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Probabilities help
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L3 Probabilities help

v

When analysing system performance and dependability
> to quantify arrivals, waiting times, time between failure, QoS, ...

v

When modelling unreliable and unpredictable system behavior

> to quantify message loss, processor failure
> to quantify unpredictable delays, express soft deadlines, ...

v

When building protocols for networked embedded systems
» randomized algorithms

v

When problems are undecidable deterministically
» repeated reachability of lossy channel systems, ...
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Motivation

What is probabilistic model checking?

requirements @
@ 01(¢ deadb/clf)/

up to 107 states

O
property
specification system mode!

state 1 0.678

state 2 09797
state 3 0.1523
state 4 02123

insufficient
memory
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Probabilistic models

Nondeterminism Nondeterminism
no yes
Discrete time discrete-time Markov decision

Markov chain (DTMC) | process (MDP)

Continuous time CTMC CTMDP

Some other models: probabilistic variants of (priced) timed automata
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Probability theory is simple, isn’t it?

|
In no other branch of mathematics

is it so easy to make mistakes
as in probability theory

Henk Tijms, “Understanding Probability” (2004)
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What are discrete-time Markov chains?

Overview

© What are discrete-time Markov chains?
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, ti, AP, L) with:

» S is a countable nonempty set of states
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DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, ti, AP, L) with:
» S is a countable nonempty set of states
» P:S5xS — [0, 1], transition probability function s.t. >, P(s,s’) =1
> L - S — [0, 1], the initial distribution with ZSLinit(s) =1
s€
» AP is a set of atomic propositions.
» L:S — 2AP, the labeling function, assigning to state s, the set L(s)
of atomic propositions that are valid in s.

Initial states

> L:.(S) is the probability that DTMC D starts in state s
> the set {s € S| tiui(s) > 0} are the possible initial states.
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What are discrete-time Markov chains?

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”.
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What are discrete-time Markov chains?

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC model a six-sided die?
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What are discrete-time Markov chains?

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 10/43



What are discrete-time Markov chains?

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 10/43



What are discrete-time Markov chains?

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:
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P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
P{Ts=n} = P(s, s)”_1 (1 —=P(s,s))

So, the state residence times in a DTMC obey a geometric distribution.

The expected number of time steps to stay in state s equals E[T] = %(55).

The variance of the residence time distribution is Var[T] = %.
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What are discrete-time Markov chains?

State residence time distribution

|
Let 75 be the number of epochs of DTMC D to stay in state s:

P{Ts=1} = 1-P(s,5s)
P{Ts=2} = P(s,s)-(1-P(s,s))
P{Ts=n} = P(s, s)”_1 (1 —=P(s,s))

So, the state residence times in a DTMC obey a geometric distribution.

The expected number of time steps to stay in state s equals E[T] = %(55).

The variance of the residence time distribution is Var[T] = %.

|
A geometric distribution is the only discrete probability distribution that is
memoryless.
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Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:

pss(0) = 1 ifs=5s', and 0 otherwise,
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What are discrete-time Markov chains?

Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
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n-step transition probabilities
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What are discrete-time Markov chains?

Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
ps,s(1) = P(s,s’), and for n > 1 by the Chapman-Kolmogorov equation:

Ps.s'( Zpssu ) psrs(n=1) forall0</<n

S//

For / =1 and n > 0 we obtain: pss(n) =Y _ ps (1) - psr s (n—1)

sll

P = pM) . p(»=1) — p. p("=1) is the n-step transition probability matrix
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What are discrete-time Markov chains?

Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s’ in n € N steps is inductively defined:
pss(0) = 1 ifs=5s', and 0 otherwise,
ps,s(1) = P(s,s’), and for n > 1 by the Chapman-Kolmogorov equation:

Ps.s'( Zpssu ) psrs(n=1) forall0</<n

S//

For / =1 and n > 0 we obtain: pss(n) =Y _ ps (1) - psr s (n—1)

s//
P — pM) . p(n=1) — p. p("=1) 5 the n-step transition probability matrix
Repeating this scheme: PN —p.pr-1) —  _—pr-1.pl) —pn
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Transient probability distribution

Transient distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.
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What are discrete-time Markov chains?

Transient probability distribution

P"(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

melt -P"(s, t)

seS

O©P(t) is called the transient state probability at epoch n for state t. The
function @7 is the transient state distribution at epoch n of DTMC D.

When considering ©F as vector (©7);cs we have:

@,nD - 1n1t P P P — Linit'Pn'
ﬁ_/

n times
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Reachability probabilities

Overview

© Reachability probabilities
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Aim of today’s lecture

|
How to determine reachability probabilities?
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Aim of today’s lecture

|
How to determine reachability probabilities?

Three major steps

1. What are reachability probabilities? | mean, precisely.
This requires a bit of measure theory. Sorry for that.
2. Reachability probabilities = unique solution of linear equation system.

3. ... and they are transient probabilities in a slightly modified DTMC.
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Reachability probabilities

Recall Knuth’s die

Heads = “go left”; tails = “go right”.
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Reachability probabilities

Paths

State graph

The state graph of DTMC D is a digraph G = (V/, E) with V the states of
D, and (s,s’) € E iff P(s,s’) > 0.

Let Pre(s) be the predecessors of s, Pre*(s) its reflexive and transitive
closure.
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Reachability probabilities

Paths

State graph

The state graph of DTMC D is a digraph G = (V/, E) with V the states of
D, and (s,s’) € E iff P(s,s’) > 0.

Let Pre(s) be the predecessors of s, Pre*(s) its reflexive and transitive
closure.

Paths in D are infinite paths in its state graph.
Paths(D) denotes the set of paths in D, and Paths*(D) its finite prefixes.
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Reachability probabilities

Some events of interest
Let DTMC D with (possibly infinite) state space S.
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Let DTMC D with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G C S. Formally:
O0G = {m € Paths(D) |Jie N.«n[i] € G}
Invariance, i.e., always stay in state in G:

O0G = {w € Paths(D) |Vie N.w[i] € G} = 0G.

Constrained reachability

Or “reach-avoid” properties where states in F C S are forbidden:

FUG = {m e Paths(D) |JieN.xn[il e G AVj<inl[]&F}
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More events of interest

Repeated reachability

Repeatedly visit a state in G; formally:

O0G = {m € Paths(D) |Vie N.3j > i.n[j] e G}
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More events of interest

Repeated reachability

Repeatedly visit a state in G; formally:

O0G = {m € Paths(D) |Vie N.3j > i.n[j] e G}

Persistence

Eventually reach in a state in G and always stay there; formally:

O0G = {m € Paths(D) | Ji e N.Vj > i.7[j] € G}
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Reachability probabilities

What'’s the probability of infinite paths?
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Paths and probabilities

|
To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.
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Reachability probabilities

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:

» Outcomes := set of all infinite paths starting in s.

> Events := subsets of these outcomes.
» These events are defined using cylinder sets.

» Cylinder set of a finite path := set of all its infinite continuations.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sy s1...s, € Paths*(D) is defined by:

Cyl(7) = {m € Paths(D) | # is a prefix of 7 }
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Reachability probabilities

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sy s1...s, € Paths*(D) is defined by:
Cyl(7) = {m € Paths(D) | # is a prefix of 7 }

The cylinder set spanned by finite path 7 thus consists of all infinite paths
that have prefix 7.
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sy s1...s, € Paths*(D) is defined by:
Cyl(7) = {m € Paths(D) | # is a prefix of 7 }
The cylinder set spanned by finite path 7 thus consists of all infinite paths

that have prefix 7.

Probability space of a DTMC

The set of events of the probability space DTMC D contains all cylinder
sets Cyl(7) where 7 ranges over all finite paths in D.
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Probability measure on DTMCs

Cylinder set
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Probability measure on DTMCs

Cylinder set

The cylinder set of finite path & = sp s1...s, € Paths*(D) is defined by:

Cyl(7) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure defined by:

Pr(Cyl(so . ..sn)) = timi(S0) - P(S051-..5n)
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Reachability probabilities

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path # = sp s ...s, € Paths*(D) is defined by:

Cyl(7) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure defined by:

Pr(Cyl(so . ..sn)) = timi(S0) - P(S051-..5n)

where P(sgsi...sp) = I P(si,sit1) forn>0
0<i<n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 22/43



Reachability probabilities

Probability measure on DTMCs

Cylinder set

The cylinder set of finite path # = sp s ...s, € Paths*(D) is defined by:

Cyl(7) = {m € Paths(D) | # is a prefix of 7 }

Probability measure

Pr is the unique probability measure defined by:
Pr(Cyl(so . ..sn)) = timi(S0) - P(S051-..5n)
where P(sgsi...sp) = [I P(si,si+1) for n >0 and P(sp) = tinie(S0)-

0<i<n
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Measurability
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Measurability theorem

Events (G, 0G, FU G, O0G and ¢0G are measurable on any DTMC.
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To show this, every event has to be expressed as allowed operations (complement
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Proof for G

Which event does ¢ G exactly mean?
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Proof for G

Which event does ¢ G exactly mean?
the union of all cylinders Cyl(sp . . . s,) where

So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,
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Proof for G

Which event does ¢ G exactly mean?
the union of all cylinders Cyl(sp . . . s,) where

So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,

O0G = U Cyl(so - .-sn)

50...s,€ Paths™ (D)n(S\G)* G

Thus OG is measurable.
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Proof for G
Which event does ¢ G exactly mean?
the union of all cylinders Cyl(sp . . . s,) where
So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,

O0G = U Cyl(so - .-sn)

50...s,€ Paths™ (D)n(S\G)* G

Thus OG is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

PHOG) = > Pr(Cyl(so . . . sn))

50...s,€ Paths™ (D)N(S\G)* G
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Reachability probabilities

Proof for G

Which event does ¢ G exactly mean?
the union of all cylinders Cyl(sp . . . s,) where
So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,

O0G = U Cyl(so - .-sn)

50...s,€ Paths™ (D)n(S\G)* G

Thus OG is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

P0OG) = Z Pr(Cyl(so ... sn))
50...sn€ Paths™ (D)n(S\G)* G
= Z Linit(so) : P(So - S,,)

50...s,€ Paths* (D)N(S\G)*G
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Reachability probabilities

Proof for G

Which event does ¢ G exactly mean?
the union of all cylinders Cyl(sp . . . s,) where
So...Sp is a finite path in D with sp,...,s,1 ¢ G and s, € G, i.e.,

O0G = U Cyl(so - .-sn)

50...s,€ Paths™ (D)n(S\G)* G

Thus OG is measurable.

As all cylinder sets are pairwise disjoint, its probability is defined by:

P0OG) = Z Pr(Cyl(so ... sn))
50...sn€ Paths™ (D)n(S\G)* G
= Z Linit(so) : P(So - S,,)

50...s,€ Paths* (D)N(S\G)*G

A similar proof strategy applies to the case FU G.
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Reachability probabilities: Knuth’s die

» Consider the event (4

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4
> Using the previous theorem we obtain:
02 o, 8} POA)= > P(s...sn)
50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}

» Or: ZP(SOSZ(SGSZ)k554)
k=0
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

> This yields:
P(5052S54) + P($0525652S54) + ...

{init}

» Or: ZP(SOSZ(SGSZ)k554)

k=0

1 o 1.k
» Or =) (9)

5 2
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

{init} > This yields:
P(5052S54) + P($0525652S54) + ...
> Or: ZP(SOSZ(SGSZ)k554)
k=0
1 o, 1.«
> L= —

k=0

. .1
» Geometric series: 3 =
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous theorem we obtain:

0.5 ‘ .D‘ Pr(04) = Z P(sp...sn)

50-..5n€(S\4*)4

> This yields:

{init}
P(5052S54) + P($0525652S54) + ...

» Or: ZP(SOSZ(SGSZ)k554)

k=0

1 o 1.k
» Or =) (9)

5 2

. 1
» Geometric series: —-— =
81

There is however an simpler way to obtain reachability probabilities!
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Reachability probabilities

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.
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Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs(0G)
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Reachability probabilities

Reachability probabilities in finite DTMCs
Let D be a DTMC with finite state space S, s€ S and G C S.
Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.
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Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s
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Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Pr{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s
» if G is not reachable from s, then x; =0
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Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Pr{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s

» if G is not reachable from s, then x; = 0
» if se G then x; =1
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Reachability probabilities

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Pr{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s

» if G is not reachable from s, then x; = 0
» if se G then x; =1

» For any state s € Pre"(G) \ G:

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 26/43



Reachability probabilities

Reachability probabilities in finite DTMCs

Let D be a DTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Pr{m € Paths(s) | m € 0G }

where Pr; is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s

» if G is not reachable from s, then x; = 0
» if se G then x; =1

» For any state s € Pre"(G) \ G:

Xs = Z P(s,t) - x: + Z P(s, u)

teS\G ueG
%,_/
reach Gviat € S\ G reach G in one step
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Reachability probabilities: Knuth’s die

» Consider the event (4

{init}
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Reachability probabilities

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
obtain:

1
.D x1=x=x3=x5=xs =0and x, =1

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
obtain:

1
.D x1=x=x3=x5=xs =0and x, =1

Xey = Xs3 = X5, =0

{init}
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Reachability probabilities

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

x1=x=x3=x5=xs =0and x, =1

{init} Xsp = Xs3 = Xsp = 0

_ 1 1
Xsp = 5Xs5 T 5Xs,
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Reachability probabilities

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

1
.D x1=x=x3=x5=xs =0and x, =1

{init} Xsp = Xs3 = Xsp = 0
_ 1 1
Xsp = 5Xs5 T 5Xs,

1 1
XSQ - EXS5 + §X56
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Reachability probabilities

Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

x1=x=x3=x5=xs =0and x, =1

{init} Xsp = Xs3 = Xsp = 0
_ 1 1

Xsp = 5Xs5 T 5Xs,
1 1

XSQ - EXS5 + §X56

_ 1 1
Xss = 5X5 + 5Xa
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we
05 obtain:

1
.D x1=x=x3=x5=xs =0and x, =1

Xs; = X,

., =Xs, =0

{init}
Xsy = %Xsl + %XSQ
Xsy = %Xs5 + %xsﬁ
Xsg = %X5 + %x4

1 1
Xss = 5Xs, + 5X6
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Reachability probabilities: Knuth’s die

» Consider the event (4

> Using the previous characterisation we

05 obtain:
1
.D x1=x=x3=x5=xs =0and x, =1
{init} Xsp = Xs3 = Xsp = 0

Xsy = %Xsl + %XSQ
Xs, = %ng, + %XSS
Xsg = %X5 + %x4
Xsg = %x52 + %X(;

> Gaussian elimination yields:
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Linear equation system

Reachability probabilities as linear equation system
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Reachability probabilities as linear equation system

> Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
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Linear equation system

Reachability probabilities as linear equation system

> Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps

» A = (P(s,t) the transition probabilities in S

s, teSy’
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Linear equation system

Reachability probabilities as linear equation system

» Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
- A= (P(s,1))

» b = (bs)

teS,” the transition probabilities in S,

the probs to reach G in 1 step, i.e., bs = Z P(s, u)
ueG

SES;’
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Linear equation system

Reachability probabilities as linear equation system

» Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
- A= (P(s,1))

» b = (bs)

teS,” the transition probabilities in S,

the probs to reach G in 1 step, i.e., bs = Z P(s, u)
ueG
Then: x = (xs)ses, with xs = Pr(s = 0G) is the unique solution of:

SES;’

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 28/43



Reachability probabilities

Linear equation system

Reachability probabilities as linear equation system

» Let S; = Pre*(G) \ G, the states that can reach G by > 0 steps
» A = (P(s,t)), s, the transition probabilities in S

» b = (bs)se&' the probs to reach G in 1 step, i.e., bs = Z P(s, u)
' ueG
Then: x = (xs)ses, with xs = Pr(s = 0G) is the unique solution of:
x=Ax+b o (I-A)x =b

where | is the identity matrix of cardinality |S7| x |Se|.
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Reachability probabilities: Knuth’s die

» Consider the event (4

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S;={5,5,55, %}

{init}
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S;={5,5,55, %}

, 1 - 0 o0 X
{init} 2 0
1 0 1 —% —% Xs,
0 O 1 0 Xss
0 -2 0 1 Xss
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S;={5,5,55, %}

1
{init} l- 2 01 O1 o 0
1 0 1 -3 -3 Xsp + 0
0 O 1 0 Xss %
0 -2 0 1 Xs5 0
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Reachability probabilities: Knuth’s die

» Consider the event (4

.D] > S;={5,5,55, %}

1
{init} L 2 01 O1 o 0
1 0 1 -3 -3 Xsp + 0
0 0 1 0 Xss :
0 -2 0 1 Xs5 0
> Gaussian elimination yields:
XSSZ%'X%:%'XSG:%' and XSo:%
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Remark

Iterative algorithms to compute x
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Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.
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Reachability probabilities

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x(N(s) = Pr(sl=0<"G) forse S
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Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x(N(s) = Pr(sl=0<"G) forse S
2. x(0) < x(1) < x(®) <...<xand x= Iim,Hoox(”)
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Reachability probabilities

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x(N(s) = Pr(sl=0<"G) forse S
2. x(0) < x(1) < x(®) <...<xand x= Iim,Hoox(”)

The Power method computes vectors x(o), x(l), x(2), ... and aborts if:

max |x{m ) — x| < ¢ for some small tolerance &
s€S>?

This technique guarantees convergence.
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Reachability probabilities

Remark

Iterative algorithms to compute x

There are various algorithms to compute x = lim,_, x(M where:

x©® =0 and xU™) = Ax() £ bfor0<i.

Then:
1. x(N(s) = Pr(sl=0<"G) forse S
2. x(0) < x(1) < x(®) <... < xand x = limp_so x(m)
The Power method computes vectors x(o), x(l), x(2), ... and aborts if:

max |x{m ) — x| < ¢ for some small tolerance &
s€S>?

This technique guarantees convergence.
Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).
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Reachability probabilities

Example: Knuth’s die

> Let G={1,2,3,4,56}
> Then Pr(sp =0G) =1

» And Pr(sy = OSKG)
for k € IN is given by:

{init}

1.00 —

Probability
o o
3

o
N
@\

0.00" -~ ¢
0.0 25 5.0 75 10.0 125 15.0
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Reachability probability = transient probabilities
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Reachability probability = transient probabilities

Compute Pr(0S"G) in DTMC D.
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Reachability probability = transient probabilities

Compute Pr(OS"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important.
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Reachability probability = transient probabilities

Compute Pr(OS"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, s, AP, L) and G C S.
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Reachability probability = transient probabilities

Compute Pr(OS"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S, P, tyuii, AP, L) and G C S. The DTMC D[G] = (S, Pg,
Linit, AP, L) with Pg(s, t) = P(s, t) if s¢ G and Pg(s,s) =1if s € G.
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then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, tyuii, AP, L) and G C S. The DTMC D[G] = (S, Pg,
Linit, AP, L) with Pg(s, t) = P(s, t) if s¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.
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Reachability probability = transient probabilities

Compute Pr(OS"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, ;e AP, L) and G C S. The DTMC D[G] = (S, Pe,
Linit» AP, L) with Pg(s,t) = P(s,t) if s¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

PUO=G) =

———
reachability in D
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Reachability probability = transient probabilities

Compute Pr(OS"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, ;e AP, L) and G C S. The DTMC D[G] = (S, Pe,
Linit» AP, L) with Pg(s,t) = P(s,t) if s¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

PUO'G) = PAOT'G) =

———— —_———
reachability in D reachability in D[G]
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Reachability probability = transient probabilities

Compute Pr(OS"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, ;e AP, L) and G C S. The DTMC D[G] = (S, Pe,
Linit» AP, L) with Pg(s,t) = P(s,t) if s¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

Pr(<><"G) = Pr(O:nG) = linit ° P% =
——— —_——— ———
reachability in D reachability in D[G] in D[G]
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Reachability probability = transient probabilities

Compute Pr(OS"G) in DTMC D. Observe that once a path 7 reaches G,
then the remaining behaviour along 7 is not important. This suggests to
make all states in G absorbing.

|
Let DTMC D = (S, P, ;e AP, L) and G C S. The DTMC D[G] = (S, Pe,
Linit» AP, L) with Pg(s,t) = P(s,t) if s¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

PrOS"G) = PAOT"G) = L PE = ORI
——— —_——— ———
reachability in D reachability in D[G] in D[G]
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Constrained reachability = transient probabilities
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Reachability probabilities
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Reachability probabilities
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Constrained reachability = transient probabilities

Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining

behaviour along 7 is not important. This suggests to make all states in G
and F \ G absorbing.

Lemma

PFUS"G) =

—————
reachability in D
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Constrained reachability = transient probabilities

Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining

behaviour along 7 is not important. This suggests to make all states in G
and F \ G absorbing.

Lemma

PAFUS"G) =  P{0="G) =
—_—— ————
reachability in D reachability in D[F U G]
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Constrained reachability = transient probabilities

Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining

behaviour along 7 is not important. This suggests to make all states in G
and F \ G absorbing.

Lemma

Pr(F usn G) = Pr(O™"G) = " PRugc =
————— —_—— —_————
reachability in D reachability in D[F U G] in D[F U G]
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Constrained reachability = transient probabilities

Compute Pr(F US" G) in DTMC D. Observe (as before) that once a path
7 reaches G via F, then the remaining behaviour along 7 is not important.
Now also observe that once s € F \ G is reached, then the remaining

behaviour along 7 is not important. This suggests to make all states in G
and F \ G absorbing.

Lemma

PFUS"G) = Pr(0="G) = by - PRy = OFIFVC]
— —— —
reachability in D reachability in D[F U G] in D[F U G]
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Reachability probabilities

Spare time tonight? Play Craps!

PaysDo_uhlc 3 4 9 10 11 Pa}'s/lll!lﬂl]e
(2) Field (12)
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Craps

» Roll two dice and bet
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):
» outcome 7 or 11: win
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» Roll two dice and bet

» Come-out roll (“pass line"” wager):
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» Come-out roll (“pass line"” wager):
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out”)
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Craps

» Roll two dice and bet

» Come-out roll (“pass line"” wager):

» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:

» outcome 7: lose (“seven-out”)
» outcome the point: win
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Craps

RAPS GAMBIy, -

» Roll two dice and bet

» Come-out roll (“pass line"” wager):
» outcome 7 or 11: win
» outcome 2, 3, or 12: lose (“craps”)
» any other outcome: roll again (outcome is “point”)

» Repeat until 7 or the “point” is thrown:
» outcome 7: lose (“seven-out”)
» outcome the point: win
> any other outcome: roll again
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Reachability probabilities

A DTMC model of Craps

» Come-out roll:
» 7 or 11: win
» 2,3, 0r12:
lose
> else: roll
again

» Next roll(s):
> 7: lose
> point: win
> else: roll
again
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Reachability probabilities

A DTMC model of Craps

» Come-out roll:
» 7 or 11: win
» 2,3, 0r12:
lose
> else: roll
again

» Next roll(s):

> 7: lose

> point: win

> else: roll
again

What is the probability to win the Craps game?
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Summary

|
How to determine reachability probabilities?
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Summary

|
How to determine reachability probabilities?

|
1. Probabilities of sets of infinite paths defined using cylinders.
2. Events ¢ G, 00 G and F U G are measurable.

3. Reachability probabilities = unique solution of linear equation system.
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Reachability probabilities

Summary

How to determine reachability probabilities?

|
1. Probabilities of sets of infinite paths defined using cylinders.
2. Events ¢ G, 00 G and F U G are measurable.
3. Reachability probabilities = unique solution of linear equation system.

4. ... and they are transient probabilities in a slightly modified DTMC.
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Reachability probabilities

Where do we end up in the end?

1

ki I 1 1
1 1
zero-th epoch first epoch
7 1
i
1 % 1
K i 1 1
1 1
second epoch third epoch
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Reachability probabilities

Where do we end up in the end?

1

first epoch

1
) T
1

second epoch

third epoch

Which states have a probability > 0 when repeating this on the long run?

Joost-Pieter Katoen

Reachability Probabilities in Markov Chains 38/43



Reachability probabilities

On the long run

b=

Y
O

bo| =

ko=
I
N
N

—y
Lo
=
r—'|’_‘
[2v]
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Reachability probabilities

On the long run

b=

Y
O

bo| =

ko=
I
N
N

wolbo
|-

-

=
—
bo

(o

The probability mass on the long run is only left in bottom SCCs.

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 39/43



What is a BSCC?

Let D = (S, P, tinii, AP, L) be a (possibly infinite) DTMC.
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Strongly connected component

» T C S is strongly connected if for any s,t € T, statessand t € T
are mutually reachable via edges in T.
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Let D = (S, P, tinii, AP, L) be a (possibly infinite) DTMC.

Strongly connected component

» T C S is strongly connected if for any s,t € T, statessand t € T
are mutually reachable via edges in T.

» T is a strongly connected component (SCC) of D if it is strongly
connected and no proper superset of T is strongly connected.
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What is a BSCC?

Let D = (S, P, tinii, AP, L) be a (possibly infinite) DTMC.

Strongly connected component

» T C S is strongly connected if for any s,t € T, statessand t € T
are mutually reachable via edges in T.

» T is a strongly connected component (SCC) of D if it is strongly
connected and no proper superset of T is strongly connected.

» SCC T is a bottom SCC (BSCC) if no state outside T is reachable
from T, ie., foranystatesec T, P(s, T) = > ,c7P(s. t) =1.
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Reachability probabilities

Example
SCC
0.25
»(s, BSCC
25
1 1
A4 Y
1 1
BSCC BSCC
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Long-run theorem

Long-run theorem
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Long-run theorem

Long-run theorem

For each state s of a finite Markov chain D:

Prs{ 7 € Paths(s) | inf(7) is a BSSCof D} = 1.

where inf(7) is the set of states that are visited infinitely often along .
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Long-run theorem

Long-run theorem

For each state s of a finite Markov chain D:
Prs{ 7 € Paths(s) | inf(7) is a BSSCof D} = 1.
where inf(7) is the set of states that are visited infinitely often along .

Intuition

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.
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Long-run theorem

Long-run theorem

For each state s of a finite Markov chain D:
Prs{ 7 € Paths(s) | inf(7) is a BSSCof D} = 1.
where inf(7) is the set of states that are visited infinitely often along .

Intuition

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.

For any state s in (possibly infinite) DTMC D:

{7 € Paths(s) | inf(m) is a BSSC of D } is measurable.
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Repeated reachability and persistence

Consider a finite Markov chain D with state space S, GC S, and s € S.
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Reachability probabilities

Repeated reachability and persistence

Consider a finite Markov chain D with state space S, GC S, and s € S.

Repeated reachability = Reachability

Pr(s E00G) = Pr(s = QU)
where U is the union of all BSCCs T in D with TN G # @.
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Reachability probabilities

Repeated reachability and persistence

Consider a finite Markov chain D with state space S, GC S, and s € S.

Repeated reachability = Reachability

Pr(s E00G) = Pr(s = QU)
where U is the union of all BSCCs T in D with TN G # @.

Persistency = Reachability

For finite DTMC with state space S, G C S, and s € S:
Pr(s = 0OG) = Pr(s EQU)
where U is the union of all BSCCs T in D with T C G.
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