
Abstraction – Part 2
Lecture #6 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, September 29, 2010

c© JPK

Content of this lecture

• Stutter trace equivalence

– definition, properties, LTL (no next) equivalence

• Stutter bisimulation

– definition, properties, no LTL (no next) equivalence

• Divergence sensitivity

– divergence-sensitive bisimulation, CTL∗ (no next) equivalence

• Divergence-sensitive bisimulation minimisation

– basic idea of algorithm, complexity

c© JPK 1

Content of this lecture

⇒ Stutter trace equivalence

– definition, properties, LTL (no next) equivalence

• Stutter bisimulation

– definition, properties, no LTL (no next) equivalence

• Divergence sensitivity

– divergence-sensitive bisimulation, CTL∗ (no next) equivalence

• Divergence-sensitive bisimulation minimisation

– basic idea of algorithm, complexity

c© JPK 2

Motivation

• Bisimulation, simulation and trace equivalence are strong

– each transition s → s′ must be matched by a transition of a related state
– for comparing models at different abstraction levels, this is too fine
– consider e.g., modeling an abstract action by a sequence of concrete actions

• Idea: allow for sequences of “invisible” actions

– each transition s → s′ must be matched by a path fragment of a related state
– matching means: ending in a state related to s′, and all previous states invisible

• Abstraction of such internal computations yields coarser quotients

– but: what kind of properties are preserved?
– but: can such quotients still be obtained efficiently?
– but: how to treat infinite internal computations?

c© JPK 3

Motivating example

Let TSconc model the concrete program fragment

i := y; z := 1;
while i > 1 do

z := z ∗ i; i := i − 1;
od
x := z;

that computes the factorial of y iteratively.

Let TSabs be the transition system of the (abstract) program x := y!

Clearly, TSabs and TSconc are in some sense equivalent

c© JPK 4

Stuttering equivalence

• s → s′ in transition system TS is a stutter step if L(s) = L(s′)

• Paths π1 and π2 are stutter equivalent, denoted π1 � π2:

– if there exists an infinite sequence A0A1A2 . . . with Ai ⊆ AP and
– natural numbers n0, n1, n2, . . ., m0, m1, m2, . . . > 0 such that:

trace(π1) = A0 . . . A0| {z }
n0-times

A1 . . . A1| {z }
n1-times

A2 . . . A2| {z }
n2-times

. . .

trace(π2) = A0 . . . A0| {z }
m0-times

A1 . . . A1| {z }
m1-times

A2 . . . A2| {z }
m2-times

. . .

⇒ π1 � π2 if both their traces are of the form A0
+A1

+A2
+ . . . for Ai ⊆ AP

c© JPK 5

Semaphore-based mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 6

Stutter equivalent traces
These infinite paths are stutter equivalent

π1 = 〈n1, n2〉 → 〈w1, n2〉 → 〈w1, w2〉 → 〈c1, w2〉 → 〈n1, w2〉 →
〈n1, c2〉 → 〈n1, n2〉 → 〈w1, n2〉 → 〈w1, w2〉 → 〈c1, w2〉 → . . .

π2 = 〈n1, n2〉 → 〈w1, n2〉 → 〈c1, n2〉 → 〈c1, w2〉 → 〈n1, w2〉 →
〈w1, w2〉 → 〈w1, c2〉 → 〈w1, n2〉 → 〈c1, n2〉 → . . .

Hence, π1 � π2, since for AP = { crit1, crit2 }:

trace(π1) = ∅3 { crit1 }∅ { crit2 }∅3 { crit1 } . . . and

trace(π2) = ∅2 ({ crit1 })2 ∅2 { crit2 }∅ { crit1 } . . .

c© JPK 7

Pictorially

n1 n2 w1 n2 w1 w2 c1 w2 n1 w2 n1 c2 n1 n2 w1 n2 w1 w2 � � �

n1 n2 w1 n2 c1 n2 c1 w2 n1 w2 w1 w2 w1 c2 w1 n2 c1 n2 � � �

/0 /0 /0 /0 /0 /0 /0�c1� �c2�

/0 /0 /0 /0 /0�c1� �c2��c1� �c1�

c© JPK 8

Stutter trace equivalence

Transition systems TSi over AP, i=1, 2, are stutter-trace equivalent :

TS1 � TS2 if and only if TS1 � TS2 and TS2 � TS1

where � , pronounced stutter trace inclusion, is defined by:

TS1 � TS2 iff ∀σ1 ∈ Traces(TS1)
(
∃σ2 ∈ Traces(TS2). σ1 � σ2

)

Traces(TS1) = Traces(TS2) implies TS1 � TS2, but not always the converse

c© JPK 9

Example

s1 { a }

s0 { a }

s2 ∅

t0 { a }

t1 ∅

u0 { a }

u1 ∅

u2 { a }

TS1 � TS2, TS1 � � TS3 and TS2 � � TS3, but TS3 � TS2 and TS3 � TS1

c© JPK 10

The © operator

Stuttering equivalence does not preserve the validity of next-formulas:

σ1 = A B B B . . . and σ2 = A A A B B B B . . . for A,B ⊆ AP and A �= B

Then for b ∈ B \ A:

σ1 �σ2 but σ1 |= © b and σ2 �|= © b.

⇒ a logical characterization of � can only be obtained by omitting ©
in fact, it turns out that this is the only modal operator that is not preserved by � !

c© JPK 11

Stutter trace and LTL\© equivalence

For traces σ1 and σ2 over 2AP it holds:

σ1 � σ2 ⇒ (σ1 |= ϕ if and only if σ2 |= ϕ)

for any LTL\© formula ϕ over AP

LTL\© denotes the class of LTL formulas without the next operator ©

c© JPK 12

Stutter trace and LTL\© equivalence

For transition systems TS1, TS2 without terminal states:

(a) TS1 � TS2 if and only if
“

TS1 ≡LTL\© TS2

”

(b) if TS1 � TS2 then for any LTL\© formula ϕ: TS2 |= ϕ implies TS1 |= ϕ

c© JPK 13

Semaphore-based mutual exclusion
〈n1, n2〉

〈w1, n2〉 〈n1, w2〉

〈c1, n2〉 〈w1, w2〉 〈n1, c2〉

〈c1, w2〉 〈w1, c2〉

This transition system is stutter trace-equivalent:

s0

∅

s1{ crit1 } s2 { crit2 }

c© JPK 14

Content of this lecture

• Stutter trace equivalence

– definition, properties, LTL (no next) equivalence

⇒ Stutter bisimulation

– definition, properties, no LTL (no next) equivalence

• Divergence sensitivity

– divergence-sensitive bisimulation, CTL∗ (no next) equivalence

• Divergence-sensitive bisimulation minimisation

– basic idea of algorithm, complexity

c© JPK 15

Stutter bisimulation

Let TS = (S, Act, →, I, AP, L) be a transition system and R ⊆ S × S

R is a stutter-bisimulation for TS if for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) with (s′1, s2) �∈ R, then there exists a finite path
fragment s2 u1 . . . un s′2 with n � 0 and (s1, ui) ∈ R and (s′1, s

′
2) ∈ R

3. if s′2 ∈ Post(s2) with (s1, s
′
2) �∈ R, then there exists a finite path

fragment s1 v1 . . . vn s′1 with n � 0 and (s2, vi) ∈ R and (s′1, s
′
2) ∈ R

s1, s2 are stutter-bisimulation equivalent, denoted s1 ≈TS s2,
if there exists a stutter bisimulation R for TS with (s1, s2) ∈ R

c© JPK 16

Stutter bisimulation

s1 ≈ s2

↓
s1 ≈ u1

↓
s1 ≈ s2 s1 ≈ u2

↓ can be completed to ↓
s′1

...
(with s′

1 �≈ s2) ↓
s1 ≈ un

↓ ↓
s′1 ≈ s′2

c© JPK 17

Semaphore-based mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

stutter-bisimilar states for AP = { crit1, crit2 }

c© JPK 18

Stutter-bisimilar transition systems

Let TSi = (Si, Acti, →i, Ii, AP, Li), i = 1, 2, be transition systems

TS1 and TS2 are stutter bisimilar, denoted TS1 ≈ TS2, if there exists a
stutter bisimulation R on TS1 ⊕ TS2 such that:

∀s1 ∈ I1. (∃s2 ∈ I2. (s1, s2) ∈ R) and ∀s2 ∈ I2. (∃s1 ∈ I1. (s1, s2) ∈ R)

c© JPK 19

Stutter bisimulation quotient

Let TS = (S, Act,→, I, AP, L) and stutter bisimulation R ⊆ S × S be an
equivalence

The quotient of TS under R is defined by:

TS/R = (S
′
, { τ },→′

, I
′
, AP, L

′
)

where

• S′ = S/R = { [s]R | s ∈ S } with [s]R = { s′ ∈ S | (s, s′) ∈ R}
• I ′ = { [s]R | s ∈ I }
• L′([s]R) = L(s)

• →′ is defined by:
s α−→ s′ and (s, s′) �∈ R

[s]R τ−→′
[s

′
]R

note that (a) no self-loops occur in TS/≈TS and (b) TS ≈ TS/≈TS

c© JPK 20

Semaphore-based mutual exclusion
〈n1, n2〉

〈w1, n2〉 〈n1, w2〉

〈c1, n2〉 〈w1, w2〉 〈n1, c2〉

〈c1, w2〉 〈w1, c2〉

The stutter-bisimulation quotient:

s0

∅

s1{ crit1 } s2 { crit2 }

c© JPK 21

Stutter trace and stutter bisimulation

For transition systems TS1 and TS2 over AP:

• Known fact: TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

• But not: TS1 ≈ TS2 implies TS1 � TS2!

• So:

– bisimilar transition systems are trace equivalent
– but stutter-bisimilar transition systems are not always stutter trace-equivalent!

• Why? Paths that only stutter!

– stutter bisimulation does not impose any constraint on such paths
– but � requires the existence of a stuttering equivalent trace

c© JPK 22

Stutter trace and stutter bisimulation are incomparable

∅

�

�≈

��

≈

TS1 TS2 TS3 TS4

c© JPK 23

Stutter bisimulation does not preserve LTL\©

t0
∅

t1

{ a }
s0

∅

s1

{ a }

TSleft ≈ TSright but TSleft �|= � a and TSright |= � a

reason: presence of infinite stutter paths in TS left

c© JPK 24

Content of this lecture

• Stutter trace equivalence

– definition, properties, LTL (no next) equivalence

• Stutter bisimulation

– definition, properties, no LTL (no next) equivalence

⇒ Divergence sensitivity

– divergence-sensitive bisimulation, CTL∗ (no next) equivalence

• Divergence-sensitive bisimulation minimisation

– basic idea of algorithm, complexity

c© JPK 25

Divergence sensitivity

• Stutter paths are paths that only consist of stutter steps

– no restrictions are imposed on such paths by a stutter bisimulation

• Stutter paths diverge: they never leave an equivalence class

• Remedy: only relate divergent states or non-divergent states

– divergent state = a state that has a stutter path
⇒ relate states only if they either both have stutter paths or none of them

• This yields divergence-sensitive stutter bisimulation (≈div)

⇒ ≈div is strictly finer than � (and ≈)

c© JPK 26

Outlook

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete PTIME PTIME

logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

formal relation stutter trace equivalence divergence-sensitive
stutter bisimulation

complexity PSPACE-complete PTIME

logical fragment LTL\© CTL∗
\©

preservation strong strong match

c© JPK 27

Divergence sensitivity

Let TS be a transition system and R an equivalence relation on S

• s is R-divergent if there exists an infinite path fragment

s s1 s2 . . . ∈ Paths(s) such that (s, sj) ∈ R for all j > 0

– s is R-divergent if there is an infinite path starting in s that only visits [s]R

• R is divergence sensitive if for any (s1, s2) ∈ R:

s1 is R-divergent implies s2 is R-divergent

– R is divergence-sensitive if in any [s]R either all or none states are R-divergent

c© JPK 28

Divergent-sensitive stutter bisimulation

s1, s2 are divergent-sensitive stutter-bisimilar , denoted s1 ≈div
TS s2, if:

∃ divergent-sensitive stutter bisimulation R on TS such that (s1, s2) ∈ R

≈div
TS is an equivalence, the coarsest divergence-sensitive stutter bisimulation for TS

and the union of all divergence-sensitive stutter bisimulations for TS

c© JPK 29

Quotient transition system under ≈div

TS/≈div = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ≈div

where

• S′, I ′ and L′ are defined as usual (for eq. classes [s]div under ≈div)

• →′ is defined by:

s α−−→ s′ ∧ s �≈div s′

[s]div
τ−→ ′

div [s′]div

and
s is ≈div-divergent

[s]div
τ−→ ′

div [s]div

note that TS ≈div TS/≈div

c© JPK 30

Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }
transition system TS

[s3]≈
∅

[s0]≈
{ a }

transition system TS/≈

[s3]div
∅

[s2]div
{ a }

[s0]div
{ a }

transition system TS/≈div

c© JPK 31

Summary

stutter trace inclusion:
TS1 � TS2 iff ∀σ1 ∈ Traces(TS1) ∃σ2 ∈ Traces(TS2). σ1 � σ2

stutter trace equivalence:
TS1 � TS2 iff TS1 � TS2 and TS2 � TS1

stutter bisimulation equivalence:
TS1 ≈ TS2 iff there exists a stutter bisimulation for (TS1, TS2)

stutter bisimulation equivalence with divergence:

TS1 ≈div TS2 iff there exists a divergence-sensitive
stutter bisimulation for (TS1, TS2)

c© JPK 32

CTL∗
\© and CTL\© equivalence vs ≈div

For finite transition system TS without terminal states, and s1, s2 in TS:

s1 ≈div
TS s2 iff s1 ≡CTL∗\©

s2 iff s1 ≡CTL\© s2

c© JPK 33

CTL∗
\© and CTL\© equivalence vs ≈div

For finite transition system TS without terminal states, and s1, s2 in TS:

s1 ≈div
TS s2 iff s1 ≡CTL∗\©

s2 iff s1 ≡CTL\© s2 � iff s1 ≡CTL\© ,U
s2

c© JPK 34

A producer-consumer example

Producer
in := 0;

while true {
produce d1, . . . , dn;

for i = 1 to n {
wait until (buffer[in] = ⊥) {

buffer[in] := di;

in := (in + 1) mod m; }
}

}

Consumer
out := 0;

while true {
for j = 1 to n {
wait until (buffer[out] �= ⊥) {

ej := buffer[out];

buffer[out] := ⊥;

out := (out + 1) mod m; }
}
consume e1, . . . , en

}

c© JPK 35

An abstraction

Producer
while true {

produce;

for i = 1 to n {
wait until (free > 0) {

free := free − 1;

}
}

Consumer
while true {

for j = 1 to n {
wait until (free < m) {

free := free + 1;

}
consume

}

c© JPK 36

Abstract transition system
00200

00000

21211

01101

11101

21011

10200

02200

12200

22110

02000

12000

20110

10000

�0 : produce
�1 : 〈if (free > 0) then i := 1; free−− fi〉
�2 : 〈if (free > 0) then i := 0; free−− fi〉 ; goto �0

c© JPK 37

Equivalences and logical equivalence

LTL\© equivalence

bisimulation equivalence
TS1 ∼ TS2

stutter bisimulation equivalence
divergence sensitive

TS1 ≈div TS2

trace equivalence
Traces(T1) = Traces(TS2)

stutter trace-equivalence
TS1 � TS2

Traces(T1) ⊆ Traces(TS2)
trace inclusion

stutter trace inclusion
TS1 � TS2

CTL∗\© equivalence

CTL∗ equivalence LTL equivalence

c© JPK 38

Content of this lecture

• Stutter trace equivalence

– definition, properties, LTL (no next) equivalence

• Stutter bisimulation

– definition, properties, no LTL (no next) equivalence

• Divergence sensitivity

– divergence-sensitive bisimulation, CTL∗ (no next) equivalence

⇒ Divergence-sensitive bisimulation minimisation

– basic idea of algorithm, complexity

c© JPK 39

Quotienting: Motivation

• Quotienting wrt. ≈div allows to abstract from stutter steps

– in particular TS ≈div TS/≈div

– typically we have |TS|>> |TS/≈div |

• TS1 ≈div TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

– for any CTL∗
\© (or CTL\©) formula Φ

⇒ To check TS |= Φ, if suffices to check whether TS/≈div |= Φ

– quotienting with respect to ≈div is a useful preprocessing step of model checking

c© JPK 40

Quotienting: A two-phase approach

[Groote and Vaandrager, 1990]

1. A quotienting algorithm to determine TS/≈:

• remove stutter cycles from TS
• a refine operator to efficiently split (blocks of) partitions
• exploit partition-refinement (as for bisimulation ∼)

2. A quotienting algorithm to determine TS/≈div:

• transform TS into a (divergence-sensitive) transition system TS
• TS is divergent-sensitive, i.e., ≈TS and ≈div

TS
coincide

• determine TS/≈ using the quotienting algorithm for ≈
• “distill” TS/≈div from TS/≈

c© JPK 41

Partition-refinement

from now on, we assume that TS is finite

• Iteratively compute a partition of S

• Initially: Π0 equals ΠAP = { (s, t) ∈ S × S | L(s) = L(t) } as before

• Repeat until no change: Πi+1 := Refine≈(Πi)

– loop invariant: Πi is coarser than S/≈ and finer than {S }

• Return Πi

– termination: RΠ0
� RΠ1

� RΠ2
� . . . � RΠi

= ≈TS

– time complexity: maximally |S | iterations needed

c© JPK 42

Theorem

S/≈ is the coarsest partition Π of S such that:

(i) Π is finer than the initial partition ΠAP, and

(ii) B ∩ Pre∗
Π(C) = ∅ or B ⊆ Pre∗

Π(C) for all B, C ∈ Π

for partition Π of S and blocks B, C in Π we have:

s ∈ Pre∗
Π(C) whenever s = s1 s2 . . . sn−1| {z }

∈B

sn|{z}
∈C

∈ Paths(s)

state s can reach C via a path that is completely in B (= [s]Π)

c© JPK 43

The refinement operator

• Let: Refine≈(Π, C) =
⋃

B∈Π Refine≈(B,C) for C a block in Π

– where Refine≈(B, C) =
n

B ∩ Pre∗
Π(C), B \ Pre∗

Π(C)
o

\ {∅ }

• Basic properties:

– for Π finer than ΠAP and coarser than S/≈:

Refine≈(Π, C) is finer than Π and Refine≈(Π, C) is coarser than S/≈

– Π is strictly coarser than S/≈ if and only if there exists a splitter for Π

what is an appropriate splitter for ≈?

c© JPK 44

Splitter for ≈

Let Π be a partition of S and let C, B ∈ Π.

1. C is a Π-splitter for B if and only if:

B �= C and B ∩ Pre∗
Π(C) �= ∅ and B \ Pre∗

Π(C) �= ∅

2. Π is C-stable if there is no B ∈ Π such that C is a Π-splitter for B

3. Π is stable if Π is C-stable for all blocks C ∈ Π

c© JPK 45

Partition-refinement

Input: finite transition system TS with state space S

Output: stutter-bisimulation quotient space S/≈

Π := ΠAP; (* as before *)
while (∃B, C ∈ Π. C is a Π-splitter for B) do

choose such B, C ∈ Π;
Π := (Π \ {B }) ∪ {B ∩ Pre∗

Π(C)| {z }
B1

, B \ Pre∗
Π(C)| {z }

B2

} \ {∅ }; (* refine Π *)

od
return Π

c© JPK 46

Stutter cycles

• s0 s1 . . . sn︸︷︷︸
= s0

is a stutter cycle if si si+1 is a stutter step

• For stutter cycle s0 s1 s2 . . . sn in transition system TS:

s0 ≈div
TS s1 ≈div

TS . . . ≈div
TS sn

• Corollary: for finite TS and state s in TS:

s is ≈div −divergent if and only if

a stutter cycle is reachable from s via a path in [s]div

c© JPK 47

Removal of stutter cycles: How?

1. Determine the SCCs in G(TS) that only contain stutter steps

• use depth-first search to find these strongly connected components (SCCs)

2. Collapse any stutter SCC into a single state

• C →′ C′ with C �= C ′ whenever s → s′ in TS with s ∈ C and s′ ∈ C′

⇒ Resulting TS′ has no stutter cycles

• s1 ≈TS s2 if and only if C1|{z}
s1∈C1

≈TS′ C2|{z}
s2∈C2

from now on, assume transition systems have no stutter cycles

c© JPK 48

A “local” splitter characterization
• C is a Π-splitter for B if and only if:

B �= C and B ∩ Pre∗
Π(C) �= ∅ and B \ Pre∗

Π(C) �= ∅

• How to avoid the computation of Pre∗
Π(C) for C ∈ Π?

• No stutter cycles ⇒ block B ∈ Π has at least one exit state

– exit state = a state with only direct successors outside B:

Bottom(B) =
n

s ∈ B | Post(s) ∩ B = ∅

o

• For finite TS without stutter cycles, C is a Π-splitter for B iff:

B �= C and B ∩ Pre(C) �= ∅ and Bottom(B) \ Pre(C) �= ∅

c© JPK 49

Time complexity

The partition-refinement algorithm to compute TS/≈
has a worst-case time complexity in O

“
|S| · (|AP| + M)

”

c© JPK 50

Approach

1. A quotienting algorithm to determine TS/≈:

• remove stutter cycles from TS
• a refine operator to efficiently split (blocks of) partitions
• exploit partition-refinement (as for bisimulation ∼)

⇒ A quotienting algorithm to determine TS/≈div:

• transform TS into a (divergence-sensitive) transition system TS
• TS is divergent-sensitive, i.e., ≈TS and ≈div

TS
coincide

• determine TS/≈ using the quotienting algorithm for ≈
• “distill” TS/≈div from TS/≈

c© JPK 51

Divergence expansion

Divergence-sensitive expansion of finite TS = (S, Act,→ , I, AP, L) is:

TS =
(
S ∪ { sdiv }, Act ∪ { τ },→, I, AP ∪ { div }, L)

where

• sdiv �∈ S

• → extends the transition relation of TS by:

– sdiv
τ→ sdiv and

– s
τ→ sdiv for every state s ∈ S on a stutter cycle in TS

• L(s) = L(s) if s ∈ S and L(sdiv) = { div }

sdiv �≈ s for any s ∈ S and sdiv can only be reached from a ≈div-divergent state

c© JPK 52

Example

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }

s3

∅

s2

{ a }
s0

{ a }
s1

{ a }

sdiv { div }

c© JPK 53

Correctness

For finite transition system TS:

1. TS is divergence-sensitive, and

2. for all s1, s2 ∈ S: s1 ≈div
TS s2 if and only if s1 ≈TS s2

c© JPK 54

Recipe for computing TS/≈div

1. Construct the divergence-sensitive expansion TS

• determine the SCCs in Gstutter(TS), and insert transitions sdiv → sdiv and
• s → sdiv for any state s in a non-trivial SCC of Gstutter

2. Apply partition-refinement to TS to obtain S/≈div
TS = S/ ≈TS

3. Generate TS/≈
• any C ∈ S/≈div that contains an initial state of TS is an initial state
• the labeling of C ∈ S/≈div equals the labeling of any s ∈ C

• any transition s → s′ with s �≈div
TS s′ yields a transition between Cs and Cs′

4. “Distill” TS/≈div from TS/≈:

• replace transition s → sdiv in TS by the self-loop [s]≈div → [s]≈div

• delete state sdiv

c© JPK 55

Time complexity

The quotient transition system TS/≈div can be determined

with a worst-case time complexity in O
“
|S| · (|AP|+M)

”

c© JPK 56

Summary

formal relation trace equivalence bisimulation simulation

complexity PSPACE-complete O(M · log |S|) O(M ·|S|)
logical fragment LTL CTL∗ ∀CTL∗

preservation strong strong match weak match

formal relation stutter trace equivalence divergence-sensitive
stutter bisimulation

complexity PSPACE-complete O(M ·|S|)
logical fragment LTL\© CTL∗

\©
preservation strong strong match

c© JPK 57

