

Reachability Probabilities in Markov Chains

Joost-Pieter Katoen

RWTH Aachen University
Software Modeling and Verification Group

University of Twente
Formal Methods and Tools Group

Lecture #8, Principles of Model Checking 2012

October 3, 2012

Overview

- 1 Motivation
- 2 What are discrete-time Markov chains?
- 3 Reachability probabilities

Probabilities help

- ▶ When analysing system performance and dependability
 - ▶ to quantify arrivals, waiting times, time between failure, QoS, ...

Probabilities help

- ▶ When analysing system performance and dependability
 - ▶ to quantify arrivals, waiting times, time between failure, QoS, ...
- ▶ When modelling unreliable and unpredictable system behavior
 - ▶ to quantify message loss, processor failure
 - ▶ to quantify unpredictable delays, express soft deadlines, ...

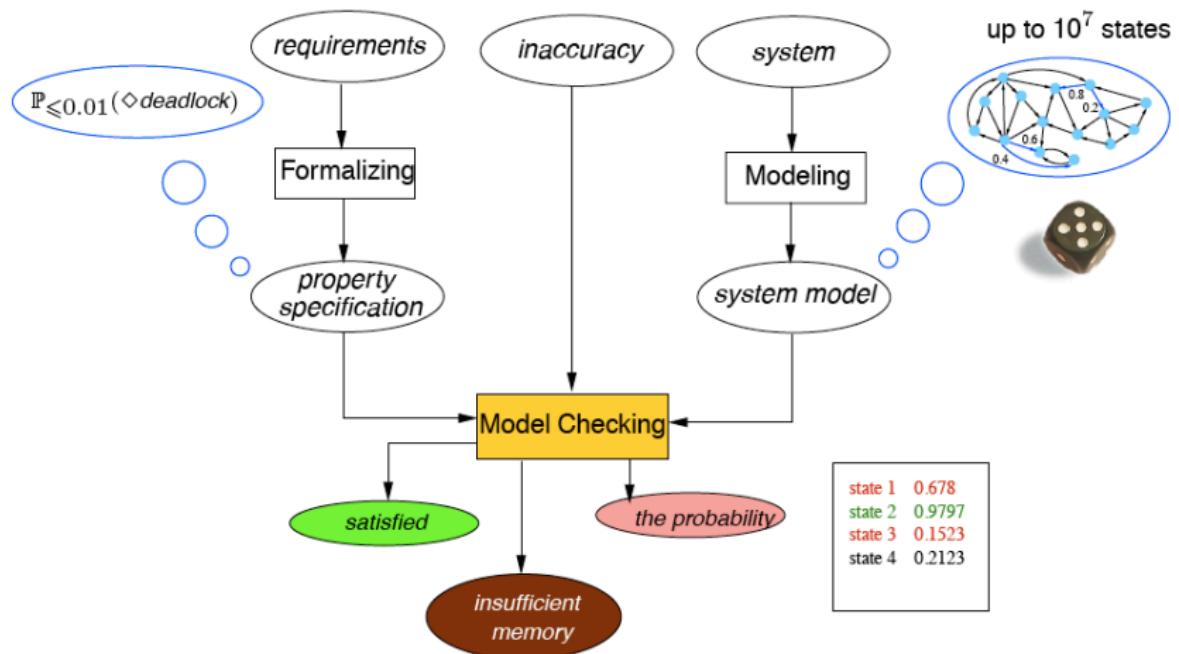
Probabilities help

- ▶ When analysing system performance and dependability
 - ▶ to quantify arrivals, waiting times, time between failure, QoS, ...
- ▶ When modelling unreliable and unpredictable system behavior
 - ▶ to quantify message loss, processor failure
 - ▶ to quantify unpredictable delays, express soft deadlines, ...
- ▶ When building protocols for networked embedded systems
 - ▶ randomized algorithms

Probabilities help

- ▶ When analysing system performance and dependability
 - ▶ to quantify arrivals, waiting times, time between failure, QoS, ...
- ▶ When modelling unreliable and unpredictable system behavior
 - ▶ to quantify message loss, processor failure
 - ▶ to quantify unpredictable delays, express soft deadlines, ...
- ▶ When building protocols for networked embedded systems
 - ▶ randomized algorithms
- ▶ When problems are undecidable deterministically
 - ▶ repeated reachability of lossy channel systems, ...

What is probabilistic model checking?



Probabilistic models

	Nondeterminism no	Nondeterminism yes
Discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
Continuous time	CTMC	CTMDP

Some other models: probabilistic variants of (priced) timed automata

Probability theory is simple, isn't it?

*In no other branch of mathematics
is it so easy to make mistakes
as in probability theory*

Henk Tijms, "Understanding Probability" (2004)

Overview

- 1 Motivation
- 2 What are discrete-time Markov chains?
- 3 Reachability probabilities

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- ▶ AP is a set of **atomic propositions**.

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- ▶ AP is a set of **atomic propositions**.
- ▶ $L : S \rightarrow 2^{AP}$, the **labeling function**, assigning to state s , the set $L(s)$ of atomic propositions that are valid in s .

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

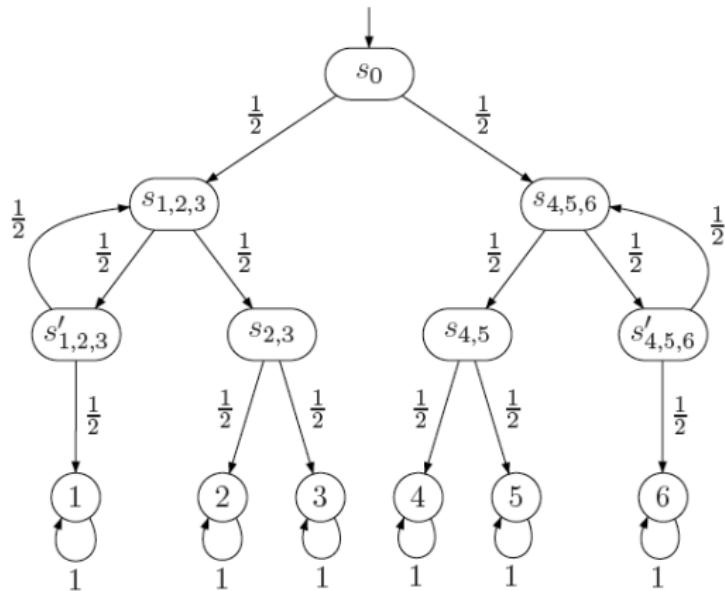
- ▶ S is a countable nonempty set of **states**
- ▶ $\mathbf{P} : S \times S \rightarrow [0, 1]$, **transition probability function** s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ▶ $\iota_{\text{init}} : S \rightarrow [0, 1]$, the **initial distribution** with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$
- ▶ AP is a set of **atomic propositions**.
- ▶ $L : S \rightarrow 2^{AP}$, the **labeling function**, assigning to state s , the set $L(s)$ of atomic propositions that are valid in s .

Initial states

- ▶ $\iota_{\text{init}}(s)$ is the probability that DTMC \mathcal{D} starts in state s
- ▶ the set $\{ s \in S \mid \iota_{\text{init}}(s) > 0 \}$ are the possible **initial states**.

Simulating a die by a fair coin

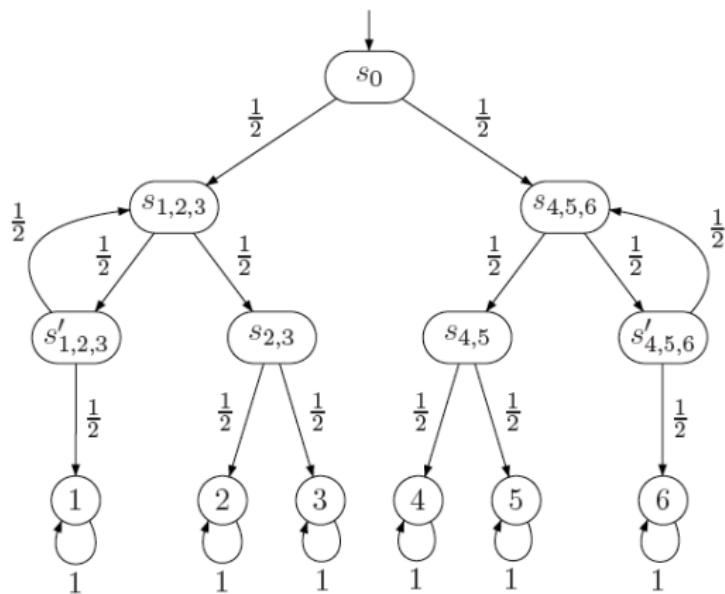
[Knuth & Yao]



Heads = “go left”; tails = “go right”.

Simulating a die by a fair coin

[Knuth & Yao]



Heads = “go left”; tails = “go right”. Does this DTMC model a six-sided die?

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to **stay** in state s :

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to **stay** in state s :

$$Pr\{ T_s = 1 \} = 1 - \mathbf{P}(s, s)$$

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to **stay** in state s :

$$Pr\{ T_s = 1 \} = 1 - \mathbf{P}(s, s)$$

$$Pr\{ T_s = 2 \} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to **stay** in state s :

$$Pr\{ T_s = 1 \} = 1 - \mathbf{P}(s, s)$$

$$Pr\{ T_s = 2 \} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$

.....

$$Pr\{ T_s = \textcolor{blue}{n} \} = \mathbf{P}(s, s)^{\textcolor{blue}{n}-1} \cdot (1 - \mathbf{P}(s, s))$$

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to *stay* in state s :

$$\Pr\{ T_s = 1 \} = 1 - \mathbf{P}(s, s)$$

$$\Pr\{ T_s = 2 \} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$

.....

$$\Pr\{ T_s = \textcolor{blue}{n} \} = \mathbf{P}(s, s)^{\textcolor{blue}{n}-1} \cdot (1 - \mathbf{P}(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution.

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to *stay* in state s :

$$Pr\{ T_s = 1 \} = 1 - \mathbf{P}(s, s)$$

$$Pr\{ T_s = 2 \} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$

.....

$$Pr\{ T_s = n \} = \mathbf{P}(s, s)^{n-1} \cdot (1 - \mathbf{P}(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution.

The expected number of time steps to stay in state s equals $E[T_s] = \frac{1}{1 - \mathbf{P}(s, s)}$.

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to *stay* in state s :

$$Pr\{ T_s = 1 \} = 1 - \mathbf{P}(s, s)$$

$$Pr\{ T_s = 2 \} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$

.....

$$Pr\{ T_s = n \} = \mathbf{P}(s, s)^{n-1} \cdot (1 - \mathbf{P}(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution.

The expected number of time steps to stay in state s equals $E[T_s] = \frac{1}{1 - \mathbf{P}(s, s)}$.

The variance of the residence time distribution is $Var[T_s] = \frac{\mathbf{P}(s, s)}{(1 - \mathbf{P}(s, s))^2}$.

State residence time distribution

Let T_s be the number of epochs of DTMC \mathcal{D} to *stay* in state s :

$$Pr\{ T_s = 1 \} = 1 - \mathbf{P}(s, s)$$

$$Pr\{ T_s = 2 \} = \mathbf{P}(s, s) \cdot (1 - \mathbf{P}(s, s))$$

.....

$$Pr\{ T_s = n \} = \mathbf{P}(s, s)^{n-1} \cdot (1 - \mathbf{P}(s, s))$$

So, the state residence times in a DTMC obey a *geometric* distribution.

The expected number of time steps to stay in state s equals $E[T_s] = \frac{1}{1 - \mathbf{P}(s, s)}$.

The variance of the residence time distribution is $Var[T_s] = \frac{\mathbf{P}(s, s)}{(1 - \mathbf{P}(s, s))^2}$.

A geometric distribution is the *only* discrete probability distribution that is memoryless.

Determining n -step transition probabilities

n -step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1 \quad \text{if } s = s', \quad \text{and } 0 \text{ otherwise,}$$

Determining n -step transition probabilities

n -step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1 \quad \text{if } s = s', \quad \text{and 0 otherwise,}$$

$$p_{s,s'}(1) = \mathbf{P}(s, s'),$$

Determining n -step transition probabilities

n -step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1 \quad \text{if } s = s', \quad \text{and 0 otherwise,}$$

$p_{s,s'}(1) = \mathbf{P}(s, s')$, and for $n > 1$ by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l) \quad \text{for all } 0 < l < n$$

Determining n -step transition probabilities

n -step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1 \quad \text{if } s = s', \quad \text{and 0 otherwise,}$$

$p_{s,s'}(1) = \mathbf{P}(s, s')$, and for $n > 1$ by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l) \quad \text{for all } 0 < l < n$$

For $l = 1$ and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

Determining n -step transition probabilities

n -step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1 \quad \text{if } s = s', \quad \text{and 0 otherwise,}$$

$p_{s,s'}(1) = \mathbf{P}(s, s')$, and for $n > 1$ by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l) \quad \text{for all } 0 < l < n$$

For $l = 1$ and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

$$\mathbf{P}^{(n)} = \mathbf{P}^{(1)} \cdot \mathbf{P}^{(n-1)}$$

Determining n -step transition probabilities

n -step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1 \quad \text{if } s = s', \quad \text{and 0 otherwise,}$$

$p_{s,s'}(1) = \mathbf{P}(s, s')$, and for $n > 1$ by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l) \quad \text{for all } 0 < l < n$$

For $l = 1$ and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

$\mathbf{P}^{(n)} = \mathbf{P}^{(1)} \cdot \mathbf{P}^{(n-1)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)}$ is the n -step transition probability matrix

Determining n -step transition probabilities

n -step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1 \quad \text{if } s = s', \quad \text{and 0 otherwise,}$$

$p_{s,s'}(1) = \mathbf{P}(s, s')$, and for $n > 1$ by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l) \quad \text{for all } 0 < l < n$$

For $l = 1$ and $n > 0$ we obtain: $p_{s,s'}(n) = \sum_{s''} p_{s,s''}(1) \cdot p_{s'',s'}(n-1)$

$\mathbf{P}^{(n)} = \mathbf{P}^{(1)} \cdot \mathbf{P}^{(n-1)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)}$ is the n -step transition probability matrix

Repeating this scheme: $\mathbf{P}^{(n)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)} = \dots = \mathbf{P}^{n-1} \cdot \mathbf{P}^{(1)} = \mathbf{P}^n$.

Transient probability distribution

Transient distribution

$P^n(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s .

Transient probability distribution

Transient distribution

$\mathbf{P}^n(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s .

The probability of DTMC \mathcal{D} being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$$

Transient probability distribution

Transient distribution

$\mathbf{P}^n(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s .

The probability of DTMC \mathcal{D} being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$$

$\Theta_n^{\mathcal{D}}(t)$ is called the *transient state probability* at epoch n for state t . The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch n of DTMC \mathcal{D} .

Transient probability distribution

Transient distribution

$\mathbf{P}^n(s, t)$ equals the probability of being in state t after n steps given that the computation starts in s .

The probability of DTMC \mathcal{D} being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$$

$\Theta_n^{\mathcal{D}}(t)$ is called the *transient state probability* at epoch n for state t . The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch n of DTMC \mathcal{D} .

When considering $\Theta_n^{\mathcal{D}}$ as vector $(\Theta_n^{\mathcal{D}})_{t \in S}$ we have:

$$\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \dots \cdot \mathbf{P}}_{n \text{ times}} = \iota_{\text{init}} \cdot \mathbf{P}^n.$$

Overview

- 1 Motivation
- 2 What are discrete-time Markov chains?
- 3 Reachability probabilities

Aim of today's lecture

How to determine **reachability** probabilities?

Aim of today's lecture

How to determine **reachability** probabilities?

Three major steps

1. What are reachability probabilities?

Aim of today's lecture

How to determine **reachability** probabilities?

Three major steps

1. What are reachability probabilities? I mean, **precisely**.

Aim of today's lecture

How to determine **reachability** probabilities?

Three major steps

1. What are reachability probabilities? I mean, **precisely**.
This requires a bit of **measure theory**.

Aim of today's lecture

How to determine **reachability** probabilities?

Three major steps

1. What are reachability probabilities? I mean, **precisely**.
This requires a bit of **measure theory**. Sorry for that.

Aim of today's lecture

How to determine **reachability** probabilities?

Three major steps

1. What are reachability probabilities? I mean, **precisely**.
This requires a bit of **measure theory**. Sorry for that.
2. Reachability probabilities = unique solution of linear equation system.

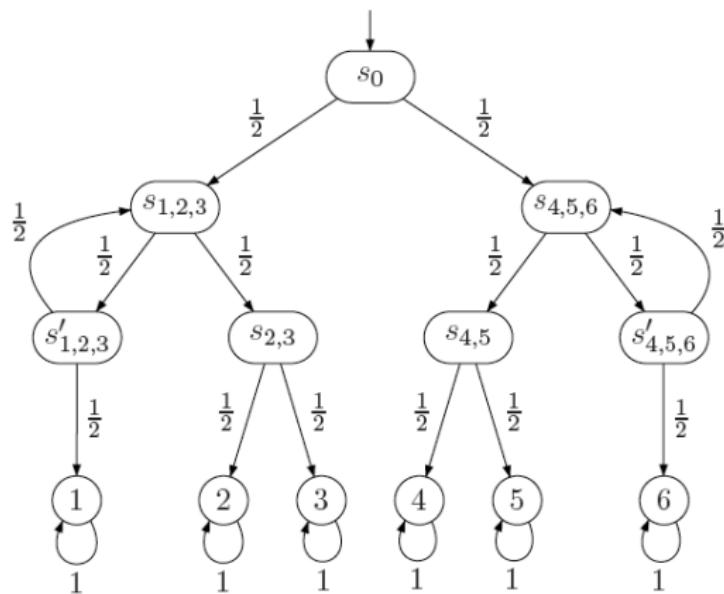
Aim of today's lecture

How to determine **reachability** probabilities?

Three major steps

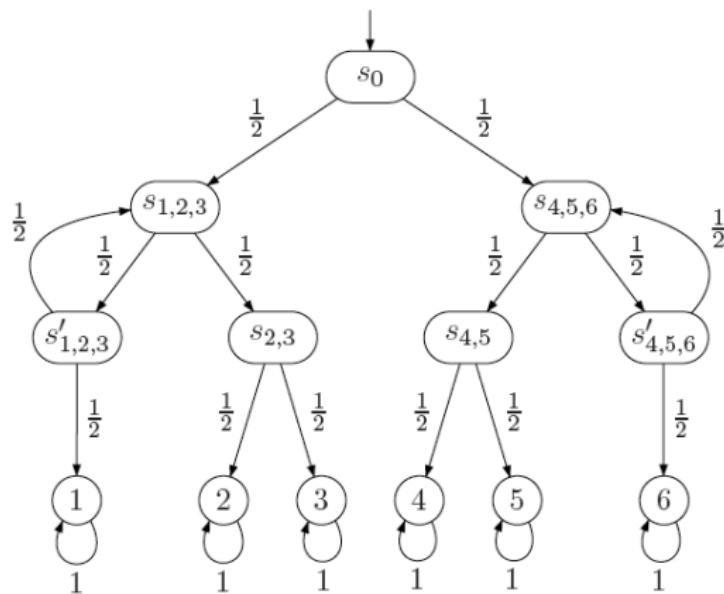
1. What are reachability probabilities? I mean, **precisely**.
This requires a bit of **measure theory**. Sorry for that.
2. Reachability probabilities = unique solution of linear equation system.
3. ... and they are transient probabilities in a slightly modified DTMC.

Recall Knuth's die



Heads = “go left”; tails = “go right”.

Recall Knuth's die



Heads = “go left”; tails = “go right”. Does this DTMC model a six-sided die?

Paths

State graph

The *state graph* of DTMC \mathcal{D} is a digraph $G = (V, E)$ with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let $Pre(s)$ be the *predecessors* of s , $Pre^*(s)$ its reflexive and transitive closure.

Paths

State graph

The *state graph* of DTMC \mathcal{D} is a digraph $G = (V, E)$ with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let $Pre(s)$ be the *predecessors* of s , $Pre^*(s)$ its reflexive and transitive closure.

Paths

Paths in \mathcal{D} are infinite paths in its state graph.

Paths

State graph

The *state graph* of DTMC \mathcal{D} is a digraph $G = (V, E)$ with V the states of \mathcal{D} , and $(s, s') \in E$ iff $\mathbf{P}(s, s') > 0$.

Let $Pre(s)$ be the *predecessors* of s , $Pre^*(s)$ its reflexive and transitive closure.

Paths

Paths in \mathcal{D} are infinite paths in its state graph.

$Paths(\mathcal{D})$ denotes the set of paths in \mathcal{D} , and $Paths^*(\mathcal{D})$ its finite prefixes.

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

(Simple) reachability

Eventually reach a state in $\textcolor{blue}{G} \subseteq S$.

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

(Simple) reachability

Eventually reach a state in $\textcolor{blue}{G} \subseteq S$. Formally:

$$\Diamond \textcolor{blue}{G} = \{ \pi \in \textit{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \}$$

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

(Simple) reachability

Eventually reach a state in $\textcolor{blue}{G} \subseteq S$. Formally:

$$\Diamond \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \}$$

Invariance, i.e., always stay in state in $\textcolor{blue}{G}$:

$$\Box \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \} = \overline{\Diamond \overline{\textcolor{blue}{G}}}.$$

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

(Simple) reachability

Eventually reach a state in $\textcolor{blue}{G} \subseteq S$. Formally:

$$\Diamond \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \}$$

Invariance, i.e., always stay in state in $\textcolor{blue}{G}$:

$$\Box \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \} = \overline{\Diamond \overline{\textcolor{blue}{G}}}.$$

Constrained reachability

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

(Simple) reachability

Eventually reach a state in $\textcolor{blue}{G} \subseteq S$. Formally:

$$\Diamond \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \}$$

Invariance, i.e., always stay in state in $\textcolor{blue}{G}$:

$$\Box \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \} = \overline{\Diamond \overline{\textcolor{blue}{G}}}.$$

Constrained reachability

Or “reach-avoid” properties where states in $\textcolor{red}{F} \subseteq S$ are forbidden:

Some events of interest

Let DTMC \mathcal{D} with (possibly infinite) state space S .

(Simple) reachability

Eventually reach a state in $\textcolor{blue}{G} \subseteq S$. Formally:

$$\Diamond \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \}$$

Invariance, i.e., always stay in state in $\textcolor{blue}{G}$:

$$\Box \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \} = \overline{\Diamond \overline{\textcolor{blue}{G}}}.$$

Constrained reachability

Or “reach-avoid” properties where states in $\textcolor{red}{F} \subseteq S$ are forbidden:

$$\overline{\textcolor{red}{F}} \cup \textcolor{blue}{G} = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \pi[i] \in \textcolor{blue}{G} \wedge \forall j < i. \pi[j] \notin \textcolor{red}{F} \}$$

More events of interest

Repeated reachability

Repeatedly visit a state in G ; formally:

$$\square \Diamond G = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \exists j \geq i. \pi[j] \in G \}$$

More events of interest

Repeated reachability

Repeatedly visit a state in G ; formally:

$$\square \diamond G = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N}. \exists j \geq i. \pi[j] \in G \}$$

Persistence

Eventually reach in a state in G and always stay there; formally:

$$\diamond \square G = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \forall j \geq i. \pi[j] \in G \}$$

What's the probability of infinite paths?



Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a **probability space** over its paths.

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a **probability space** over its paths.

Intuition

For a given state s in DTMC \mathcal{D} :

- ▶ Outcomes := set of all infinite paths starting in s .

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a **probability space** over its paths.

Intuition

For a given state s in DTMC \mathcal{D} :

- ▶ Outcomes := set of all infinite paths starting in s .
- ▶ Events := subsets of these outcomes.

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a **probability space** over its paths.

Intuition

For a given state s in DTMC \mathcal{D} :

- ▶ Outcomes := set of all infinite paths starting in s .
- ▶ Events := subsets of these outcomes.
- ▶ These events are defined using **cylinder sets**.

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define a **probability space** over its paths.

Intuition

For a given state s in DTMC \mathcal{D} :

- ▶ Outcomes := set of all infinite paths starting in s .
- ▶ Events := subsets of these outcomes.
- ▶ These events are defined using **cylinder sets**.
- ▶ Cylinder set of a finite path := set of all its infinite continuations.

Probability measure on DTMCs

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure on DTMCs

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

The cylinder set spanned by finite path $\hat{\pi}$ thus consists of all infinite paths that have prefix $\hat{\pi}$.

Probability measure on DTMCs

Cylinder set

The *cylinder set* of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

The cylinder set spanned by finite path $\hat{\pi}$ thus consists of all infinite paths that have prefix $\hat{\pi}$.

Probability space of a DTMC

The set of events of the probability space DTMC \mathcal{D} contains all cylinder sets $\text{Cyl}(\hat{\pi})$ where $\hat{\pi}$ ranges over all finite paths in \mathcal{D} .

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$Cyl(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique *probability measure* defined by:

$$Pr(Cyl(s_0 \dots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 s_1 \dots s_n)$$

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique *probability measure* defined by:

$$Pr(\text{Cyl}(s_0 \dots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 s_1 \dots s_n)$$

where $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$ for $n > 0$

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path $\hat{\pi} = s_0 s_1 \dots s_n \in \text{Paths}^*(\mathcal{D})$ is defined by:

$$\text{Cyl}(\hat{\pi}) = \{ \pi \in \text{Paths}(\mathcal{D}) \mid \hat{\pi} \text{ is a prefix of } \pi \}$$

Probability measure

Pr is the unique *probability measure* defined by:

$$Pr(\text{Cyl}(s_0 \dots s_n)) = \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 s_1 \dots s_n)$$

where $\mathbf{P}(s_0 s_1 \dots s_n) = \prod_{0 \leq i < n} \mathbf{P}(s_i, s_{i+1})$ for $n > 0$ and $\mathbf{P}(s_0) = \iota_{\text{init}}(s_0)$.

Measurability

Measurability

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are **measurable** on any DTMC.

Measurability

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are **measurable** on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets! — of a DTMC.

Measurability

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are **measurable** on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets! — of a DTMC.

Note that $\Box G = \overline{\Diamond \overline{G}}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

Measurability

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are **measurable** on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets! — of a DTMC.

Note that $\Box G = \overline{\Diamond \overline{G}}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

It remains to prove the measurability for the remaining three cases.

Measurability

Measurability theorem

Events $\Diamond G$, $\Box G$, $\overline{F} \cup G$, $\Box \Diamond G$ and $\Diamond \Box G$ are **measurable** on any DTMC.

Proof:

To show this, every event has to be expressed as allowed operations (complement and/or countable unions) of the events — our cylinder sets! — of a DTMC.

Note that $\Box G = \overline{\Diamond \overline{G}}$ and $\Diamond \Box G = \overline{\Box \Diamond \overline{G}}$.

It remains to prove the measurability for the remaining three cases.

Proof for $\Diamond G$

Which event does $\Diamond G$ exactly mean?

Proof for $\Diamond G$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

Proof for $\Diamond G$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Proof for $\Diamond G$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\Diamond G$ is measurable.

Proof for $\Diamond G$

Which event does $\Diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\Diamond G = \bigcup_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\Diamond G$ is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

$$Pr(\Diamond G) = \sum_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n))$$

Proof for $\diamond G$

Which event does $\diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\diamond G = \bigcup_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\diamond G$ is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

$$\begin{aligned} Pr(\diamond G) &= \sum_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n)) \\ &= \sum_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 \dots s_n) \end{aligned}$$

Proof for $\diamond G$

Which event does $\diamond G$ exactly mean?

the union of all cylinders $Cyl(s_0 \dots s_n)$ where

$s_0 \dots s_n$ is a finite path in \mathcal{D} with $s_0, \dots, s_{n-1} \notin G$ and $s_n \in G$, i.e.,

$$\diamond G = \bigcup_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Cyl(s_0 \dots s_n)$$

Thus $\diamond G$ is measurable.

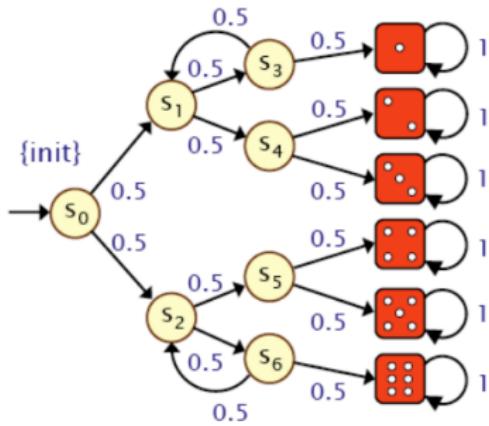
As all cylinder sets are pairwise disjoint, its probability is defined by:

$$\begin{aligned} Pr(\diamond G) &= \sum_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} Pr(Cyl(s_0 \dots s_n)) \\ &= \sum_{s_0 \dots s_n \in \text{Paths}^*(\mathcal{D}) \cap (S \setminus G)^* G} \iota_{\text{init}}(s_0) \cdot \mathbf{P}(s_0 \dots s_n) \end{aligned}$$

A similar proof strategy applies to the case $\overline{F} \cup G$.

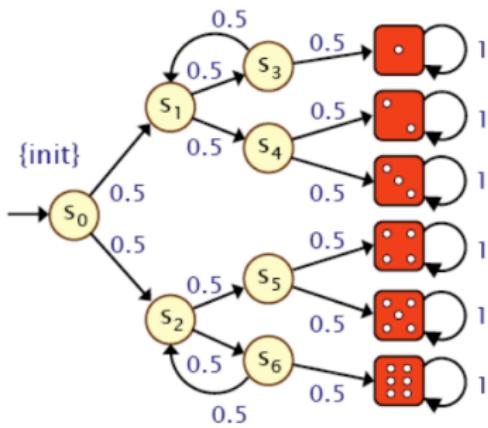
Reachability probabilities: Knuth's die

► Consider the event $\Diamond 4$



Reachability probabilities: Knuth's die

- ▶ Consider the event $\Diamond 4$
- ▶ Using the previous theorem we obtain:



$$Pr(\Diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus \{4\})^* 4} \mathbf{P}(s_0 \dots s_n)$$

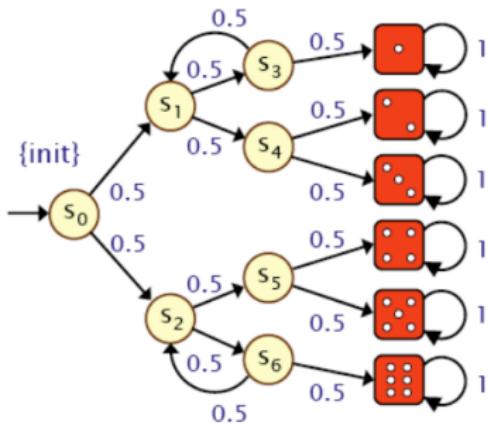
Reachability probabilities: Knuth's die

- ▶ Consider the event $\diamond 4$
- ▶ Using the previous theorem we obtain:

$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus \{4\})^* 4} \mathbf{P}(s_0 \dots s_n)$$

- ▶ This yields:

$$\mathbf{P}(s_0 s_2 s_5 4) + \mathbf{P}(s_0 s_2 s_6 s_2 s_5 4) + \dots \dots$$

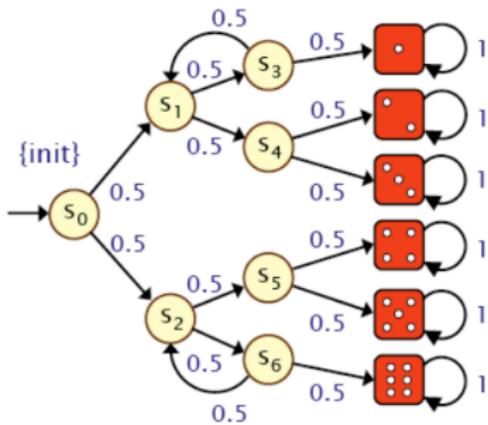


Reachability probabilities: Knuth's die

- ▶ Consider the event $\diamond 4$
- ▶ Using the previous theorem we obtain:

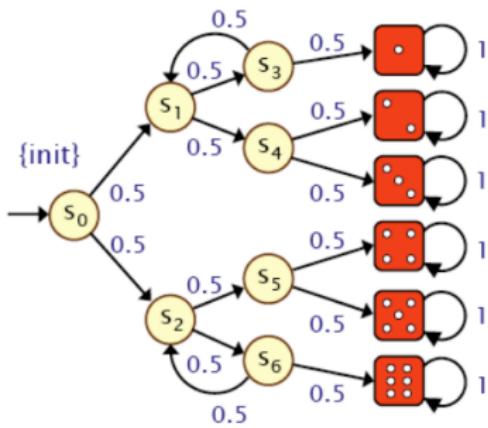
$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus \{4\})^* 4} \mathbf{P}(s_0 \dots s_n)$$

- ▶ This yields:
- $\mathbf{P}(s_0 s_2 s_5 4) + \mathbf{P}(s_0 s_2 s_6 s_2 s_5 4) + \dots \dots$
- ▶ Or: $\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$



Reachability probabilities: Knuth's die

- ▶ Consider the event $\diamond 4$
- ▶ Using the previous theorem we obtain:



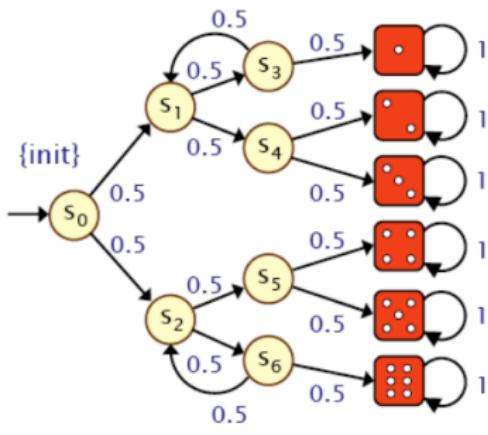
$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus \{4\})^* 4} \mathbf{P}(s_0 \dots s_n)$$

- ▶ This yields:

$$\mathbf{P}(s_0 s_2 s_5 4) + \mathbf{P}(s_0 s_2 s_6 s_2 s_5 4) + \dots \dots$$
- ▶ Or:
$$\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$$
- ▶ Or:
$$\frac{1}{8} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$$

Reachability probabilities: Knuth's die

- ▶ Consider the event $\diamond 4$
- ▶ Using the previous theorem we obtain:

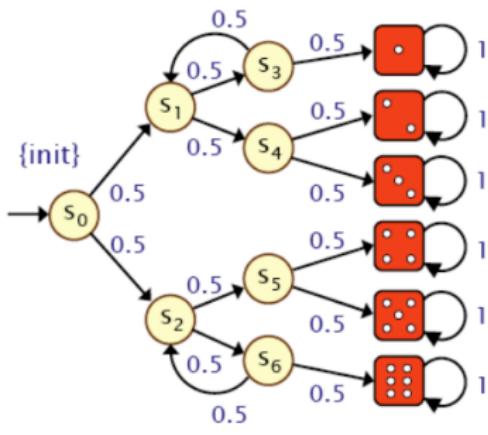


$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus \{4\})^* 4} \mathbf{P}(s_0 \dots s_n)$$

- ▶ This yields: $\mathbf{P}(s_0 s_2 s_5 4) + \mathbf{P}(s_0 s_2 s_6 s_2 s_5 4) + \dots \dots$
- ▶ Or: $\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$
- ▶ Or: $\frac{1}{8} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$
- ▶ Geometric series: $\frac{1}{8} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{8} \cdot \frac{4}{3} = \frac{1}{6}$

Reachability probabilities: Knuth's die

- ▶ Consider the event $\diamond 4$
- ▶ Using the previous theorem we obtain:



$$Pr(\diamond 4) = \sum_{s_0 \dots s_n \in (S \setminus \{4\})^* 4} \mathbf{P}(s_0 \dots s_n)$$

- ▶ This yields: $\mathbf{P}(s_0 s_2 s_5 4) + \mathbf{P}(s_0 s_2 s_6 s_2 s_5 4) + \dots \dots$
- ▶ Or: $\sum_{k=0}^{\infty} \mathbf{P}(s_0 s_2 (s_6 s_2)^k s_5 4)$
- ▶ Or: $\frac{1}{8} \cdot \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k$
- ▶ Geometric series: $\frac{1}{8} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{8} \cdot \frac{4}{3} = \frac{1}{6}$

There is however an **simpler** way to obtain reachability probabilities!

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Aim: determine $Pr(s \models \Diamond \textcolor{blue}{G}) = Pr_s(\Diamond \textcolor{blue}{G})$

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Aim: determine $Pr(s \models \Diamond \textcolor{blue}{G}) = Pr_s(\Diamond \textcolor{blue}{G}) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond \textcolor{blue}{G}\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Aim: determine $Pr(s \models \Diamond \textcolor{blue}{G}) = Pr_s(\Diamond \textcolor{blue}{G}) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond \textcolor{blue}{G}\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Characterisation of reachability probabilities

- ▶ Let variable $x_s = Pr(s \models \Diamond \textcolor{blue}{G})$ for any state s

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Aim: determine $Pr(s \models \Diamond \textcolor{blue}{G}) = Pr_s(\Diamond \textcolor{blue}{G}) = Pr_s\{\pi \in Paths(s) \mid \pi \in \Diamond \textcolor{blue}{G}\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Characterisation of reachability probabilities

- ▶ Let variable $x_s = Pr(s \models \Diamond \textcolor{blue}{G})$ for any state s
 - ▶ if $\textcolor{blue}{G}$ is not reachable from s , then $x_s = 0$

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Aim: determine $Pr(s \models \Diamond \textcolor{blue}{G}) = Pr_s(\Diamond \textcolor{blue}{G}) = Pr_s\{\pi \in \text{Paths}(s) \mid \pi \in \Diamond \textcolor{blue}{G}\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Characterisation of reachability probabilities

- ▶ Let variable $x_s = Pr(s \models \Diamond \textcolor{blue}{G})$ for any state s
 - ▶ if $\textcolor{blue}{G}$ is not reachable from s , then $x_s = 0$
 - ▶ if $s \in \textcolor{blue}{G}$ then $x_s = 1$

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Aim: determine $Pr(s \models \diamond \textcolor{blue}{G}) = Pr_s(\diamond \textcolor{blue}{G}) = Pr_s\{\pi \in \text{Paths}(s) \mid \pi \in \diamond \textcolor{blue}{G}\}$

where Pr_s is the probability measure in \mathcal{D} with single initial state s .

Characterisation of reachability probabilities

- ▶ Let variable $x_s = Pr(s \models \diamond \textcolor{blue}{G})$ for any state s
 - ▶ if $\textcolor{blue}{G}$ is not reachable from s , then $x_s = 0$
 - ▶ if $s \in \textcolor{blue}{G}$ then $x_s = 1$
- ▶ For any state $s \in \text{Pre}^*(\textcolor{blue}{G}) \setminus \textcolor{blue}{G}$:

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space S , $s \in S$ and $\textcolor{blue}{G} \subseteq S$.

Aim: determine $Pr(s \models \diamond \textcolor{blue}{G}) = Pr_s(\diamond \textcolor{blue}{G}) = Pr_s\{\pi \in \text{Paths}(s) \mid \pi \in \diamond \textcolor{blue}{G}\}$
 where Pr_s is the probability measure in \mathcal{D} with single initial state s .

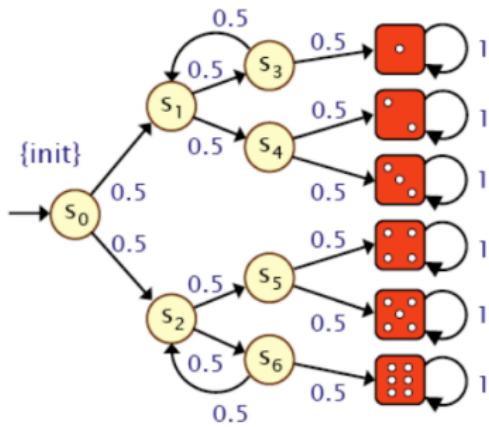
Characterisation of reachability probabilities

- ▶ Let variable $x_s = Pr(s \models \diamond \textcolor{blue}{G})$ for any state s
 - ▶ if $\textcolor{blue}{G}$ is not reachable from s , then $x_s = 0$
 - ▶ if $s \in \textcolor{blue}{G}$ then $x_s = 1$
- ▶ For any state $s \in \text{Pre}^*(\textcolor{blue}{G}) \setminus \textcolor{blue}{G}$:

$$x_s = \underbrace{\sum_{t \in S \setminus \textcolor{blue}{G}} \mathbf{P}(s, t) \cdot x_t}_{\text{reach } \textcolor{blue}{G} \text{ via } t \in S \setminus \textcolor{blue}{G}} + \underbrace{\sum_{u \in \textcolor{blue}{G}} \mathbf{P}(s, u)}_{\text{reach } \textcolor{blue}{G} \text{ in one step}}$$

Reachability probabilities: Knuth's die

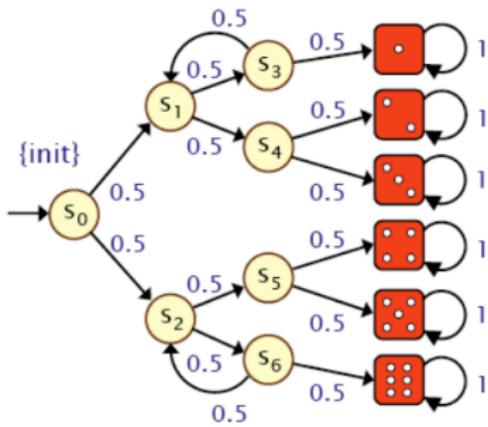
- ▶ Consider the event $\diamond 4$



Reachability probabilities: Knuth's die

- ▶ Consider the event $\Diamond 4$
- ▶ Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1$$

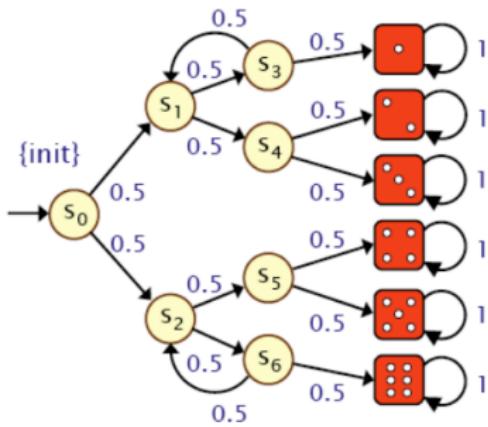


Reachability probabilities: Knuth's die

- ▶ Consider the event $\Diamond 4$
- ▶ Using the previous characterisation we obtain:

$x_1 = x_2 = x_3 = x_5 = x_6 = 0$ and $x_4 = 1$

$x_{s_1} = x_{s_3} = x_{s_4} = 0$



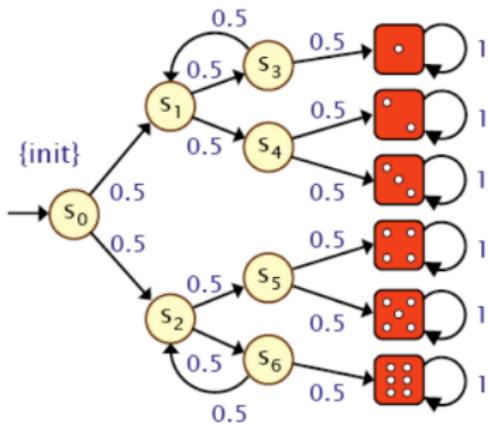
Reachability probabilities: Knuth's die

- ▶ Consider the event $\Diamond 4$
- ▶ Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1$$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$



Reachability probabilities: Knuth's die

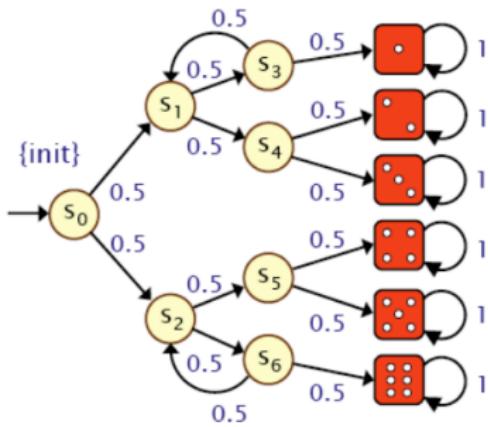
- ▶ Consider the event $\Diamond 4$
- ▶ Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1$$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$

$$x_{s_2} = \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6}$$



Reachability probabilities: Knuth's die

- ▶ Consider the event $\Diamond 4$
- ▶ Using the previous characterisation we obtain:

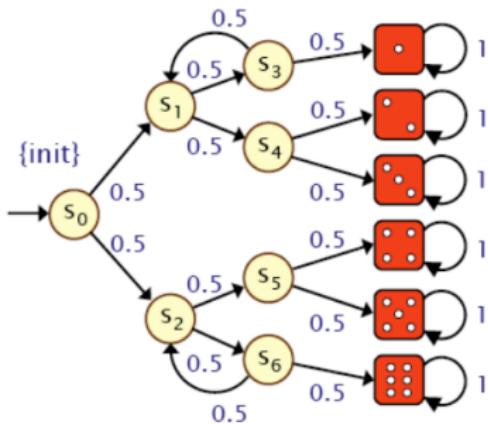
$x_1 = x_2 = x_3 = x_5 = x_6 = 0$ and $x_4 = 1$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$

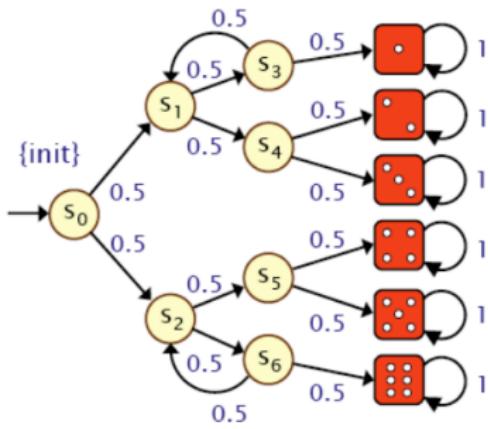
$$x_{s_2} = \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6}$$

$$x_{s_5} = \frac{1}{2}x_5 + \frac{1}{2}x_4$$



Reachability probabilities: Knuth's die

- ▶ Consider the event $\Diamond 4$
- ▶ Using the previous characterisation we obtain:



$$x_1 = x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1$$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$

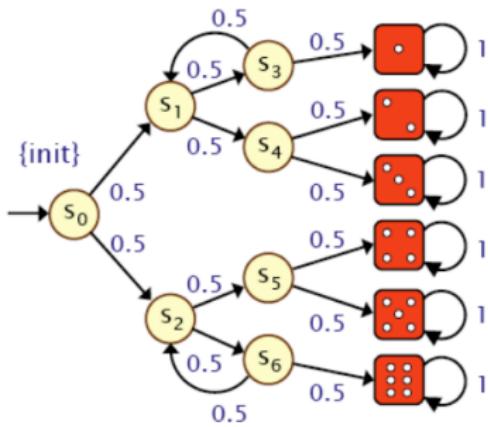
$$x_{s_2} = \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6}$$

$$x_{s_5} = \frac{1}{2}x_5 + \frac{1}{2}x_4$$

$$x_{s_6} = \frac{1}{2}x_{s_2} + \frac{1}{2}x_6$$

Reachability probabilities: Knuth's die

- ▶ Consider the event $\diamond 4$
- ▶ Using the previous characterisation we obtain:



$$x_1 = x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1$$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$

$$x_{s_2} = \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6}$$

$$x_{s_5} = \frac{1}{2}x_5 + \frac{1}{2}x_4$$

$$x_{s_6} = \frac{1}{2}x_{s_2} + \frac{1}{2}x_6$$

- ▶ Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}, x_{s_2} = \frac{1}{3}, x_{s_6} = \frac{1}{6}, \text{ and } \boxed{x_{s_0} = \frac{1}{6}}$$

Linear equation system

Reachability probabilities as linear equation system

Linear equation system

Reachability probabilities as linear equation system

- ▶ Let $S_? = \text{Pre}^*(G) \setminus G$, the states that can reach G by > 0 steps

Linear equation system

Reachability probabilities as linear equation system

- ▶ Let $S_? = \text{Pre}^*(G) \setminus G$, the states that can reach G by > 0 steps
- ▶ $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?}$, the transition probabilities in $S_?$

Linear equation system

Reachability probabilities as linear equation system

- ▶ Let $S_? = \text{Pre}^*(G) \setminus G$, the states that can reach G by > 0 steps
- ▶ $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?}$, the transition probabilities in $S_?$
- ▶ $\mathbf{b} = (b_s)_{s \in S_?}$, the probs to reach G in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

Linear equation system

Reachability probabilities as linear equation system

- ▶ Let $S_? = \text{Pre}^*(G) \setminus G$, the states that can reach G by > 0 steps
- ▶ $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?}$, the transition probabilities in $S_?$
- ▶ $\mathbf{b} = (b_s)_{s \in S_?}$, the probs to reach G in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

Then: $\mathbf{x} = (x_s)_{s \in S_?}$ with $x_s = \Pr(s \models \Diamond G)$ is the **unique** solution of:

Linear equation system

Reachability probabilities as linear equation system

- ▶ Let $S_? = \text{Pre}^*(G) \setminus G$, the states that can reach G by > 0 steps
- ▶ $\mathbf{A} = (\mathbf{P}(s, t))_{s, t \in S_?}$, the transition probabilities in $S_?$
- ▶ $\mathbf{b} = (b_s)_{s \in S_?}$, the probs to reach G in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

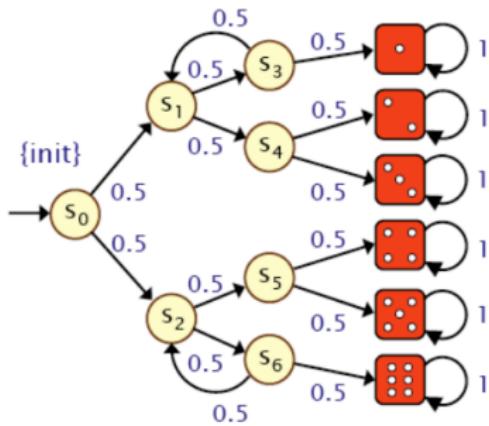
Then: $\mathbf{x} = (x_s)_{s \in S_?}$ with $x_s = \Pr(s \models \Diamond G)$ is the **unique** solution of:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{b} \quad \text{or} \quad (\mathbf{I} - \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$$

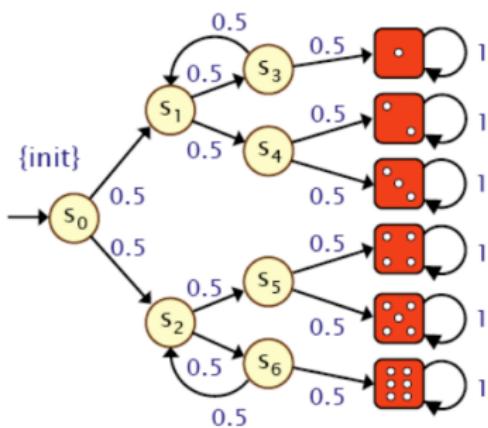
where \mathbf{I} is the identity matrix of cardinality $|S_?| \times |S_?|$.

Reachability probabilities: Knuth's die

► Consider the event $\diamond 4$

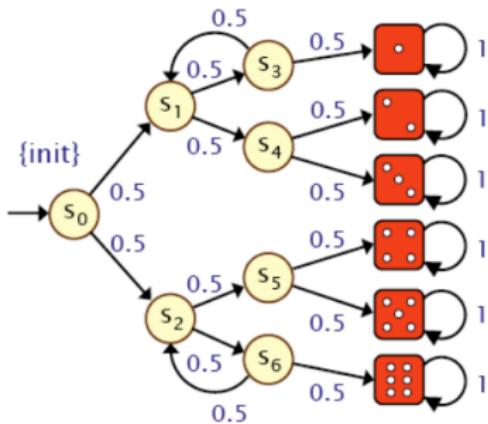


Reachability probabilities: Knuth's die



- ▶ Consider the event $\diamond 4$
- ▶ $S_? = \{ s_0, s_2, s_5, s_6 \}$

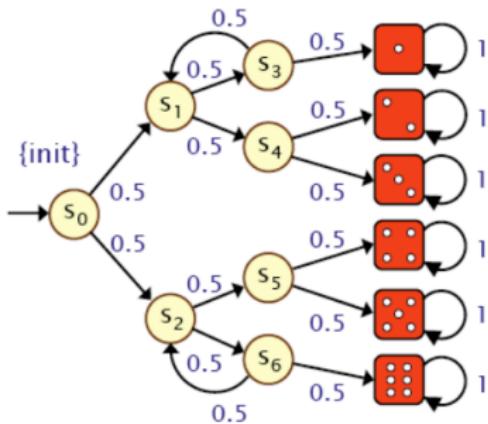
Reachability probabilities: Knuth's die



- ▶ Consider the event $\diamond 4$
- ▶ $S_? = \{ s_0, s_2, s_5, s_6 \}$

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{s_0} \\ x_{s_2} \\ x_{s_5} \\ x_{s_6} \end{pmatrix}$$

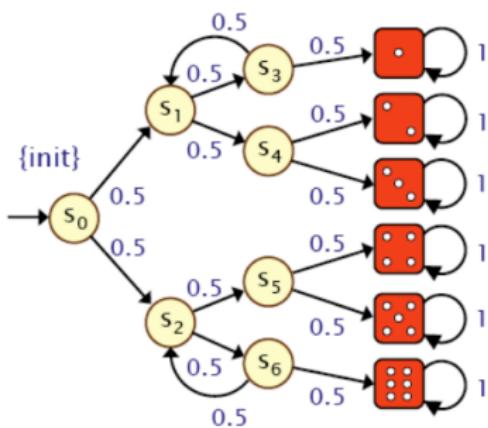
Reachability probabilities: Knuth's die



- ▶ Consider the event $\diamond 4$
- ▶ $S_? = \{ s_0, s_2, s_5, s_6 \}$

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{s_0} \\ x_{s_2} \\ x_{s_5} \\ x_{s_6} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

Reachability probabilities: Knuth's die



- ▶ Consider the event $\diamond 4$

- ▶ $S_? = \{ s_0, s_2, s_5, s_6 \}$

$$\begin{pmatrix} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{s_0} \\ x_{s_2} \\ x_{s_5} \\ x_{s_6} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

- ▶ Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}, x_{s_2} = \frac{1}{3}, x_{s_6} = \frac{1}{6}, \text{ and } x_{s_0} = \frac{1}{6}$$

Remark

Iterative algorithms to compute x

Remark

Iterative algorithms to compute \mathbf{x}

There are various algorithms to compute $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b} \quad \text{for } 0 \leq i.$$

Remark

Iterative algorithms to compute \mathbf{x}

There are various algorithms to compute $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b} \text{ for } 0 \leq i.$$

Then:

1. $\mathbf{x}^{(n)}(s) = \Pr(s \models \Diamond^{\leq n} \mathbf{G})$ for $s \in S$?

Remark

Iterative algorithms to compute \mathbf{x}

There are various algorithms to compute $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b} \text{ for } 0 \leq i.$$

Then:

1. $\mathbf{x}^{(n)}(s) = \Pr(s \models \Diamond^{\leq n} \mathbf{G})$ for $s \in S$?
2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \dots \leq \mathbf{x}$ and $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$

Remark

Iterative algorithms to compute \mathbf{x}

There are various algorithms to compute $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b} \quad \text{for } 0 \leq i.$$

Then:

1. $\mathbf{x}^{(n)}(s) = \Pr(s \models \Diamond^{\leq n} \mathbf{G})$ for $s \in S_?$
2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \dots \leq \mathbf{x}$ and $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$

The **Power method** computes vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ and aborts if:

$$\max_{s \in S_?} |x_s^{(n+1)} - x_s^{(n)}| < \varepsilon \quad \text{for some small tolerance } \varepsilon$$

This technique guarantees **convergence**.

Remark

Iterative algorithms to compute \mathbf{x}

There are various algorithms to compute $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$ where:

$$\mathbf{x}^{(0)} = \mathbf{0} \quad \text{and} \quad \mathbf{x}^{(i+1)} = \mathbf{A} \cdot \mathbf{x}^{(i)} + \mathbf{b} \quad \text{for } 0 \leq i.$$

Then:

1. $\mathbf{x}^{(n)}(s) = \Pr(s \models \Diamond^{\leq n} \mathbf{G})$ for $s \in S_?$
2. $\mathbf{x}^{(0)} \leq \mathbf{x}^{(1)} \leq \mathbf{x}^{(2)} \leq \dots \leq \mathbf{x}$ and $\mathbf{x} = \lim_{n \rightarrow \infty} \mathbf{x}^{(n)}$

The **Power method** computes vectors $\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ and aborts if:

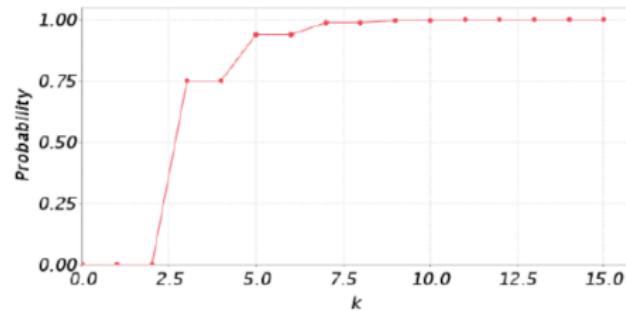
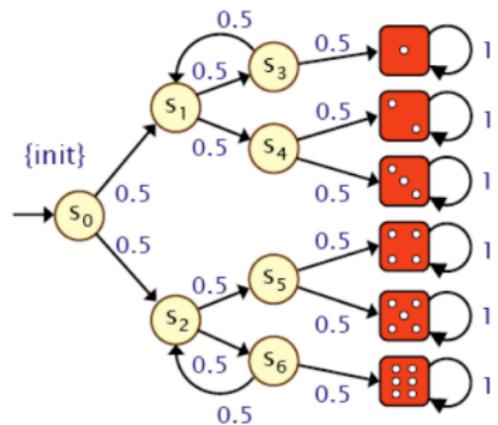
$$\max_{s \in S_?} |x_s^{(n+1)} - x_s^{(n)}| < \varepsilon \quad \text{for some small tolerance } \varepsilon$$

This technique guarantees **convergence**.

Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).

Example: Knuth's die

- Let $G = \{1, 2, 3, 4, 5, 6\}$
- Then $Pr(s_0 \models \diamond G) = 1$
- And $Pr(s_0 \models \diamond^{\leq k} G)$ for $k \in \mathbb{N}$ is given by:



Reachability probability = transient probabilities

Aim

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} .

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important.

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$.

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s .

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s .

Lemma

$$\underbrace{Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}} =$$

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s .

Lemma

$$\underbrace{Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{Pr(\Diamond^{=n} G)}_{\text{reachability in } \mathcal{D}[G]} =$$

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s .

Lemma

$$\underbrace{Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{Pr(\Diamond^{=n} G)}_{\text{reachability in } \mathcal{D}[G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_G^n}_{\text{in } \mathcal{D}[G]} =$$

Reachability probability = transient probabilities

Aim

Compute $Pr(\Diamond^{\leq n} G)$ in DTMC \mathcal{D} . Observe that once a path π reaches G , then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let DTMC $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ and $G \subseteq S$. The DTMC $\mathcal{D}[G] = (S, \mathbf{P}_G, \iota_{\text{init}}, AP, L)$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s .

Lemma

$$\underbrace{Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{Pr(\Diamond^{=n} G)}_{\text{reachability in } \mathcal{D}[G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_G^n}_{\text{in } \mathcal{D}[G]} = \Theta_n^{\mathcal{D}[G]}$$

Constrained reachability = transient probabilities

Aim

Constrained reachability = transient probabilities

Aim

Compute $Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} .

Constrained reachability = transient probabilities

Aim

Compute $\Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important.

Constrained reachability = transient probabilities

Aim

Compute $\Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important.

Constrained reachability = transient probabilities

Aim

Compute $Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Constrained reachability = transient probabilities

Aim

Compute $\Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Lemma

$$\underbrace{\Pr(\overline{F} \cup^{\leq n} G)}_{\text{reachability in } \mathcal{D}} =$$

Constrained reachability = transient probabilities

Aim

Compute $\Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Lemma

$$\underbrace{\Pr(\overline{F} \cup^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}[F \cup G]} =$$

Constrained reachability = transient probabilities

Aim

Compute $\Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Lemma

$$\underbrace{\Pr(\overline{F} \cup^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}[F \cup G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{F \cup G}^n}_{\text{in } \mathcal{D}[F \cup G]} =$$

Constrained reachability = transient probabilities

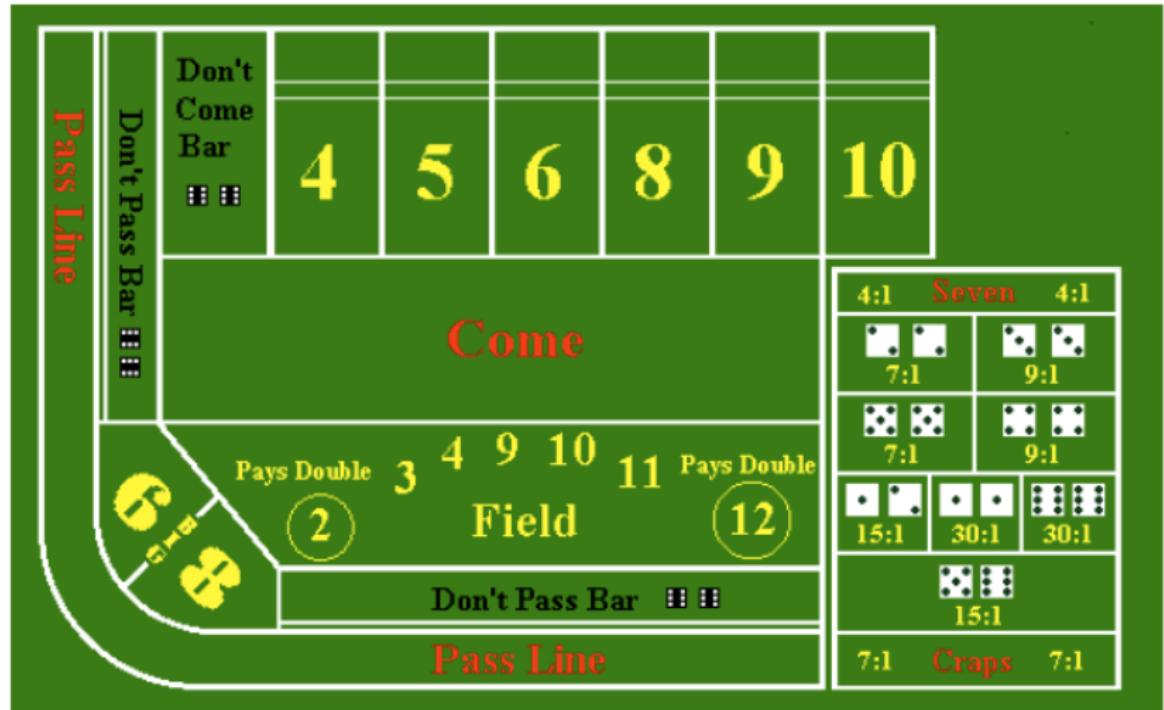
Aim

Compute $\Pr(\overline{F} \cup^{\leq n} G)$ in DTMC \mathcal{D} . Observe (as before) that once a path π reaches G via \overline{F} , then the remaining behaviour along π is not important. Now also observe that once $s \in F \setminus G$ is reached, then the remaining behaviour along π is not important. This suggests to make all states in G and $F \setminus G$ absorbing.

Lemma

$$\underbrace{\Pr(\overline{F} \cup^{\leq n} G)}_{\text{reachability in } \mathcal{D}} = \underbrace{\Pr(\Diamond^{\leq n} G)}_{\text{reachability in } \mathcal{D}[F \cup G]} = \underbrace{\iota_{\text{init}} \cdot \mathbf{P}_{F \cup G}^n}_{\text{in } \mathcal{D}[F \cup G]} = \Theta_n^{\mathcal{D}[F \cup G]}$$

Spare time tonight? Play Craps!



Craps

- ▶ Roll two dice and bet

Craps

- ▶ Roll two dice and bet
- ▶ Come-out roll (“pass line” wager):
 - ▶ outcome 7 or 11: win

Craps

- ▶ Roll two dice and bet
- ▶ Come-out roll (“pass line” wager):
 - ▶ outcome 7 or 11: win
 - ▶ outcome 2, 3, or 12: lose (“craps”)

Craps

- ▶ Roll two dice and bet
- ▶ Come-out roll (“pass line” wager):
 - ▶ outcome 7 or 11: win
 - ▶ outcome 2, 3, or 12: lose (“craps”)
 - ▶ any other outcome: roll again (outcome is “**point**”)

Craps

- ▶ Roll two dice and bet
- ▶ Come-out roll (“pass line” wager):
 - ▶ outcome 7 or 11: win
 - ▶ outcome 2, 3, or 12: lose (“craps”)
 - ▶ any other outcome: roll again (outcome is “**point**”)
- ▶ Repeat until 7 or the “point” is thrown:

Craps

- ▶ Roll two dice and bet
- ▶ Come-out roll (“pass line” wager):
 - ▶ outcome 7 or 11: win
 - ▶ outcome 2, 3, or 12: lose (“craps”)
 - ▶ any other outcome: roll again (outcome is “**point**”)
- ▶ Repeat until 7 or the “point” is thrown:
 - ▶ outcome 7: lose (“seven-out”)

Craps

- ▶ Roll two dice and bet
- ▶ Come-out roll (“pass line” wager):
 - ▶ outcome 7 or 11: win
 - ▶ outcome 2, 3, or 12: lose (“craps”)
 - ▶ any other outcome: roll again (outcome is “**point**”)
- ▶ Repeat until 7 or the “**point**” is thrown:
 - ▶ outcome 7: lose (“seven-out”)
 - ▶ outcome the **point**: win

Craps

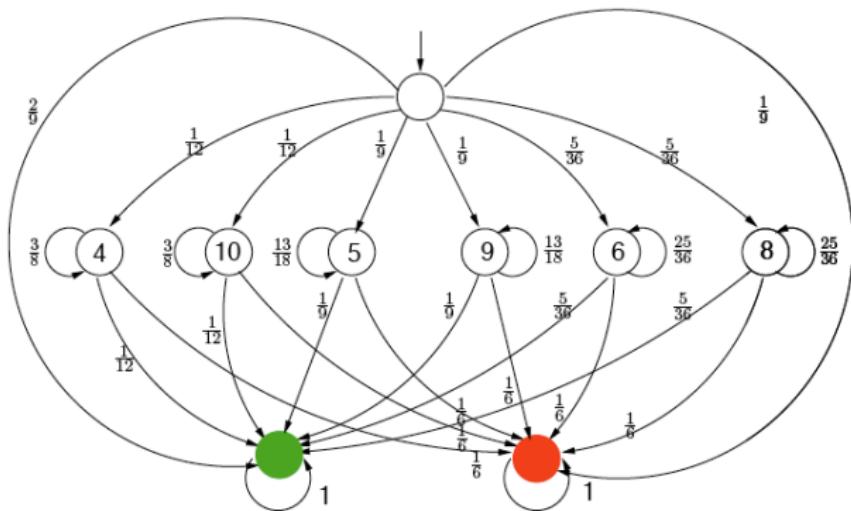
- ▶ Roll two dice and bet
- ▶ Come-out roll (“pass line” wager):
 - ▶ outcome 7 or 11: win
 - ▶ outcome 2, 3, or 12: lose (“craps”)
 - ▶ any other outcome: roll again (outcome is “**point**”)
- ▶ Repeat until 7 or the “**point**” is thrown:
 - ▶ outcome 7: lose (“seven-out”)
 - ▶ outcome the **point**: win
 - ▶ any other outcome: roll again

A DTMC model of Craps

- ▶ Come-out roll:
 - ▶ 7 or 11: win
 - ▶ 2, 3, or 12: lose
 - ▶ else: roll again
- ▶ Next roll(s):
 - ▶ 7: lose
 - ▶ point: win
 - ▶ else: roll again

A DTMC model of Craps

- ▶ Come-out roll:
 - ▶ 7 or 11: win
 - ▶ 2, 3, or 12: lose
 - ▶ else: roll again
- ▶ Next roll(s):
 - ▶ 7: lose
 - ▶ point: win
 - ▶ else: roll again



What is the probability to win the Craps game?

Summary

How to determine **reachability** probabilities?

Summary

How to determine **reachability** probabilities?

1. Probabilities of sets of infinite paths defined using **cylinders**.

Summary

How to determine **reachability** probabilities?

1. Probabilities of sets of infinite paths defined using **cylinders**.
2. Events $\Diamond G$, $\Box\Diamond G$ and $\bar{F} \cup G$ are **measurable**.

Summary

How to determine **reachability** probabilities?

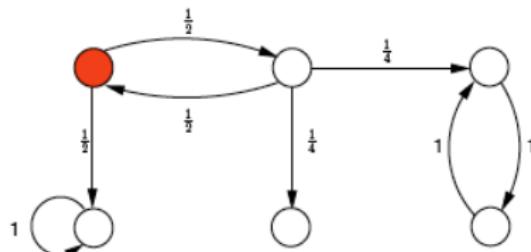
1. Probabilities of sets of infinite paths defined using **cylinders**.
2. Events $\Diamond G$, $\Box\Diamond G$ and $\bar{F} \cup G$ are **measurable**.
3. Reachability probabilities = unique solution of **linear equation system**.

Summary

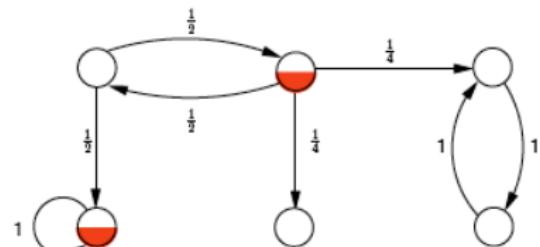
How to determine **reachability** probabilities?

1. Probabilities of sets of infinite paths defined using **cylinders**.
2. Events $\Diamond G$, $\Box\Diamond G$ and $\bar{F} \cup G$ are **measurable**.
3. Reachability probabilities = unique solution of **linear equation system**.
4. ... and they are **transient probabilities** in a slightly modified DTMC.

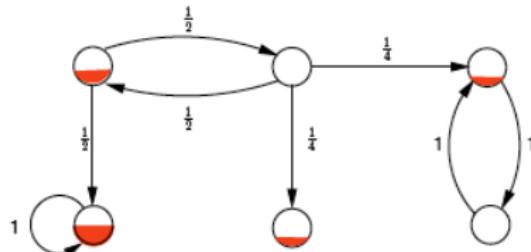
Where do we end up in the end?



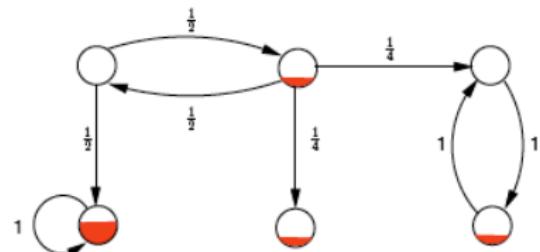
zero-th epoch



first epoch

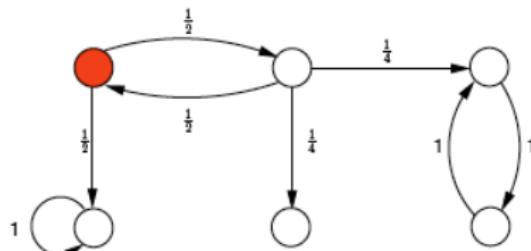


second epoch

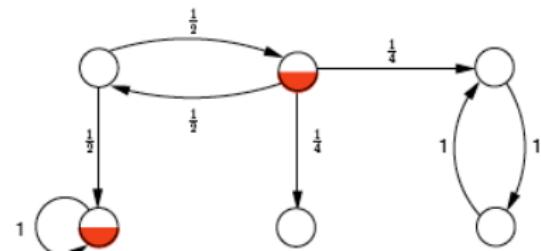


third epoch

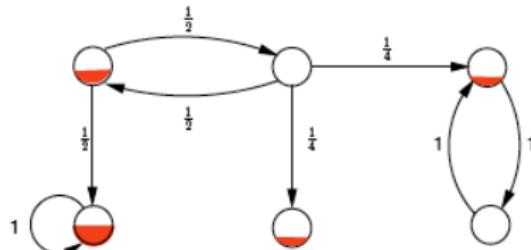
Where do we end up in the end?



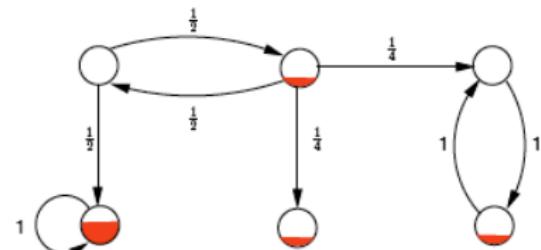
zero-th epoch



first epoch



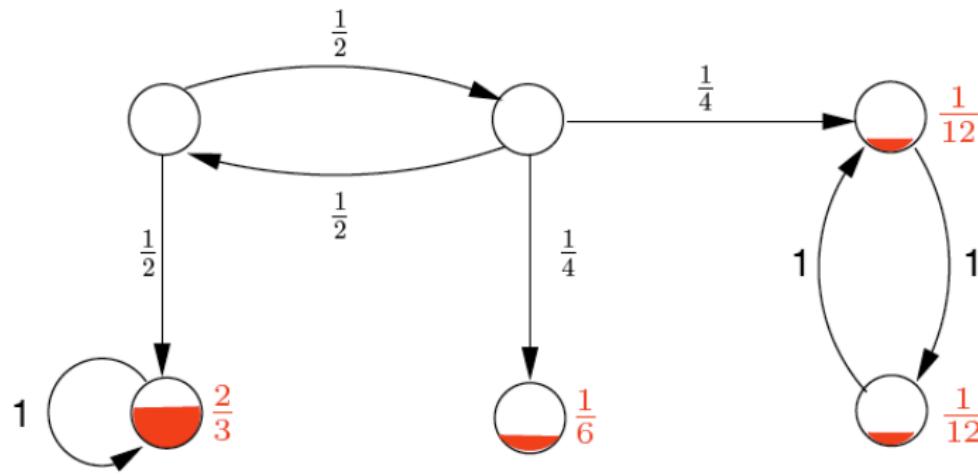
second epoch



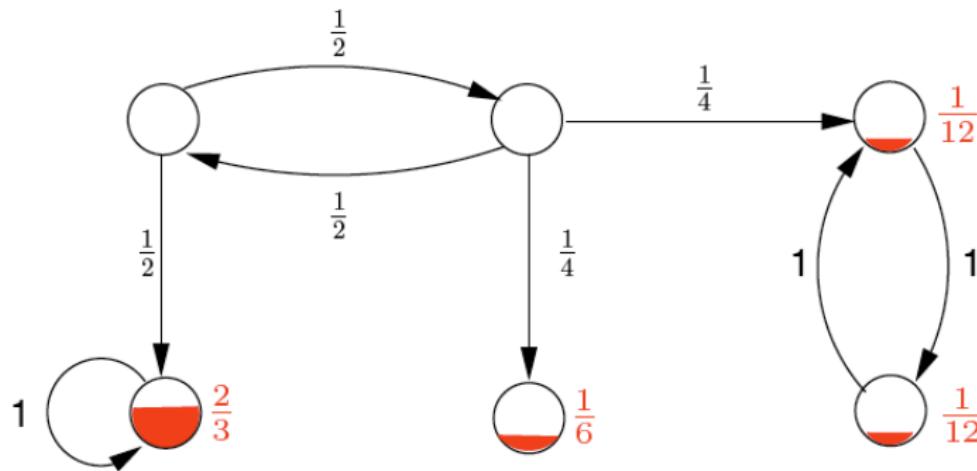
third epoch

Which states have a probability > 0 when repeating this on the long run?

On the long run



On the long run



The probability mass on the long run is only left in **bottom** SCCs.

What is a BSCC?

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a (possibly infinite) DTMC.

What is a BSCC?

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a (possibly infinite) DTMC.

Strongly connected component

- ▶ $T \subseteq S$ is *strongly connected* if for any $s, t \in T$, states s and $t \in T$ are mutually reachable via edges in T .

What is a BSCC?

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a (possibly infinite) DTMC.

Strongly connected component

- ▶ $T \subseteq S$ is *strongly connected* if for any $s, t \in T$, states s and $t \in T$ are mutually reachable via edges in T .
- ▶ T is a *strongly connected component* (SCC) of \mathcal{D} if it is strongly connected and no proper superset of T is strongly connected.

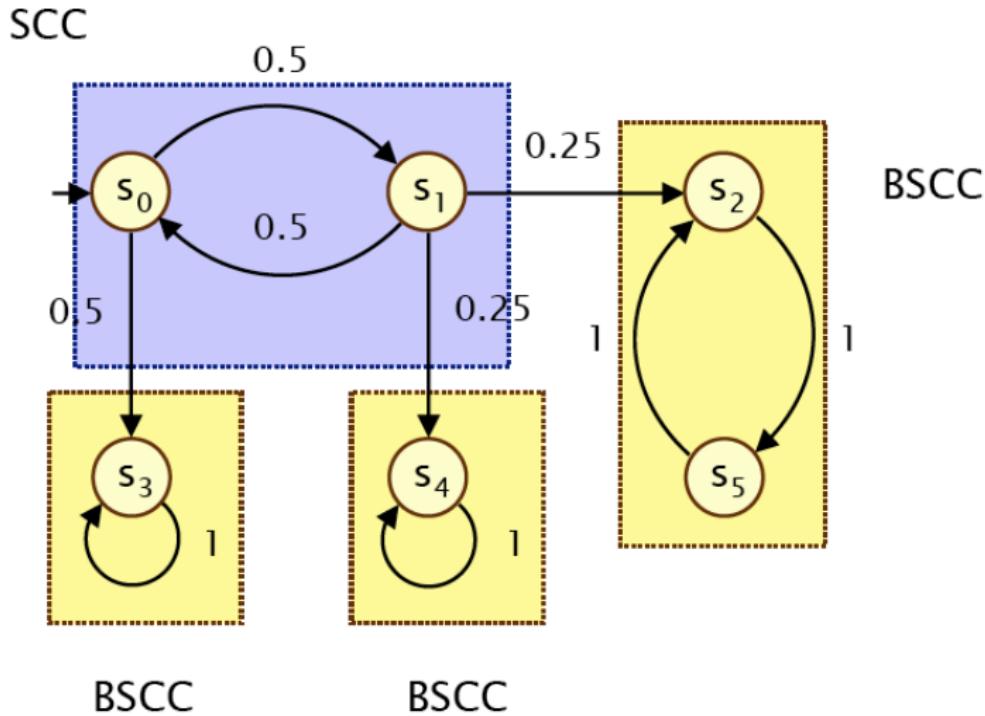
What is a BSCC?

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a (possibly infinite) DTMC.

Strongly connected component

- ▶ $T \subseteq S$ is *strongly connected* if for any $s, t \in T$, states s and $t \in T$ are mutually reachable via edges in T .
- ▶ T is a *strongly connected component* (SCC) of \mathcal{D} if it is strongly connected and no proper superset of T is strongly connected.
- ▶ SCC T is a *bottom SCC* (BSCC) if no state outside T is reachable from T , i.e., for any state $s \in T$, $\mathbf{P}(s, T) = \sum_{t \in T} \mathbf{P}(s, t) = 1$.

Example



Long-run theorem

Long-run theorem

Long-run theorem

Long-run theorem

For each state s of a finite Markov chain \mathcal{D} :

$$Pr_s \{ \pi \in Paths(s) \mid \inf(\pi) \text{ is a BSSC of } \mathcal{D} \} = 1.$$

where $\inf(\pi)$ is the set of states that are visited infinitely often along π .

Long-run theorem

Long-run theorem

For each state s of a finite Markov chain \mathcal{D} :

$$Pr_s \{ \pi \in Paths(s) \mid \inf(\pi) \text{ is a BSSC of } \mathcal{D} \} = 1.$$

where $\inf(\pi)$ is the set of states that are visited infinitely often along π .

Intuition

Almost surely any finite DTMC eventually reaches a BSSC and visits all its states infinitely often.

Long-run theorem

Long-run theorem

For each state s of a finite Markov chain \mathcal{D} :

$$Pr_s \{ \pi \in Paths(s) \mid \inf(\pi) \text{ is a BSSC of } \mathcal{D} \} = 1.$$

where $\inf(\pi)$ is the set of states that are visited infinitely often along π .

Intuition

Almost surely any finite DTMC eventually reaches a BSSC and visits all its states infinitely often.

Remark

For any state s in (possibly infinite) DTMC \mathcal{D} :

$\{ \pi \in Paths(s) \mid \inf(\pi) \text{ is a BSSC of } \mathcal{D} \}$ is **measurable**.

Repeated reachability and persistence

Consider a finite Markov chain \mathcal{D} with state space S , $\textcolor{blue}{G} \subseteq S$, and $s \in S$.

Repeated reachability and persistence

Consider a finite Markov chain \mathcal{D} with state space S , $\textcolor{blue}{G} \subseteq S$, and $s \in S$.

Repeated reachability = Reachability

$$\Pr(s \models \Box \Diamond \textcolor{blue}{G}) = \Pr(s \models \Diamond \textcolor{red}{U})$$

where $\textcolor{red}{U}$ is the union of all BSCCs T in \mathcal{D} with $T \cap \textcolor{blue}{G} \neq \emptyset$.

Repeated reachability and persistence

Consider a finite Markov chain \mathcal{D} with state space S , $\textcolor{blue}{G} \subseteq S$, and $s \in S$.

Repeated reachability = Reachability

$$\Pr(s \models \Box \Diamond \textcolor{blue}{G}) = \Pr(s \models \Diamond \textcolor{red}{U})$$

where $\textcolor{red}{U}$ is the union of all BSCCs T in \mathcal{D} with $T \cap \textcolor{blue}{G} \neq \emptyset$.

Persistency = Reachability

For finite DTMC with state space S , $\textcolor{blue}{G} \subseteq S$, and $s \in S$:

$$\Pr(s \models \Diamond \Box \textcolor{blue}{G}) = \Pr(s \models \Diamond \textcolor{red}{U})$$

where $\textcolor{red}{U}$ is the union of all BSCCs T in \mathcal{D} with $T \subseteq \textcolor{blue}{G}$.