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Content of this lecture
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— definition, examples, justification, correctness
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— nested depth-first search + integrated POR

e Branching-time ample set approach

— ample set constraints, correctness
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State space explosion

¢ Interleaving semantics

— independent concurrent actions are interleaved
— arun is defined by a totally ordered sequence of states

e Modeling concurrency by interleaving

— may enforce an order of actions that has no real “meaning”
— state space size = product of number of states of components (= explosion)

e Partial-order reduction

— group runs for which the order of “independent” actions is irrelevant
— consider only one representative run for equivalent runs
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Two independent processes
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A simple concurrent program

e Let x,y be local variables, g a shared variable, initially all zero
e Let p be an LTL formula over AP = {x >0}

e Process P = z:=1;9g:=11

e Process () = whiletruedo y:=2;¢g:= 22 od

e Consider P || Q
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The program’s transition system
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e Assume

Action dependencies

— x and y are local variables
— g is a shared variable

e Dependent

_g:
X .

_y:

11 and g := 22 as they both operate on a shared variable

landg :
landg :

e Independent

I :
X .
Yy

landy :
landg :
landg :

11 as they are both executed by the same process
22 as they are both executed by the same process

22
11
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Reduced transition system
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Outline of partial-order reduction

e During state space generation obtain reduced TS with TS2 TS

= this preserves all LTL\~ formulas
— at state s select a (small) subset of enabled actions in s
— which actions to select: fulfill ample set constraints

e Static partial-order reduction

— obtain a high-level description of TS (without generating TS)
= POR is preprocessing phase of model checking

e Dynamic (or: on-the-fly) partial-order reduction

— construct TS “during” model checking
— if accept cycle is found, there is no need to generate entire TS

© JPK 9



Stutter equivalence

e s — s’ intransition system TS is a stutter step if L(s) = L(s')

e Paths 7; and m, are stutter equivalent, denoted m; = mo:

— if there exists an infinite sequence AyAAs ... with A, C AP and

— natural numbers ng, n1, na, ..., mg, my, ms, ... > 0 such that:
trace(ﬂ'1> = AOAQ\AlALAQA%

nO-Eirmes nl-Eirmes nQ-Eirmes
trace(ma) = Ao...AgAi.. AL Ay...Ay...

N N \

mo-times mj-times myo-times

= 1 = 7y if both their traces are of the form AoTA, TA,T ... for A, C AP
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Preliminaries

e Assume from now on: TS is action-deterministic

— for any s and action « it holds s = v and s — t implies u = t
— action-determinism is not a severe restriction: actions can always be renamed

e Act(s) is the set of enabled actions in state s

— Act(s) ={a €Act|3ds'€ S.s 25"}

e «(s) denotes the unique a-successor of s, i.e., s == a(s)
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Action independence

e performing « does not disable 3, and 5 does not disable «

o if o, 5 € Act(s) then a 5 and 3 a executed in s yield the same state
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Action independence

Let TS = (S, Act, —, I, AP, L) be action-deterministic and o # g € Act

e An independence relation Ind C S x S Is a irreflexive and symmetric
satisfying: for any s € S with «, 5 € Act(s):

B e Act(a(s)) and «a € Act(B(s)) and «a(B(s)) = Bla(s))

e o and g are independent if (a, 8) € Ind, dependent otherwise

e For A C Actand g € Act \ A:

— pBisindependent of A if forany o € A, 3 is independent of «
— 3 depends on A otherwise
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Permuting independent actions

Let TS be action-deterministic, s a state in TS and:

51>31 ba, . %sn_lﬂwn

S = S0
be a finite run In TS from s with action sequence 5; ... 05,

Then, for o € Act(s) independent of { 51,..., 05, }: « € Act(s;) and

s = 50— alsg) 2 asy) 22 .. P, a(sn_1) 22 a(sy)

ISarunin TS from s with action sequence a 51 ... 5,
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Pictorially
S— B1 - s B2 .S Bz Bn-_1 s 4 Bn s
(0
to can be extended to
o pr . B2 . B3 Pooa, g B o
(0 a (0 (0 (0
t -t -t ——t, g t, =t
° Bt B2 7 B3 Bn1 "~ PBn
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Adding an independent action

Let TS be action-deterministic, s a state in TS and:

Bl)Sl B2>824>63

S = S0
an infinite run in TS with action sequence 51 35 3. ..

Then, for o € Act(s) independent of { 51, 5o, ... }: Vi.a € Act(s;) and:

s = 80— alsg) -2 aus1) 225 a(se) 2 ...

IS an infinite run in TS with action sequence o 51 32 85 . ..
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Stutter actions

e If no further assumptions are made, the traces of:

pzsoﬁ s L2y Pny o %5 ¢t and
I a B1 Pn—1 Bn
p = So — to —— ... — tp1 +—

will be distinct!

e If o does not affect the state-labelling (= “invisible”), then p = p’

e « € Actis a stutter action if for each s = s"in TS: L(s) = L(s')

— « is a stutter action whenever all transitions s -2+ s’ are stutter steps
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Permuting independent stutter actions

Let TS be action-deterministic, s a state in TS and:
e o is a finite run in s with action sequence 3, ... 3, «
e ¢’ is afinite run in s with action sequence a 51 ... 3,

Then:

if o is a stutter action independent of { 51, ..., 3, } then o= ¢’
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Adding an independent stutter action

Let TS be action-deterministic, s a state in TS and:
e p IS an infinite run in s with action sequence 31 5. ..
e o' is an infinite run in s with action sequence o 31 35 . ..

Then:

if o is a stutter action independent of { 51, B2,... } then p = p’
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Content of this lecture

e Independence of actions

— definition, permuting and adding independent (stutter) actions

= Ample set constraints

— definition, examples, justification, correctness

e Dynamic partial-order reduction

— nested depth-first search + integrated POR

e Branching-time ample set approach

— ample set constraints, correctness
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The ample-set approach

e Partial-order reduction for LTL formulas using ample sets

— on state-space generation select ample(s) C Act(s)
— such that |ample(s)| << |Act(s)]

e Reduced system TS = (§, Act, =, I, AP, L") where:

— S contains the states that are reachable (under =) from some sg € 1

s s A a € ample(s)

o

/
S—/> S8

— L'(s) = L(s)forany s € S

e Constraints: correctness (£ ), effectivity and efficiency
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Which actions to select in ample(s)?

(A1) Nonemptiness condition

Select in any state in TS at least one action.
(A2) Dependency condition

For any finite run in TS: an action depending on ample(s) can only occur after
some action in ample(s) has occurred.

(A3) Stutter condition

If not all actions in s are selected, then only select stutter actions in s.
(A4) Cycle condition

Any action in ample(s;) with s; on a cycle in TS must be selected in some s; on
that cycle.

(Al) through (A3) apply to states in S; (A4) to cycles in TS
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Example

© JPK 25



Nonemptiness condition (Al)

Vs € S. (@ # ample(s) C Act(s))

e |f a state has at least one direct successor i/n\TS,
then it has least at one direct successorin TS

= AS TS has no terminal states, 'Fé has no terminal states
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A naive dependency condition (A2")

Forany s € S, ample(s) # Act(s)

implies o € ample(s) is independent of Act(s) \ ample(s)
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A naive dependency condition (2)
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Dependency condition (A2)

Let s Plys, P2y Pnyg 2y pe afinite run

in TS such that o depends on ample(s).

Then: §; € ample(s) forsome 0 < i < n

e In every (!) finite run of TS, an action depending on ample(s) cannot
occur before some action from ample(s) occurs first

e (A2) ensures that for any state s with ample(s) C Act(s),
any o € ample(s) is independent of Act(s) \ ample(s)
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Example

%]
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run so 25 s; X s, violates (A2) as v depends on a € ample(sg)
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Properties

e (A2) guarantees that any finite run in TS is of the form:

Oy gy L2y Pnyg 2ot with o € ample(s)

0 = 51

and 5; independent of ample(s) for 0 < i < n.

— iIf « Is a stutter action: shifting « to the beginning yields an equivalent run
= if pis pruned in TS, then a run is obtained by first taking « in s

e (A2) guarantees that any infinite run in TS is of the form:

s1 25 5o P25 . with 8; independent of ample(s) for 0 < i < n.

— performing stutter action o € ample(s) in s yields an equivalent run
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Properties

For any a € ample(s) and s € Reach(TS):

If ample(s) satisfies (A2) then « is independent of Act(s) \ ample(s)

For finite run s = s 2% ... P2y 5 inTS:

If ample(s) satisfies (A2) and { 31, ..., 5, } Nample(s) = @, then:
a is independentof { 81,...,6, } and a € Act(s;) for0 <i < n
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Stutter condition (A3)

If ample(s) # Act(s) then any o € ample(s) is a stutter action.

e All ample actions of a non-fully expanded state are stutter actions

e (A3) ensures that:

— changing 81,... Bpaintoa By ... B,, and
— changing 81 B2 B3 ...intoaB1 B2 B3 ...

yields stutter-equivalent runs
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Consequence of (Al) through (A3)

Let o be a finite run in Reach(TS) of the form

s Py g B2y 0 Py oy

where 3; ¢ ample(s), for 0 < i < n, and o € ample(s).
If ample(s) satisfies (A1) through (A3), then there exists an run o’

Bay  Pnoiyy Bugy

s== 1o Pl

such that| o = ¢’
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Consequence of (Al) through (A3)

Let p = s 51>31 62>32 B, . pe an infinite run in Reach(TS) where
B; ¢ ample(s), for ¢ > 0.
If ample(s) satisfies (A1) through (A3), then there exists a run p’:

Séto Bl)tl 62>t2 B3>...

where o € ample(s) and| p = p/
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transition systems TS; and TS,
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0l
TS, ||| TSy b O—a but TS, ||| TS, = O-a
Ig?t ri?grht
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Cycle condition (A4)

For any cycle sgs1 ... s, 1IN TSand a e Act(s;), for some 0 < ¢ < n,

there exists j € {1,...,n} such that o € ample(s,).

any enabled action in some state on a cycle must be selected in some state on that cycle
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(A1)

(A2)

(A3)

(A4)

Overview of ample-set conditions

Nonemptiness condition

@ # ample(s) C Act(s)

Dependency condition

Let s 2Ly . by s, -2s+ be a finite run in TS such that o depends on
ample(s). Then: 8, € ample(s) forsome 0 < i < n.

Stutter condition

If ample(s) # Act(s) then any @ € ample(s) is a stutter action.
Cycle condition

For any cycle sgs1 ... s, 1IN TS and o € Act(s;), forsome 0 < i < n,
there exists j € { 1,...,n } such that o € ample(s;).
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Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (Al) through (A4) are satisfied, then TS 2 TS.

as Traces(T/§) C Traces(TS), it follows TS TS

proof sketch of reverse direction in lecture notes

© JPK
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Reduction satisfies ample set constraints
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Content of this lecture

e Independence of actions

— definition, permuting and adding independent (stutter) actions

e Ample set constraints

— definition, examples, justification, correctness

= Dynamic partial-order reduction

— nested depth-first search + integrated POR

e Branching-time ample set approach

— ample set constraints, correctness
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Strong cycle condition (A4’)

On any cycle sgs1 ... s, IN 'fé,

there exists j € {1,...,n } such that ample(s;) = Act(s,).

e If (Al) through (A3) hold: (A4’) implies the cycle condition (A4)

e (A4’) can be checked easily in DFS when backward edge is found

© JPK
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Invariant checking with POR

e Invariant checking

— on state space generation, check whether each state satisfies prop. formula ®
— on finding a refuting state, (reversed) stack content yields counterexample

e Incorporating partial order reduction

— 0n encountering a new state, compute ample set satisfying (Al) through (A3)
— e.g., ample(s) = Act(P;), enabled actions of a concurrent process

— enlarge ample(s) on demand using the strong cycle condition (A4’)

— mark actions to keep track of which actions have been taken
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Example
Process 0: Process 1:
while true { while true {
skip; : skip;
mq : wait until (—b) { mi : wait until (b) {
ng : .. . Critical section . . .} ni : ... Critical section . . .}
b := true; b .= false;
} }

© JPK 45



Transition system
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Reduced transition system

875
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Experimental results

—

Benchmark TS TS

states transition ver. time states transitions ver. time
sieve 10878 35594 1.68 157 157 0.08
data transfer 251049 648467 32.2 16459 17603 1.47
protocol
snoopy 164258 546805 33.6 29796 44145 3.58
(cache coherence)
file transfer 514188 1138750 123.4 125595 191466 18.6
protocol

partial-order reduction works fine for asynchronous systems
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Checking ample set conditions

e Nonemptiness condition (Al):

— check whether process P, can perform an action in state s

e Stutter condition (A3):

— « Is a stutter action if the atomic propositions of s and «(s)
— do not refer to a variable that is modified by «, nor

e Strong cycle condition (A4’):

— fully expand s if during its inner DFS a backward edge is found

e Dependency condition (A2):

Hard!

© JPK
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Complexity of checking (A2)

The worst case time complexity of checking (A2) in finite,
action-deterministic TS equals that of checking TS’ |= 3¢ a
for some a € AP where size(TS") € O(size(TS))
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Overapproximating dependencies

e Actions that refer to the same variable are dependent

— butz :=y+ 1and x := y + z are not

e Actions that modify the same variable are dependent

— butxz := z + y and x := z are not, if they are never enabled when y # 0
e Actions that belong to the same process are dependent

e Handshake actions depend on all actions in both processes

this yields a (conservative) dependency relation D C Act x Act
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The branching-time ample approach

e Linear-time ample approach:

— during state space generation obtain TS such that TS2 TS
= this preserves all stutter sensitive LT properties, such as LTL\
— static partial order reduction: generate TS prior to verification
— on-the-fly partial order reduction: generate TS during the verification
— generation of TS by means of static analysis of program graphs

e Branching-time ample approach

— during state space generation obtain TS such that TS ~% TS
= this preserves all CTL, and CTL{, formulas
— static partial order reduction only

as =~ is strictly finer than £, try (A1) through (A4)
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transition system TS, note a(so) & B(so) £ ~(so)

© JPK
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TS = VD(a — (VObV v<>c)) but TSdoesnot andthus TS %% TS
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Branching condition (Ab5)

If ample(s) # Act(s) then |ample(s)| = 1
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A sound reduction for CTLTO
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TS £ VD(a — (VObV v<>c)) and TS does not ;in fact TS ~™ TS
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Correctness theorem

For action-deterministic, finite TS without terminal states:

if conditions (A1) through (A5) are satisfied, then TS ~%v TS,

recall that this implies that TS and TS are CTLiO -equivalent

© JPK
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(A1)

(A2)

(A3)

(A4)

(A5)

Ample-set conditions for CTL"

Nonemptiness condition
o # ample(s) C Act(s)
Dependency condition
Let s s .. bny g, %5+ be a finite run in TS such that « depends on
ample(s). Then: 3; € ample(s) for some 0 < i < n.

Stutter condition

If ample(s) # Act(s) then any @ € ample(s) is a stutter action.
Cycle condition

For any cycle sgps1 ... s, iN TS and o € Act(s;), forsome 0 < 7 < n,
there exists j € {1,...,n } such that « € ample(s;).

Branching condition

If ample(s) # Act(s) then |ample(s)| = 1
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