessary to refine with respect to *all* blocks $C \in \Pi_{old}$

⇒ Consider only the “smaller” subblocks of a previous refinement

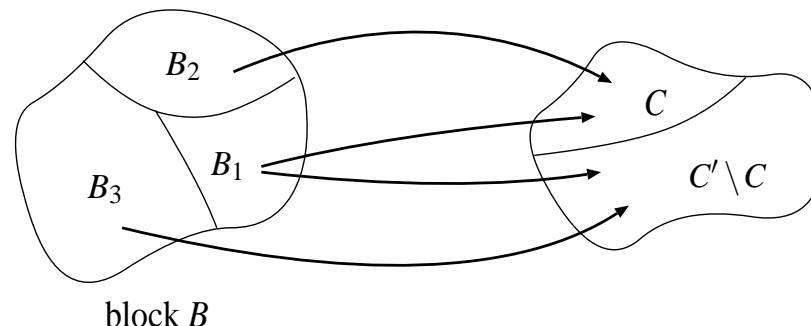
- Step i : refine C' into $C_1 = C' \cap Pre(D)$ and $C_2 = C' \setminus Pre(D)$
- Step $i+1$: use the *smallest* $C \in \{C_1, C_2\}$ as splitter
 - let C be such that $|C| \leq |C'|/2$, thus $|C| \leq |C' \setminus C|$
 - combine the refinement steps with respect to C and $C' \setminus C$
- $Refine(\Pi, C, C' \setminus C) = Refine\left(Refine(\Pi, C), C' \setminus C \right)$ where $|C| \leq |C' \setminus C|$
 - the decomposed blocks are stable with respect to C and $C' \setminus C$

The new refinement operator

- Let: $\text{Refine}(\Pi, C, C' \setminus C) = \bigcup_{B \in \Pi} \text{Refine}(B, C, C' \setminus C)$
 - where $\text{Refine}(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$ with:

$B_1 = B \cap \text{Pre}(C) \cap \text{Pre}(C' \setminus C)$	to both C and $C' \setminus C$
$B_2 = (B \cap \text{Pre}(C)) \setminus \text{Pre}(C' \setminus C)$	only to C
$B_3 = (B \cap \text{Pre}(C' \setminus C)) \setminus \text{Pre}(C)$	only to $C' \setminus C$

\Rightarrow blocks B_1, B_2, B_3 are stable with respect to C and $C' \setminus C$



Improved partition-refinement algorithm

Input: finite transition system TS with state space S

Output: bisimulation quotient space S/\sim

$\Pi_{old} := \{ S \};$

$\Pi := \text{Refine}(\Pi_{AP}, S);$

(* loop invariant: Π is coarser than S/\sim and finer than Π_{AP} and Π_{old} , *)
(* and Π is stable with respect to any block in Π_{old} *)

repeat

choose block $C' \in \Pi_{old} \setminus \Pi$ and block $C \in \Pi$ with $C \subseteq C'$ and $|C| \leq \frac{|C'|}{2}$;

$\Pi_{old} := \Pi;$

$\Pi := \text{Refine}(\Pi, C, C' \setminus C);$

until $\Pi = \Pi_{old}$

return Π

Content of this lecture

- **Bisimulation**
 - definition, properties, quotient, CTL^* equivalence
- **Bisimulation minimisation**
 - partition refinement, efficiency improvement, complexity
- ⇒ **Simulation**
 - pre-order, simulation equivalence, properties, $\forall CTL^*$ equivalence
- **Checking simulation**
 - basic idea of algorithm

Simulation relation

- $\mathcal{R} \subseteq S \times S$ is a **simulation** relation on TS if for any $(s_1, s_2) \in \mathcal{R}$:
 - $L(s_1) = L(s_2)$
 - if $s'_1 \in Post(s_1)$ then there exists an $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
- s_2 **simulates** s_1 , written $s_1 \preceq_{TS} s_2$
 - if $(s_1, s_2) \in \mathcal{R}$ for some simulation relation \mathcal{R} on TS
- $TS_1 \preceq TS_2$ iff $\forall s_1 \in I_1. \exists s_2 \in I_2. s_1 \preceq_{TS_1 \oplus TS_2} s_2$

Facts: \preceq_{TS} is a preorder and the coarsest simulation for TS

Simulation order

$$s_1 \rightarrow s'_1$$

\mathcal{R}

$$s_2$$

can be completed to

$$s_1 \rightarrow s'_1$$

\mathcal{R}

$$s_2 \rightarrow s'_2$$

but not necessarily:

$$s_1$$

\mathcal{R}

$$s_2 \rightarrow s'_2$$

$$s_1 \rightarrow s'_1$$

\mathcal{R}

$$s_2 \rightarrow s'_2$$

Abstraction function

- $f : S \rightarrow \widehat{S}$ is an *abstraction function* if $f(s) = f(s') \Rightarrow L(s) = L(s')$
 - S is a set of concrete states and \widehat{S} a set of abstract states, i.e. $|\widehat{S}| \ll |S|$
- Abstraction functions are useful for:
 - **data abstraction**: abstract from values of program or control variables
$$f : \text{concrete data domain} \rightarrow \text{abstract data domain}$$
 - **predicate abstraction**: use predicates over the program variables
$$f : \text{state} \rightarrow \text{valuations of the predicates}$$
 - **localization reduction**: partition program variables into visible and invisible
$$f : \text{all variables} \rightarrow \text{visible variables}$$

Abstract transition system

For $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ and abstraction function $f : S \rightarrow \widehat{S}$ let:

$TS_f = (\widehat{S}, \text{Act}, \rightarrow_f, I_f, AP, L_f)$, the *abstraction* of TS under f

where

- \rightarrow_f is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{f} f(s')}$$
- $I_f = \{ f(s) \mid s \in I \}$
- $L_f(f(s)) = L(s)$; for $s \in \widehat{S} \setminus f(S)$, labeling is undefined

Abstract transition system

For $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ and abstraction function $f : S \rightarrow \widehat{S}$ let:

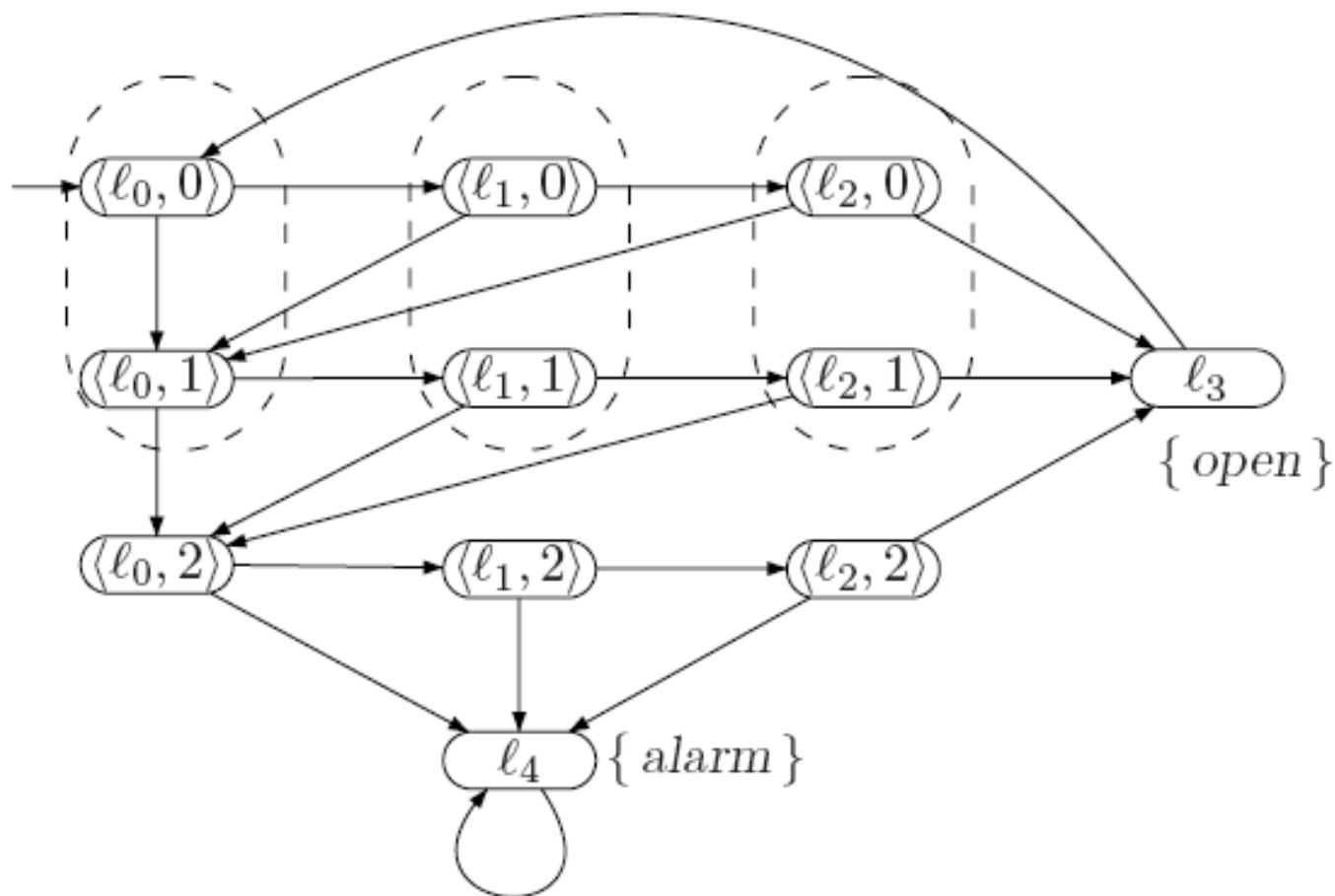
$TS_f = (\widehat{S}, \text{Act}, \rightarrow_f, I_f, AP, L_f)$, the *abstraction* of TS under f

where

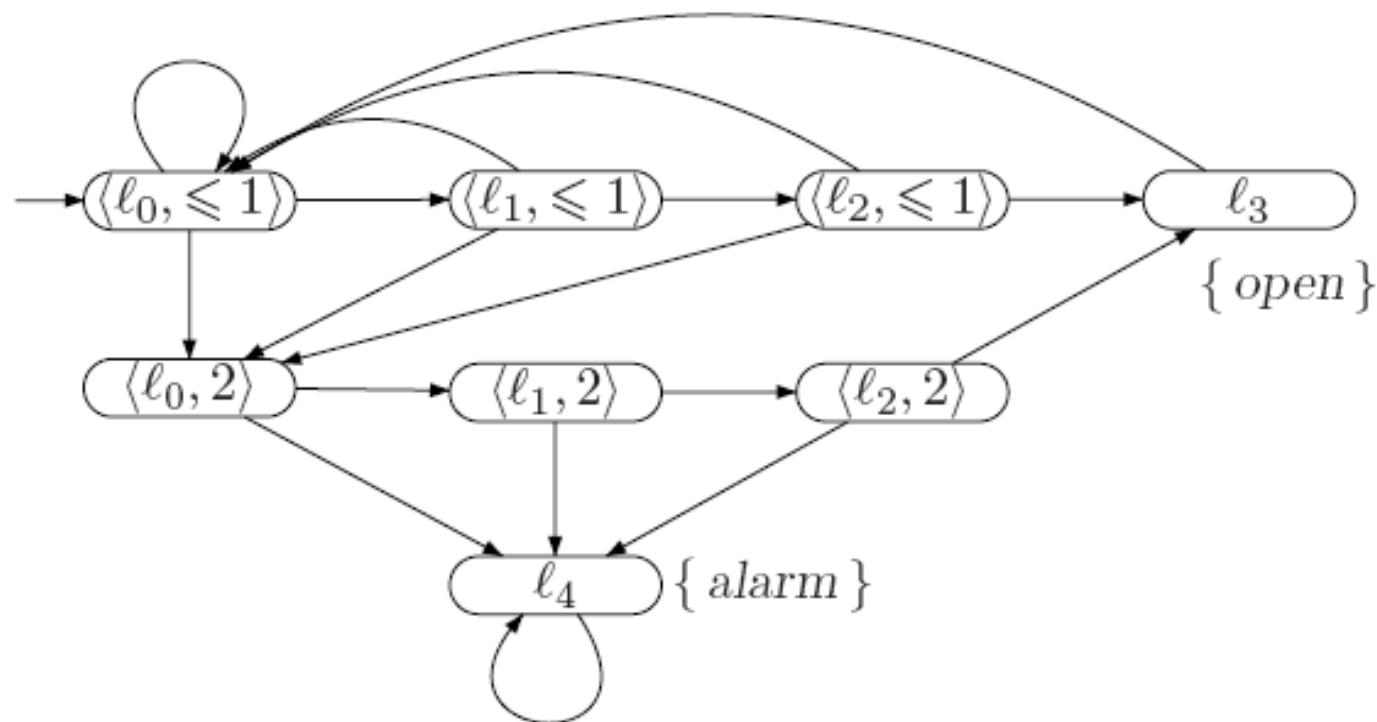
- \rightarrow_f is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{f} f(s')}$$
- $I_f = \{ f(s) \mid s \in I \}$
- $L_f(f(s)) = L(s)$; for $s \in \widehat{S} \setminus f(S)$, labeling is undefined

$\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a *simulation* for (TS, TS_f)

Abstraction example



Abstraction example



Simulation equivalence

TS_1 and TS_2 are *simulation equivalent*, denoted $TS_1 \simeq TS_2$,
if $TS_1 \preceq TS_2$ and $TS_2 \preceq TS_1$

Simulation quotient

For $TS = (S, Act, \rightarrow, I, AP, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let

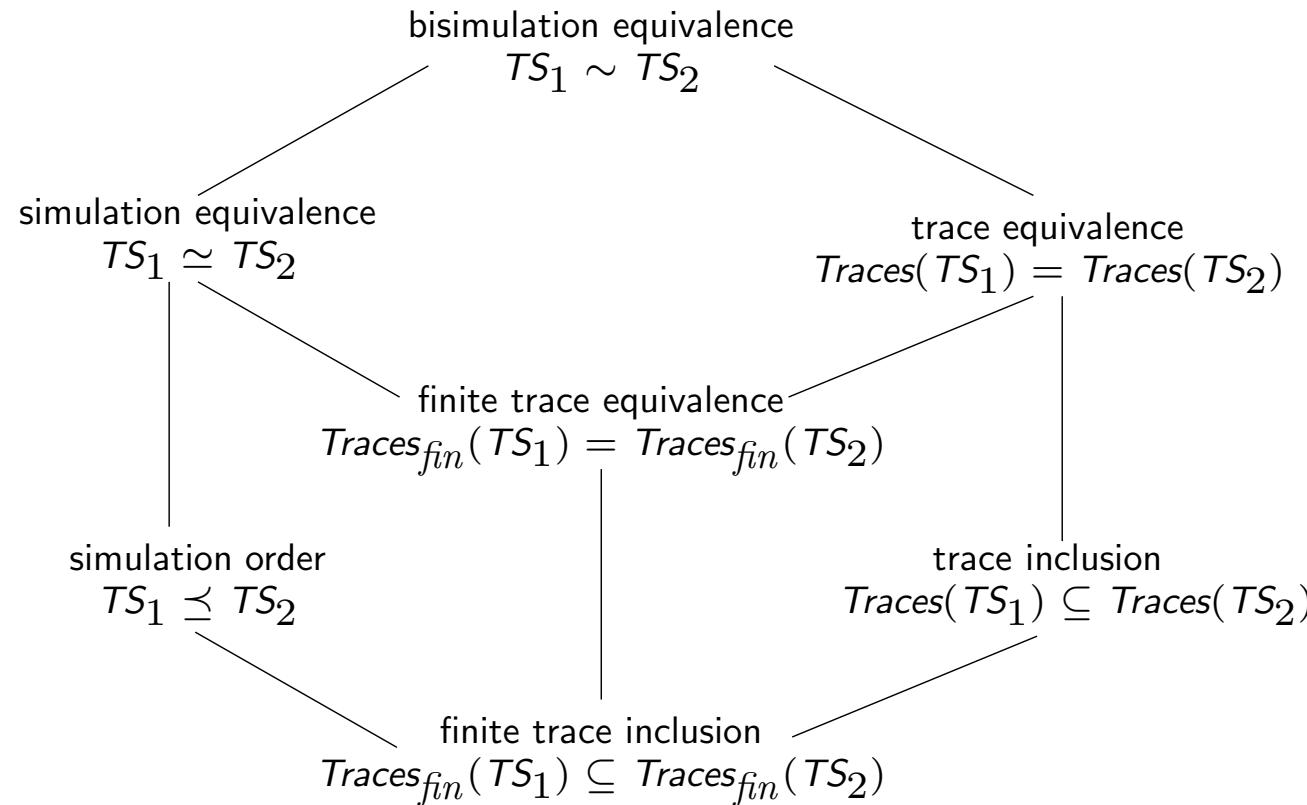
$TS/\simeq = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \simeq

where

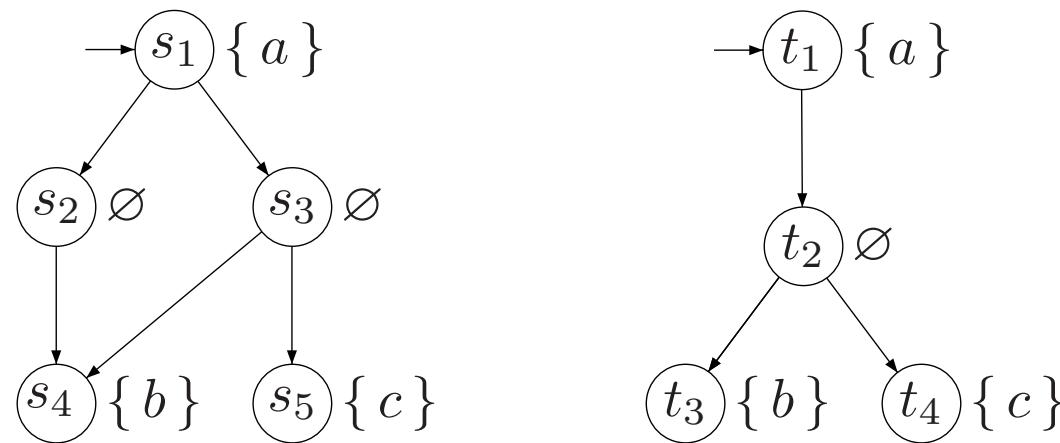
- $S' = S/\simeq = \{[s]_\simeq \mid s \in S\}$ and $I' = \{[s]_\simeq \mid s \in I\}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_\simeq \xrightarrow{\tau'} [s']_\simeq}$$
- $L'([s]_\simeq) = L(s)$

it follows that $TS \simeq TS/\simeq$

Trace, bisimulation, and simulation equivalence



Similar but not bisimilar



$TS_{left} \simeq TS_{right}$ but $TS_{left} \not\sim TS_{right}$

Simulation vs. trace equivalence

- $TS_1 \simeq TS_2$ implies $Traces_{fin}(TS_1) = Traces_{fin}(TS_2)$

- If TS_1 and TS_2 do not have terminal states:

$$TS_1 \preceq TS_2 \text{ implies } Traces(TS_1) \subseteq Traces(TS_2)$$

- If TS_1 and TS_2 are AP-deterministic:

$$TS_1 \simeq TS_2 \text{ iff } Traces(TS_1) = Traces(TS_2) \text{ iff } TS_1 \sim TS_2$$

TS is AP-deterministic if there all initial states are labeled differently,
and this also applies to all direct successors of any state in TS

Logical characterization of \preceq_{TS}

- Negation of formulas is problematic as \preceq_{TS} is not symmetric
- Let \mathbf{L} be a fragment of CTL* which is closed under negation
- And assume \mathbf{L} weakly matches \preceq_{TS} , that is:

$s_1 \preceq_{TS} s_2$ iff for all state formulae Φ of \mathbf{L} : $s_2 \models \Phi \implies s_1 \models \Phi$.

- Let $s_1 \preceq_{TS} s_2$. Then, for any state formula Φ of \mathbf{L} :

$s_1 \models \Phi \implies s_1 \not\models \neg\Phi \implies s_2 \not\models \neg\Phi \implies s_2 \models \Phi$.

- Hence, $s_2 \preceq_{TS} s_1$ which requires \preceq_{TS} to be symmetric

Universal fragment of CTL*

\forall CTL* *state-formulas* are formed according to:

$$\Phi ::= \text{true} \quad \mid \quad \text{false} \quad \mid \quad a \quad \mid \quad \neg a \quad \mid \quad \Phi_1 \wedge \Phi_2 \quad \mid \quad \Phi_1 \vee \Phi_2 \quad \mid \quad \forall \varphi$$

where $a \in AP$ and φ is a path-formula

\forall CTL* *path-formulas* are formed according to:

$$\varphi ::= \Phi \quad \mid \quad \bigcirc \varphi \quad \mid \quad \varphi_1 \wedge \varphi_2 \quad \mid \quad \varphi_1 \vee \varphi_2 \quad \mid \quad \varphi_1 \mathsf{U} \varphi_2 \quad \mid \quad \varphi_1 \mathsf{R} \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in \forall CTL, the only path operators are $\bigcirc \Phi, \Phi_1 \mathsf{U} \Phi_2$ and $\Phi_1 \mathsf{R} \Phi_2$

Universal CTL* contains LTL

For every LTL formula there exists an equivalent \forall CTL* formula

Simulation order and \forall CTL*

For any finitely branching transition system TS and s, s' states in TS :

- (1) $s \preceq_{TS} s'$ iff
- (2) for any \forall CTL*-formula Φ : $s' \models \Phi$ implies $s \models \Phi$ iff
- (3) for any \forall CTL-formula Φ : $s' \models \Phi$ implies $s \models \Phi$ iff
- (4) for any \forall CTL\U, R-formula Φ : $s' \models \Phi$ implies $s \models \Phi$

Content of this lecture

- **Bisimulation**
 - definition, properties, quotient, CTL^* equivalence
- **Bisimulation minimisation**
 - partition refinement, efficiency improvement, complexity
- **Simulation**
 - pre-order, simulation equivalence, properties, $\forall CTL^*$ equivalence

⇒ **Checking simulation**

- basic idea of algorithm

Skeleton for simulation preorder checking

Input: finite transition system TS over AP with state space S

Output: simulation order \preceq_{TS}

$\mathcal{R} := \{ (s_1, s_2) \mid L(s_1) = L(s_2) \};$

while \mathcal{R} is **not** a simulation **do**

 let $(s_1, s_2) \in \mathcal{R}$ such that $s_1 \rightarrow s'_1$ and $\forall s'_2. s_2 \rightarrow s'_2$ implies $(s'_1, s'_2) \notin \mathcal{R}$;

$\mathcal{R} := \mathcal{R} \setminus \{ (s_1, s_2) \};$

od

return \mathcal{R}

The number of iterations is bounded above by $|S|^2$, since:

$$S \times S \supseteq \mathcal{R}_0 \supsetneq \mathcal{R}_1 \supsetneq \mathcal{R}_2 \supsetneq \dots \supsetneq \mathcal{R}_n = \preceq_{TS}$$

Algorithm to compute $\preceq(1)$

```

for all  $s_1 \in S$  do
   $Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \};$            (* initialization *)
od

while  $\exists (s_1, s_2) \in S \times Sim(s_1)$ .  $\exists s'_1 \in Post(s_1)$  with  $Post(s_2) \cap Sim(s'_1) = \emptyset$  do
  choose such a pair of states  $(s_1, s_2);$            (*  $s_1 \not\preceq_{TS} s_2$  *)
   $Sim(s_1) := Sim(s_1) \setminus \{ s_2 \};$ 
od                                                 (*  $Sim(s) = Sim_{TS}(s)$  for any  $s$  *)
return  $\{ (s_1, s_2) \mid s_2 \in Sim(s_1) \}$ 

```

$Sim_{\mathcal{R}}(s) = \{ s' \mid (s, s') \in \mathcal{R} \}$, the upward closure of s under \mathcal{R}

$\emptyset \supseteq Sim_{\mathcal{R}_0}(s) \supseteq Sim_{\mathcal{R}_1}(s) \supseteq \dots \supseteq Sim_{\mathcal{R}_n}(s) = Sim_{\preceq_{TS}}(s)$

Time complexity

Time complexity of computing \prec_{TS} is $\mathcal{O}(M \cdot |S|^2)$

in each iteration a single pair is deleted; can we do better?

A simple observation

$$\begin{array}{ccc}
 s_1 & \longrightarrow & s'_1 \\
 \mathcal{R} & & \mathcal{R} \\
 s_2 & \longrightarrow & s'_2
 \end{array}$$

- Assume: s'_2 is the *only* successor of s_2 related to s'_1 (*)
 – $Sim_{\mathcal{R}}(s'_1) \cap Post(s_2) = \{ s'_2 \}$ where $Sim_{\mathcal{R}}(s'_1) = \{ s \in S \mid (s'_1, s) \in \mathcal{R} \}$
- Removing (s'_1, s'_2) from \mathcal{R} implies that $s_1 \not\preceq s_2$
 $\Rightarrow (s_1, s_2)$ can thus also safely be removed from \mathcal{R}
- This applies to *all* direct predecessors of s'_2 satisfying (*)

Algorithm to compute \preceq (2)

Input: finite transition system TS over AP with state space S

Output: simulation order \preceq_{TS}

```

for all  $s_1 \in S$  do
   $Sim_{old}(s_1) := S;$ 
   $Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \};$ 
od
while ( $\exists s \in S$  with  $Sim_{old}(s) \neq Sim(s)$ ) do
  choose  $s'_1$  such that  $Sim_{old}(s'_1) \neq Sim(s'_1)$ ;
   $Remove(s'_1) := Pre(Sim_{old}(s'_1)) \setminus Pre(Sim(s'_1));$     (* predecessors that  $\not\preceq s'_1$  *)
  for all  $s_1 \in Pre(s'_1)$  do
     $Sim(s_1) := Sim(s_1) \setminus Remove(s'_1);$ 
  od
   $Sim_{old}(s'_1) := Sim(s'_1);$ 
od
return  $\{ (s_1, s_2) \mid s_2 \in Sim(s_1) \}$ 

```

Implementation details

- Introduce for any state s'_1 the set $\text{Remove}(s'_1)$
 - contains all states s_2 to be removed from $\text{Sim}(s_1)$ for $s_1 \in \text{Pre}(s'_1)$:

$$\text{Remove}(s'_1) = \text{Pre}(\text{Sim}_{\text{old}}(s'_1)) \setminus \text{Pre}(\text{Sim}(s'_1))$$

- ⇒ the sets Sim_{old} are superfluous
- ⇒ termination condition: $\text{Remove}(s'_1) = \emptyset$ for all $s'_1 \in S$
 - adapt the sets Remove on modifying $\text{Sim}(s_1)$

- Let $s_2 \in \text{Remove}(s'_1)$ and $s_1 \in \text{Pre}(s'_1)$
 - then $s_1 \rightarrow s'_1$ but no transition $s_2 \rightarrow s'_2$ with $s'_2 \in \text{Sim}(s'_1)$
 - then $s_1 \not\preceq s_2$, so s_2 can be removed from $\text{Sim}(s_1)$:
- ⇒ extend $\text{Remove}(s_1)$ with $s \in \text{Pre}(s_2)$ and $\text{Post}(s) \cap \text{Sim}(s_1) = \emptyset$

Algorithm to compute $\preceq(3)$

```

for all  $s_1 \in S$  do
   $Sim(s_1) := \{ s_2 \in S \mid L(s_1) = L(s_2) \};$                                      (* initialization *)
   $Remove(s_1) := S \setminus Pre(Sim(s_1));$ 
od
                                         (* loop invariant:  $Remove(s'_1) = Pre(Sim_{old}(s'_1)) \setminus Pre(Sim(s'_1))$  *)
while ( $\exists s'_1 \in S$  with  $Remove(s'_1) \neq \emptyset$ ) do
  choose  $s'_1$  such that  $Remove(s'_1) \neq \emptyset$ ;
  for all  $s_2 \in Remove(s'_1)$  do
    for all  $s_1 \in Pre(s'_1)$  do
      if  $s_2 \in Sim(s_1)$  then
         $Sim(s_1) := Sim(s_1) \setminus \{ s_2 \};$                                      (*  $s_2 \in Sim_{old}(s_1) \setminus Sim(s_1)$  *)
        for all  $s \in Pre(s_2)$  with  $Post(s) \cap Sim(s_1) = \emptyset$  do
           $Remove(s_1) := Remove(s_1) \cup \{ s \};$                                      (*  $s \in Pre(Sim_{old}(s_1)) \setminus Pre(Sim(s_1))$  *)
      od
      fi
    od
  od
   $Remove(s'_1) := \emptyset;$                                          (*  $Sim_{old}(s'_1) := Sim(s'_1)$  *)
od
return  $\{ (s_1, s_2) \mid s_2 \in Sim(s_1) \}$ 

```

Time complexity

Time complexity of computing \preceq_{TS} is $\mathcal{O}(M \cdot |S|)$

Summary

formal relation	trace equivalence	bisimulation	simulation
complexity	PSPACE-complete	$\mathcal{O}(M \cdot \log S)$	$\mathcal{O}(M \cdot S)$
logical fragment	LTL	CTL*	\forall CTL*
preservation	strong	strong match	weak match