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Motivation

e Bisimulation, simulation and trace equivalence are strong

— each transition s — s’ must be matched by a transition of a related state
— for comparing models at different abstraction levels, this is too fine
— consider e.g., modeling an abstract action by a sequence of concrete actions

e Idea: allow for sequences of “invisible” actions

— each transition s — s’ must be matched by a path fragment of a related state
— matching means: ending in a state related to s’, and all previous states invisible

e Abstraction of such internal computations yields coarser quotients

— but: what kind of properties are preserved?
— but: can such quotients still be obtained efficiently?
— but: how to treat infinite internal computations?
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Motivating example

Let TS,,,. model the concrete program fragment

1=, 2= 1;
while i > 1 do

zi= 2%, 0 :=1— 1;
od

xr =z,
that computes the factorial of y iteratively.

Let TS, be the transition system of the (abstract) program x := !

Clearly, TS, and TS, are in some sense equivalent
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Stuttering equivalence

e s — s’ intransition system TS is a stutter step if L(s) = L(s')

e Paths m; and 7, are stutter equivalent, denoted 7; = o

— if there exists an infinite sequence AyAAs ... with A, C AP and

— natural numbers ng, n1, na, ..., mg, my, ma, ... > 0 such that:
trace(7r1) = A AO Al Al A2 AQJ
no- ?lrmes ni- “times noy- ?lrmes
trace(ﬂ'g) = A AO Al Al A2 AQJ

Ve

mo- tlmes ml-tlmes mo-times

= 1, = 7y if both their traces are of the form Ay ™A, TA,T ... for A, C AP
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Semaphore-based mutual exclusion
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Stutter equivalent traces

These infinite paths are stutter equivalent

T = (ni,ng) — (w1, n2) — (wi,ws) — (c1,w2) — (N1, w2) —
(1, c2) = (n1,n2) — (w1, n2) — (Wi, wg) — (€1, w2) —

Ty = (ni1,n9) — (wi,ne) — (c1,n9) — (c1,wa) — (N1, ws) —
(w1, wz) — (w1, ¢2) — (w1, n2) — (c1,n2) —

Hence, m; £ my, since for AP = { crity, crit; }:

trace(m;) = @>{crit; }@{crit} @3 {crit;}... and
trace(my) = @*({crit; })?@*{crity } @ {crit; }...
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Pictorially
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Stutter trace equivalence

Transition systems TS, over AP, i=1, 2, are stutter-trace equivalent:
TS, éTSQ If and Only If TS < TS, and TS, < TS,

where <, pronounced stutter trace inclusion, is defined by:

TS, dTS, iff Vo, € Traces(TS;) (302 c Traces(TS,). o1 = 09 )

Traces(TS;) = Traces(TS,) implies TS; £ TS,, but not always the converse
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Example
la} {a}
la}
{a} %)
%)
% {a}

TS, - TSy, TSy /ﬂ TSg and TS, /ﬂ TSg, but TSg Sl TS, and TSg Sl TS,
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The () operator

Stuttering equivalence does not preserve the validity of next-formulas:
cr.=ABBB...ando, =AAABBBB...forA,BCAPand A # B
Thenforb € B\ A:

O-léO-Q but 01 ‘:Qb and O'Q%Ob.

= a logical characterization of £ can only be obtained by omitting O

in fact, it turns out that this is the only modal operator that is not preserved by £ !
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Stutter trace and LTL,, equivalence

For traces o1 and o5 over 2AP it holds:
o1 é0'2 — (0'1 ‘: ) if and only If o9 ‘: QO)

for any LTL\ ~ formula ¢ over AP

LTL\O denotes the class of LTL formulas without the next operator ()
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Stutter trace and LTL,, equivalence

For transition systems TS, TS, without terminal states:

(@) TS, 2 TS, if and only if (Ts1 =110 s TSQ)

(b) if TS; I TS, then for any LTL\ formula ¢: TSy = ¢ implies TS, = ¢
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Semaphore-based mutual exclusion

This transition system is stutter trace-equwalent:

{crit; } %@{ crity }
%
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Stutter bisimulation

Let TS = (S, Act, —, I, AP, L) be a transition systemand R C S x S

R is a stutter-bisimulation for TS if for all (s1, s2) € R:

1. L(Sl) = L(Sg)

2. if s} € Post(sy) with (s7,s2) ¢ R, then there exists a finite path
fragment souy ... u, sh,withn > 0 and (s, u;) € R and (s,s5) € R

3. if 8§ € Post(s2) with (s1,s,) ¢ R, then there exists a finite path
fragment sy vy ... v, s) withn > 0 and (s2,v;) € R and (s,s5) € R

s1, So are stutter-bisimulation equivalent, denoted s; ~ts s9,
if there exists a stutter bisimulation R for TS with (s1, s2) € R
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Stutter bisimulation

can be completed to

S1

S1

Q

Q

Q

Q

Q
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Semaphore-based mutual exclusion

((n1, e2,y=0) )

regi

stutter-bisimilar states for AP = { crity, crity }
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Stutter-bisimilar transition systems

Let TS; = (5;, Act;, —;, I;, AP, L;), i = 1,2, be transition systems

TS, and TS, are stutter bisimilar, denoted TS; ~ TS,, If there exists a
stutter bisimulation R on TS; & TS, such that:

Vs, € 1. (382 e Io. (81, 82) c R) and Vso € Is. (381 e l. (81, 82) c R)
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Stutter bisimulation quotient

Let TS = (S,Act,—,I,AP, L) and stutter bisimulaton R C S x S be an
equivalence

The quotient of TS under R is defined by:
TS/R = (S, {r},—/,I',AP, L)
where

e S =S/R = {[s]lr|s€ S}twith[s]lr = {s'€ S| (s,s)€ER}
o« I'={[s]x|seT}
o L'([s]r) = L(s)

o _is defined by s—2s and (s,s') € R

[slr — [s']»

note that (a) no self-loops occur in TS/ ~ts and (b) TS =~ TS/ ~ts
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Semaphore-based mutual exclusion

The stutter-bisimulation quotient:

{crit; } %@{ crity }
%
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Stutter trace and stutter bisimulation

For transition systems TS; and TS, over AP:
e Known fact: TS; ~ TS, implies Traces(TS;) = Traces(TSs)
e Butnot: TS; ~ TS, implies TS; £TS,!

o SO:

— bisimilar transition systems are trace equivalent
— but stutter-bisimilar transition systems are not always stutter trace-equivalent!

e Why? Paths that only stutter!

— stutter bisimulation does not impose any constraint on such paths
— but £ requires the existence of a stuttering equivalent trace
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Stutter trace and stutter bisimulation are incomparable

%)
= :
% ~
TS, TS, TS5

TSy
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Stutter bisimulation does not preserve LTL,

o %

o 1a} o ta}

TSleft ~ TSm’ght but TSleft \75 < a and TSm-ght ‘: Sa

reason: presence of infinite stutter paths in TS,z
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Divergence sensitivity

e Stutter paths are paths that only consist of stutter steps

— no restrictions are imposed on such paths by a stutter bisimulation

e Stutter paths diverge: they never leave an equivalence class

e Remedy: only relate divergent states or non-divergent states

— divergent state = a state that has a stutter path
= relate states only if they either both have stutter paths or none of them

e This yields divergence-sensitive stutter bisimulation (=)

= ~% s strictly finer than £ (and =)
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Outlook

formal relation

trace equivalence bisimulation simulation

complexity
logical fragment

preservation

PSPACE-complete | PTIME PTIME
LTL CTL" VCTL"
strong strong match | weak match

formal relation

stutter trace equivalence

divergence-sensitive
stutter bisimulation

complexity
logical fragment

preservation

PSPACE-complete
LTL\o

strong

PTIME
CTL 4

strong match
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Divergence sensitivity

Let TS be a transition system and ‘R an equivalence relation on S

e sis R-divergent if there exists an infinite path fragment
ss152... € Paths(s) such that (s,s;) € Rforall j >0

— s is R-divergent if there is an infinite path starting in s that only visits [s]
e R is divergence sensitive if for any (si, s2) € R:
s1 IS R-divergent implies s5 is R-divergent

— R is divergence-sensitive if in any [s] z either all or none states are R-divergent
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Divergent-sensitive stutter bisimulation

s1, So are divergent-sensitive stutter-bisimilar, denoted s; =% so, if:

1 divergent-sensitive stutter bisimulation R on TS such that (s1,s2) € R

~1% is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS
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Quotient transition system under ~

TS/~" = (8", {r},—/,I',AP, L"), the quotient of TS under ~
where
e S’, I"and L' are defined as usual (for eq. classes [s]q, under ~%)
e —'is defined by:

s—2s5 A s WS q
an
[S]div L>éliv [S/]div [S]div L%nv [S]div

s is~%-divergent

note that TS ~% TS/~
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Example

- {a}
[83]% [30]%
- {a}

transition system TS/~

@ transition system TS
{a} {a}

.
53] i [s2] solai] )
Z {a} {a}

transition system TS/~
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Summary

stutter trace inclusion:
TS 4TSy iff  Voq € Traces(TS;) oy € Traces(TSs). o1 = 09

stutter trace equivalence:
TSy = TSo Iff TS1 TSy and TS, TSy

stutter bisimulation equivalence:
TS| =~ TSy iff  there exists a stutter bisimulation for (TS, TS2)

stutter bisimulation equivalence with divergence:

TS, ~dIv TSy iff  there exists a divergence-sensitive
stutter bisimulation for (TS, TS»)
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CTL, and CTL,,, equivalence vs ~"

For finite transition system TS without terminal states, and s, s In TS:

~~div ; — : _
81 ~1g S2 Iff S1 =(oTL* S9 Iff S1 :CTL\O S9

\O
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CTL, and CTL,,, equivalence vs ~"

S1 ~TS S9

For finite transition system TS without terminal states, and s, s5 In TS:

~div iff s ECTLiO s M5 =0TL\ 52 At —hou 72
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A producer-consumer example

Consumer
Producer

_ out := 0;
In := 0; _

_ while true {
while true {

forj =1ton{
produce di, ..., dn;

wait until (bufferjout] # 1) {
fori =1ton{

wait until (buffer[in] = L) {
buffer[in] := d;;
in:= (in+ 1) mod m; }

e; := buffer[out];
buffer[out] := L;
out := (out+ 1) mod m; }

}

consume €1, ..., €en
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Producer
while true {
produce;
fori =1ton{
wait until (free > 0) {

free := free — 1;

An abstraction

Consumer
while true {
forj =1ton{
wait until (free < m) {
free := free + 1;

}

consume
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%
2
%

Abstract transition system

produce
(if (free > 0) then ¢ := 1; free—— fi)
(if (free > 0) then ¢ := 0; free—— fi) ; goto ¢,
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Equivalences and logical equivalence

CTL* equivalence ___ . LTL equivalence

bisimulation equivalence trace equivalence trace inclusion
TSy ~ TSo — Traces(7T7) = Traces(TSg) ——  Traces(77) C Traces(TSo)
divergence sensitive ___ _ stutter trace-equivalence stutter trace inclusion
stutter bisimula(ljtion equivalence TS{ =TSy TS1 JTSq
TS =9 TS,

CTLiO equivalence ——— LTL\ (> equivalence
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Quotienting: Motivation

e Quotienting wrt. ~® allows to abstract from stutter steps

— in particular TS ~% TS/~

— typically we have [TS| >> |TS/~%|

o IS ~ v TS, if and Only If (TSl ): O |ff TS, ’_ (I))

— for any CTL\O (or CTL\() formula @

= To check TS = &, if suffices to check whether TS/~ = ®

— quotienting with respectto ~

4Vis a useful preprocessing step of model checking
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Quotienting: A two-phase approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/ ~:

e remove stutter cycles from TS
e a refine operator to efficiently split (blocks of) partitions
e exploit partition-refinement (as for bisimulation ~)

2. A quotienting algorithm to determine TS/ ~":

transform TS into a (divergence-sensitive) transition system TS
TS is divergent-sensitive, i.e., &z and = Nd"’ coincide

([

([

e determine ﬁ/ ~ using the quotienting algorlthm for =~
o “distill’ TS/~ from TS/ ~
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Partition-refinement

from now on, we assume that TS is finite

e lteratively compute a partition of S

e Initially: ITy equals ITap = { (s,t) € S x S| L(s) = L(t) }

e Repeat until no change:

— loop invariant: 11, is coarser than S/ ~ and finer than { S }

e Return II;

— termination: Ry, 2 R, 2 R, 2 --- 2 R, = R7s

Hi—l—l :— Refinex (Hz)

— time complexity: maximally | S | iterations needed

as before
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Theorem

S/ = is the coarsest partition IT of S such that:
(i) IIis finer than the initial partition Il 5p, and
(i) B N Pre;(C) =@orB C Pre;(C) forall B,C €1I

for partition II of S and blocks B, C' in II we have:

s € Prep;(C) whenever s = s; S2- - Sn_l Sn € Paths(s)
eB eC

state s can reach C via a path that is completely in B (= [s]m)

© JPK
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The refinement operator

o Let: Refinex (1L, C) = |Ugep Refinex(B,C) for C ablockin II
— where Refiner (B, C) = {B N Pre;(C), B\ Prel*I(C')} \ {2}

e Basic properties:
— for II finer than I15p and coarser than S/ ~:

Refinex (II, C) is finerthan II and Refinex (II, C') is coarser than S/ ~

— I is strictly coarser than S/ ~ if and only if there exists a splitter for I1

what is an appropriate splitter for ~?
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Splitter for ~

Let II be a partition of S and let C', B € I1.

1. C'is a Il-splitter for B if and only if:

B#C and BnPre;(C)# @ and B)\Prej(C)+# o

2. II'is C-stable if there is no B € 11 such that C' is a II-splitter for B

3. 1T is stable if IT is C'-stable for all blocks C & 11
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45



Partition-refinement

Input: finite transition system TS with state space S
Output: stutter-bisimulation quotient space S/ ~

IT := Ilap; (* as before *)
while (3B, C € II. C'is a II-splitter for B) do
choose such B, C' € 1II;

IM:= T\ {B})u{BnPreg(C), B\ Pre;(C) }\ {2} (* refine 11 *)
B By
od
return II
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Stutter cycles

® s0s1 ... S, IS astutter cycle if s; s;11 IS a stutter step

= S0
e For stutter cycle sg s1 so ... s, In transition system TS:

~odiv ~odiv ~odiv
S0 ~15 51 15 -+ 15 On

e Corollary: for finite TS and state s in TS:

sis ~% —divergent if and only if

a stutter cycle is reachable from s via a path in [s] gy
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Removal of stutter cycles: How?

1. Determine the SCCs in G(TS) that only contain stutter steps

e use depth-first search to find these strongly connected components (SCCs)

2. Collapse any stutter SCC into a single state

e C —' C"with C # C’ whenever s — s'inTSwiths € Cand s’ € C’

= Resulting TS’ has no stutter cycles

® s; ~t1g sz If and only if \C\*}/ S \C\‘}/

81€C1 82€C2

from now on, assume transition systems have no stutter cycles
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A “local” splitter characterization
e ('is all-splitter for B if and only if:

B#C and BnNnPre;(C)#2 and B\ Prej(C)# o

e How to avoid the computation of Pre;(C) for C' € 11?

e No stutter cycles = block B € II has at least one exit state

— exit state = a state with only direct successors outside B:
Bottom(B) = {s € B | Post(s) " B = @}
e For finite TS without stutter cycles, C'is a II-splitter for B iff:

B#C and BnNPre(C)#o and Bottom(B)\Pre(C)# @
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Time complexity

The partition-refinement algorithm to compute TS/ ~

has a worst-case time complexity in O (|S| - (|AP| 4 M))
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Approach

1. A quotienting algorithm to determine TS/ ~:

e remove stutter cycles from TS
e a refine operator to efficiently split (blocks of) partitions
e exploit partition-refinement (as for bisimulation ~)

= A quotienting algorithm to determine TS/ ~%":

transform TS into a (divergence-sensitive) transition system TS
TS is divergent-sensitive, i.e., ~zz and ~ Nd"’ coincide

determine ﬁ/ ~ using the quotienting algorlthm for =~
“distill”’ TS/ =~ from TS/ ~
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Divergence expansion

Divergence-sensitive expansion of finite TS = (S, Act,— ,I,AP, L) is:

TS = (SU{sw},Actu{r},—,I,APU{av},L) where
o SdinS

e — extends the transition relation of TS by:

— Sgiv — Sgiv and
— 5 sgy for every state s € S on a stutter cycle in TS

e L(s)=L(s)ifse Sand L(sg,) = {dv}

saiv % s forany s € S and sqy can only be reached from a ~%"-divergent state
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53
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Correctness

For finite transition system TS:

1. TS is divergence-sensitive, and

2. forall sy, sy € S:s; ~% s, ifand only if

S1

Y

~TS

S92
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Recipe for computing TS/ ~"
1. Construct the divergence-sensitive expansion TS

e determine the SCCs in G- (TS), and insert transitions sqj, — sqjy and
® s — sgjy for any state s in a non-trivial SCC of G gyster

~TS —

2. Apply partition-refinement to TS to obtain S/~% = S/ ~=

3. Generate TS/~

e any C € S/~ that contains an initial state of TS is an initial state

e the labeling of C € S/~ equals the labeling of any s € C

e any transition s — s’ with s 36%’ s’ yields a transition between C, and C .,

4, “Distill” TS/~ from TS/ ~:

e replace transition s — sgy in TS by the self-loop [s] _av — [s].dv
e delete state sy
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Time complexity

The quotient transition system TS/ ~% can be determined

with a worst-case time complexity in O ( |S| - (|AP|+M))
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Summary

formal relation

trace equivalence bisimulation simulation

complexity

logical fragment

preservation

PSPACE-complete | O(M-log |S|) | O(M-|S|)

LTL CTL"

VCTL"

strong strong match weak match

formal relation

stutter trace equivalence

divergence-sensitive
stutter bisimulation

complexity

logical fragment

preservation

PSPACE-complete
LTL\o

strong

O(M-|S])
CTL &

strong match
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