
Partial-Order Reduction
Lecture #7 of Principles of Model Checking

Joost-Pieter Katoen

Software Modeling and Verification Group

affiliated to University of Twente, Formal Methods and Tools

University of Twente, October 3, 2012

c© JPK

Content of this lecture

• Independence of actions

– definition, permuting and adding independent (stutter) actions

• Ample set constraints

– definition, examples, justification, correctness

• Dynamic partial-order reduction

– nested depth-first search + integrated POR

• Branching-time ample set approach

– ample set constraints, correctness

c© JPK 1

Content of this lecture

⇒ Independence of actions

– definition, permuting and adding independent (stutter) actions

• Ample set constraints

– definition, examples, justification, correctness

• Dynamic partial-order reduction

– nested depth-first search + integrated POR

• Branching-time ample set approach

– ample set constraints, correctness

c© JPK 2

State space explosion

• Interleaving semantics

– independent concurrent actions are interleaved
– a run is defined by a totally ordered sequence of states

• Modeling concurrency by interleaving

– may enforce an order of actions that has no real “meaning”
– state space size = product of number of states of components (= explosion)

• Partial-order reduction

– group runs for which the order of “independent” actions is irrelevant
– consider only one representative run for equivalent runs

c© JPK 3

Two independent processes

c© JPK 4

A simple concurrent program

• Let x, y be local variables, g a shared variable, initially all zero

• Let ϕ be an LTL formula over AP = {x > 0 }

• Process P = x := 1; g := 11

• Process Q = while true do y := 2; g := 22 od

• Consider P ‖ Q

c© JPK 5

The program’s transition system

c© JPK 6

Action dependencies

• Assume

– x and y are local variables
– g is a shared variable

• Dependent

– g := 11 and g := 22 as they both operate on a shared variable
– x := 1 and g := 11 as they are both executed by the same process
– y := 1 and g := 22 as they are both executed by the same process

• Independent

– x := 1 and y := 1

– x := 1 and g := 22

– y := 1 and g := 11

c© JPK 7

Reduced transition system

c© JPK 8

Outline of partial-order reduction

• During state space generation obtain reduced T̂S with T̂S�TS

⇒ this preserves all LTL\© formulas
– at state s select a (small) subset of enabled actions in s

– which actions to select: fulfill ample set constraints

• Static partial-order reduction

– obtain a high-level description of T̂S (without generating TS)
⇒ POR is preprocessing phase of model checking

• Dynamic (or: on-the-fly) partial-order reduction

– construct T̂S “during” model checking
– if accept cycle is found, there is no need to generate entire T̂S

c© JPK 9

Stutter equivalence

• s → s′ in transition system TS is a stutter step if L(s) = L(s′)

• Paths π1 and π2 are stutter equivalent, denoted π1 � π2:

– if there exists an infinite sequence A0A1A2 . . . with Ai ⊆ AP and
– natural numbers n0, n1, n2, . . ., m0,m1,m2, . . . > 0 such that:

trace(π1) = A0 . . . A0︸ ︷︷ ︸
n0-times

A1 . . . A1︸ ︷︷ ︸
n1-times

A2 . . . A2︸ ︷︷ ︸
n2-times

. . .

trace(π2) = A0 . . . A0︸ ︷︷ ︸
m0-times

A1 . . . A1︸ ︷︷ ︸
m1-times

A2 . . . A2︸ ︷︷ ︸
m2-times

. . .

⇒ π1 �π2 if both their traces are of the form A0
+A1

+A2
+ . . . for Ai ⊆ AP

c© JPK 10

Preliminaries

• Assume from now on: TS is action-deterministic

– for any s and action α it holds s α−→u and s α−→ t implies u = t

– action-determinism is not a severe restriction: actions can always be renamed

• Act(s) is the set of enabled actions in state s

– Act(s) = {α ∈ Act | ∃s′ ∈ S. s α−→ s′ }

• α(s) denotes the unique α-successor of s, i.e., s α−−→α(s)

c© JPK 11

Action independence

αβ

s

t u

v

α β

• performing α does not disable β, and β does not disable α

• if α, β ∈ Act(s) then αβ and β α executed in s yield the same state

c© JPK 12

Action independence

Let TS = (S,Act,→, I,AP, L) be action-deterministic and α �= β ∈ Act

• An independence relation Ind ⊆ S × S is a irreflexive and symmetric
satisfying: for any s ∈ S with α, β ∈ Act(s):

β ∈ Act(α(s)) and α ∈ Act(β(s)) and α(β(s)) = β(α(s))

• α and β are independent if (α, β) ∈ Ind, dependent otherwise

• For A ⊆ Act and β ∈ Act \A:

– β is independent of A if for any α ∈ A, β is independent of α
– β depends on A otherwise

c© JPK 13

Example

c© JPK 14

Permuting independent actions

Let TS be action-deterministic, s a state in TS and:

s = s0
β1−−→ s1

β2−−→ . . .
βn−1−−−−→ sn−1

βn−−→ sn

be a finite run in TS from s with action sequence β1 . . . βn

Then, for α ∈ Act(s) independent of {β1, . . . , βn }: α ∈ Act(si) and

s = s0
α−−→α(s0)

β1−−→α(s1)
β2−−→ . . .

βn−1−−−−→α(sn−1)
βn−−→α(sn)

is a run in TS from s with action sequence αβ1 . . . βn

c© JPK 15

Pictorially

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

can be extended to

s = s0
β1 s1

β2 s2
β3

. . .
βn−1 sn−1

βn sn

tn = t

α

t0 β1
t1 β2

t2 β3
. . . βn−1

tn−1 βn

αααα

t0

α

c© JPK 16

Adding an independent action

Let TS be action-deterministic, s a state in TS and:

s = s0
β1−−→ s1

β2−−→ s2
β3−−→ . . .

an infinite run in TS with action sequence β1 β2 β3 . . .

Then, for α ∈ Act(s) independent of {β1, β2, . . . }: ∀i. α ∈ Act(si) and:

s = s0
α−−→α(s0)

β1−−→α(s1)
β2−−→α(s2)

β3−−→ . . .

is an infinite run in TS with action sequence αβ1 β2 β3 . . .

c© JPK 17

Stutter actions

• If no further assumptions are made, the traces of:

ρ = s0
β1−−→ s1

β2−−→ . . .
βn−−−→ sn

α−−→ t and

ρ′ = s0
α−−→ t0

β1−−→ . . .
βn−1−−−−→ tn−1

βn−−→ t

will be distinct!

• If α does not affect the state-labelling (= “invisible”), then ρ� ρ′

• α ∈ Act is a stutter action if for each s α−−→ s′ in TS: L(s) = L(s′)

– α is a stutter action whenever all transitions s α−→ s′ are stutter steps

c© JPK 18

Example

s0 { a }

s1{ a } s2 ∅

s3

∅

α

α
β

β

γ

c© JPK 19

Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:

• � is a finite run in s with action sequence β1 . . . βn α

• �′ is a finite run in s with action sequence αβ1 . . . βn

Then:

if α is a stutter action independent of {β1, . . . , βn } then �� �′

c© JPK 20

Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:

• ρ is an infinite run in s with action sequence β1 β2 . . .

• ρ′ is an infinite run in s with action sequence αβ1 β2 . . .

Then:

if α is a stutter action independent of {β1, β2, . . . } then ρ� ρ′

c© JPK 21

Content of this lecture

• Independence of actions

– definition, permuting and adding independent (stutter) actions

⇒ Ample set constraints

– definition, examples, justification, correctness

• Dynamic partial-order reduction

– nested depth-first search + integrated POR

• Branching-time ample set approach

– ample set constraints, correctness

c© JPK 22

The ample-set approach

• Partial-order reduction for LTL formulas using ample sets

– on state-space generation select ample(s) ⊆ Act(s)
– such that |ample(s)| << |Act(s)|

• Reduced system T̂S = (Ŝ,Act, ⇒ , I,AP, L′) where:

– Ŝ contains the states that are reachable (under ⇒) from some s0 ∈ I

–
s α−→ s

′ ∧ α ∈ ample(s)

s
α⇒ s

′

– L′(s) = L(s) for any s ∈ Ŝ

• Constraints: correctness (�), effectivity and efficiency

c© JPK 23

Which actions to select in ample(s)?

(A1) Nonemptiness condition

Select in any state in T̂S at least one action.

(A2) Dependency condition

For any finite run in TS: an action depending on ample(s) can only occur after
some action in ample(s) has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s.

(A4) Cycle condition

Any action in ample(si) with si on a cycle in T̂S must be selected in some sj on
that cycle.

(A1) through (A3) apply to states in Ŝ; (A4) to cycles in T̂S

c© JPK 24

Example

s1{ a } s0

∅

s3{ a } s2

∅

β βα

γ

α

γ

δ

δ

s0 ∅

s3{ a } s2

∅

β

α

γ

δ

c© JPK 25

Nonemptiness condition (A1)

∀s ∈ Ŝ. (∅ �= ample(s) ⊆ Act(s))

• If a state has at least one direct successor in TS,
then it has least at one direct successor in T̂S

⇒ As TS has no terminal states, T̂S has no terminal states

c© JPK 26

A naive dependency condition (A2’)

For any s ∈ Ŝ, ample(s) �= Act(s)

implies α ∈ ample(s) is independent of Act(s) \ ample(s)

c© JPK 27

A naive dependency condition (2)

s1

∅

s0 ∅

s3∅ s2 ∅

α α

β

β

δ

s4{ a }

δ

γ
s0 ∅

s3∅ s2 ∅

α

β

δ

TS 	|= �¬a whereas T̂S |= �¬a, so TS 	 � T̂S

c© JPK 28

Dependency condition (A2)

Let s β1−−→ s1
β2−−→ . . .

βn−−→ sn
α−−→ t be a finite run

in TS such that α depends on ample(s).

Then: βi ∈ ample(s) for some 0 < i � n.

• In every (!) finite run of TS, an action depending on ample(s) cannot
occur before some action from ample(s) occurs first

• (A2) ensures that for any state s with ample(s) ⊂ Act(s),
any α ∈ ample(s) is independent of Act(s) \ ample(s)

c© JPK 29

Example

s1

∅

s0 ∅

s3∅ s2 ∅

α α

β

β

δ

s4{ a }

δ

γ
s0 ∅

s3∅ s2 ∅

α

β

δ

run s0
β−→ s1

γ−→ s4 violates (A2) as γ depends on α ∈ ample(s0)

c© JPK 30

Properties

• (A2) guarantees that any finite run in TS is of the form:

� = s1
β1−−→ s2

β2−−→ . . .
βn−−→ sn

α−−→ t with α ∈ ample(s)

and βi independent of ample(s) for 0 < i � n.

– if α is a stutter action: shifting α to the beginning yields an equivalent run
⇒ if � is pruned in TS, then a run is obtained by first taking α in s

• (A2) guarantees that any infinite run in TS is of the form:

s1
β1−−→ s2

β2−−→ . . . with βi independent of ample(s) for 0 < i � n.

– performing stutter action α ∈ ample(s) in s yields an equivalent run

c© JPK 31

Properties

For any α ∈ ample(s) and s ∈ Reach(TS):

if ample(s) satisfies (A2) then α is independent of Act(s) \ ample(s)

For finite run s = s0
β1−−→ . . .

βn−−→ sn in TS:

if ample(s) satisfies (A2) and {β1, . . . , βn } ∩ ample(s) = ∅, then:

α is independent of {β1, . . . , βn } and α ∈ Act(si) for 0 � i � n

c© JPK 32

Stutter condition (A3)

If ample(s) �= Act(s) then any α ∈ ample(s) is a stutter action.

• All ample actions of a non-fully expanded state are stutter actions

• (A3) ensures that:

– changing β1 , . . . βn α into αβ1 . . . βn, and
– changing β1 β2 β3 . . . into αβ1 β2 β3 . . .

yields stutter-equivalent runs

c© JPK 33

Consequence of (A1) through (A3)

Let � be a finite run in Reach(TS) of the form

s
β1−−→ s1

β2−−→ . . .
βn−−→ sn

α−−→ t

where βi /∈ ample(s), for 0 < i � n, and α ∈ ample(s).

If ample(s) satisfies (A1) through (A3), then there exists an run �′:

s
α⇒ t0

β1−−→ t1
β2−−→ . . .

βn−1−−−−→ tn−1
βn−−→ t

such that � � �′

c© JPK 34

Consequence of (A1) through (A3)

Let ρ = s
β1−−→ s1

β2−−→ s2
β3−−→ . . . be an infinite run in Reach(TS) where

βi /∈ ample(s), for i > 0.

If ample(s) satisfies (A1) through (A3), then there exists a run ρ′:

s
α⇒ t0

β1−−→ t1
β2−−→ t2

β3−−→ . . .

where α ∈ ample(s) and ρ � ρ′

c© JPK 35

Necessity of cycle condition: example (1)

s0 ∅

s1 { a }

β

γ

t0 ∅

t1∅ t2 ∅
α2

α3α1

transition systems TS1 and TS2

c© JPK 36

Necessity of cycle condition: example (2)

〈s0, t0〉 ∅

〈s0, t1〉∅ 〈s0, t2〉 ∅
α2

α3

α1

〈s1, t0〉 { a }

〈s1, t1〉{ a } 〈s1, t2〉 { a }α2

α3

α1

β β

β

γ

γ

γ

〈s0, t0〉 ∅

〈s0, t1〉∅ 〈s0, t2〉 ∅
α2

α3

α1

TS1 ||| TS2︸ ︷︷ ︸
left

	|= �¬a but ̂TS1 ||| TS2︸ ︷︷ ︸
right

|= �¬a

c© JPK 37

Cycle condition (A4)

For any cycle s0 s1 . . . sn in T̂S and α ∈ Act(si), for some 0 < i � n,

there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

any enabled action in some state on a cycle must be selected in some state on that cycle

c© JPK 38

Overview of ample-set conditions

(A1) Nonemptiness condition

∅ 	= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . .

βn−−→ sn
α−→ t be a finite run in TS such that α depends on

ample(s). Then: βi ∈ ample(s) for some 0 < i � n.

(A3) Stutter condition

If ample(s) 	= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition

For any cycle s0 s1 . . . sn in T̂S and α ∈ Act(si), for some 0 < i � n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

c© JPK 39

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A4) are satisfied, then T̂S � TS.

as Traces(T̂S) ⊆ Traces(TS), it follows T̂S� TS

proof sketch of reverse direction in lecture notes

c© JPK 40

Reduction satisfies ample set constraints

c© JPK 41

Content of this lecture

• Independence of actions

– definition, permuting and adding independent (stutter) actions

• Ample set constraints

– definition, examples, justification, correctness

⇒ Dynamic partial-order reduction

– nested depth-first search + integrated POR

• Branching-time ample set approach

– ample set constraints, correctness

c© JPK 42

Strong cycle condition (A4’)

On any cycle s0 s1 . . . sn in T̂S,

there exists j ∈ { 1, . . . , n } such that ample(sj) = Act(sj).

• If (A1) through (A3) hold: (A4’) implies the cycle condition (A4)

• (A4’) can be checked easily in DFS when backward edge is found

c© JPK 43

Invariant checking with POR

• Invariant checking

– on state space generation, check whether each state satisfies prop. formula Φ

– on finding a refuting state, (reversed) stack content yields counterexample

• Incorporating partial order reduction

– on encountering a new state, compute ample set satisfying (A1) through (A3)
– e.g., ample(s) = Act(Pi), enabled actions of a concurrent process
– enlarge ample(s) on demand using the strong cycle condition (A4’)
– mark actions to keep track of which actions have been taken

c© JPK 44

Example

Process 0:

while true {
�0 : skip;

m0 : wait until (¬b) {
n0 : . . . critical section . . .}

b := true;

}

Process 1:

while true {
�1 : skip;

m1 : wait until (b) {
n1 : . . . critical section . . .}

b := false;

}

c© JPK 45

Transition system

〈�0, �1,¬b〉〈�0,m1,¬b〉

〈m0, �1,¬b〉〈m0,m1,¬b〉

〈n0, �1,¬b〉
{ a }

〈n0,m1,¬b〉
{ a }

〈�0, �1, b〉 〈m0, �1, b〉

〈�0,m1, b〉 〈m0,m1, b〉

〈�0, n1, b〉
{ a }

〈m0, n1, b〉
{ a }

α1

α1

α1

δ1

δ0 δ0

δ1

β0

δ1

β0

α0

α0

α0

δ0

δ1δ1

δ0

β1

δ0

β1

γ0

γ1

γ1

γ0

c© JPK 46

Reduced transition system

〈�0, �1,¬b〉

〈m0, �1,¬b〉〈m0,m1,¬b〉

〈n0,m1,¬b〉
{ a }

〈�0, �1, b〉

〈�0,m1, b〉 〈m0,m1, b〉

〈m0, n1, b〉
{ a }

α1

α1

δ0

δ1

β0

α0

α0

δ1

δ0

β1

γ0

γ1

c© JPK 47

Experimental results

Benchmark TS T̂S

states transition ver. time states transitions ver. time

sieve 10878 35594 1.68 157 157 0.08

data transfer 251049 648467 32.2 16459 17603 1.47
protocol

snoopy 164258 546805 33.6 29796 44145 3.58
(cache coherence)

file transfer 514188 1138750 123.4 125595 191466 18.6
protocol

partial-order reduction works fine for asynchronous systems

c© JPK 48

Checking ample set conditions

• Nonemptiness condition (A1):

– check whether process Pi can perform an action in state s

• Stutter condition (A3):

– α is a stutter action if the atomic propositions of s and α(s)

– do not refer to a variable that is modified by α, nor

• Strong cycle condition (A4’):

– fully expand s if during its inner DFS a backward edge is found

• Dependency condition (A2): Hard!

c© JPK 49

Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite,

action-deterministic TS equals that of checking TS′ |= ∃� a

for some a ∈ AP where size(TS′) ∈ O(size(TS))

c© JPK 50

Overapproximating dependencies

• Actions that refer to the same variable are dependent

– but x := y + 1 and x := y + z are not

• Actions that modify the same variable are dependent

– but x := z + y and x := z are not, if they are never enabled when y 	= 0

• Actions that belong to the same process are dependent

• Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation D ⊆ Act × Act

c© JPK 51

Content of this lecture

• Independence of actions

– definition, permuting and adding independent (stutter) actions

• Ample set constraints

– definition, examples, justification, correctness

• Dynamic partial-order reduction

– nested depth-first search + integrated POR

⇒ Branching-time ample set approach

– ample set constraints, correctness

c© JPK 52

The branching-time ample approach

• Linear-time ample approach:

– during state space generation obtain T̂S such that T̂S� TS
⇒ this preserves all stutter sensitive LT properties, such as LTL\©

– static partial order reduction: generate T̂S prior to verification
– on-the-fly partial order reduction: generate T̂S during the verification
– generation of T̂S by means of static analysis of program graphs

• Branching-time ample approach

– during state space generation obtain T̂S such that T̂S ≈div TS
⇒ this preserves all CTL\© and CTL∗

\© formulas
– static partial order reduction only

as ≈div is strictly finer than � , try (A1) through (A4)

c© JPK 53

Example

s0s1

s2

s3

s4

u

s5

γ

α

β

α α

δ

γ
β

δ δ

γ
β

τ
τ

τ τ

transition system TS, note α(s0) 	≈div β(s0) 	≈div γ(s0)

c© JPK 54

Conditions (A1)-(A4) are insufficient

c© JPK 55

Branching condition (A5)

If ample(s) �= Act(s) then |ample(s)| = 1

c© JPK 56

A sound reduction for CTL∗
\©

s0

u

α

δ

γ
β

δ δ

γ
β

τ
τ

τ τ

T̂S �|= ∀�
(
a → (∀�b ∨ ∀�c

))
and TS does not ;in fact T̂S ≈div TS

c© JPK 57

Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A5) are satisfied, then T̂S ≈div TS.

recall that this implies that T̂S and TS are CTL∗
\© -equivalent

c© JPK 58

Ample-set conditions for CTL∗

(A1) Nonemptiness condition

∅ 	= ample(s) ⊆ Act(s)

(A2) Dependency condition

Let s
β1−−→ . . .

βn−−→ sn
α−→ t be a finite run in TS such that α depends on

ample(s). Then: βi ∈ ample(s) for some 0 < i � n.

(A3) Stutter condition

If ample(s) 	= Act(s) then any α ∈ ample(s) is a stutter action.

(A4) Cycle condition

For any cycle s0 s1 . . . sn in T̂S and α ∈ Act(si), for some 0 < i � n,
there exists j ∈ { 1, . . . , n } such that α ∈ ample(sj).

(A5) Branching condition

If ample(s) 	= Act(s) then |ample(s)| = 1

c© JPK 59

