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Motivation

Probabilities help

I When analysing system performance and dependability
I to quantify arrivals, waiting times, time between failure, QoS, ...

I When modelling unreliable and unpredictable system behavior
I to quantify message loss, processor failure
I to quantify unpredictable delays, express soft deadlines, ...

I When building protocols for networked embedded systems
I randomized algorithms

I When problems are undecidable deterministically
I repeated reachability of lossy channel systems, . . .
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Motivation

What is probabilistic model checking?
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Motivation

Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

Some other models: probabilistic variants of (priced) timed automata
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Motivation

Probability theory is simple, isn’t it?

In no other branch of mathematics
is it so easy to make mistakes

as in probability theory
Henk Tijms, “Understanding Probability” (2004)
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What are discrete-time Markov chains?

DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states

I P : S×S → [0, 1], transition probability function s.t.
∑

s′ P(s, s ′) = 1
I ιinit : S → [0, 1], the initial distribution with

∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.
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What are discrete-time Markov chains?

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”.

Does this DTMC model a six-sided die?
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What are discrete-time Markov chains?

State residence time distribution

Let Ts be the number of epochs of DTMC D to stay in state s:

Pr{Ts = 1 } = 1− P(s, s)

Pr{Ts = 2 } = P(s, s) · (1− P(s, s))

. . . . . . . . . . . . . . .

Pr{Ts = n } = P(s, s)n−1 · (1− P(s, s))

So, the state residence times in a DTMC obey a geometric distribution.
The expected number of time steps to stay in state s equals E [Ts ] = 1

1−P(s,s) .
The variance of the residence time distribution is Var[Ts ] = P(s,s)

(1−P(s,s))2 .

A geometric distribution is the only discrete probability distribution that is
memoryless.
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What are discrete-time Markov chains?

Determining n-step transition probabilities
n-step transition probabilities
The probability to move from s to s ′ in n ∈ N steps is inductively defined:

ps,s′(0) = 1 if s = s ′, and 0 otherwise,

ps,s′(1) = P(s, s ′), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s′(n) =
∑
s′′

ps,s′′(l) · ps′′,s′(n−l) for all 0 < l < n

For l = 1 and n > 0 we obtain: ps,s′(n) =
∑
s′′

ps,s′′(1) · ps′′,s′(n−1)

P(n) = P(1) · P(n−1) = P · P(n−1) is the n-step transition probability matrix

Repeating this scheme: P(n) = P · P(n−1) = . . . = Pn−1 · P(1) = Pn.
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What are discrete-time Markov chains?

Transient probability distribution
Transient distribution
Pn(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.

The probability of DTMC D being in state t after exactly n transitions is:

ΘDn (t) =
∑
s∈S

ιinit(s) · Pn(s, t)

ΘDn (t) is called the transient state probability at epoch n for state t. The
function ΘDn is the transient state distribution at epoch n of DTMC D.
When considering ΘDn as vector (ΘDn )t∈S we have:

ΘDn = ιinit · P · P · . . . · P︸ ︷︷ ︸
n times

= ιinit · Pn.
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Reachability probabilities

Overview

1 Motivation

2 What are discrete-time Markov chains?

3 Reachability probabilities
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Reachability probabilities

Aim of today’s lecture

How to determine reachability probabilities?

Three major steps

1. What are reachability probabilities? I mean, precisely.
This requires a bit of measure theory. Sorry for that.

2. Reachability probabilities = unique solution of linear equation system.
3. . . . and they are transient probabilities in a slightly modified DTMC.
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Reachability probabilities

Recall Knuth’s die

Heads = “go left”; tails = “go right”.

Does this DTMC model a six-sided die?
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Reachability probabilities

Paths

State graph
The state graph of DTMC D is a digraph G = (V ,E ) with V the states of
D, and (s, s ′) ∈ E iff P(s, s ′) > 0.
Let Pre(s) be the predecessors of s, Pre∗(s) its reflexive and transitive
closure.

Paths
Paths in D are infinite paths in its state graph.
Paths(D) denotes the set of paths in D, and Paths∗(D) its finite prefixes.
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Reachability probabilities

Some events of interest
Let DTMC D with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G ⊆ S. Formally:

♦G = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(D) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j] 6∈ F }
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Reachability probabilities

More events of interest

Repeated reachability
Repeatedly visit a state in G ; formally:

�♦G = {π ∈ Paths(D) | ∀i ∈ N. ∃j > i . π[j] ∈ G }

Persistence
Eventually reach in a state in G and always stay there; formally:

♦�G = {π ∈ Paths(D) | ∃i ∈ N.∀j > i . π[j] ∈ G }
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Reachability probabilities

What’s the probability of infinite paths?
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Reachability probabilities

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:
I Outcomes := set of all infinite paths starting in s.

I Events := subsets of these outcomes.

I These events are defined using cylinder sets.

I Cylinder set of a finite path := set of all its infinite continuations.

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 20/43



Reachability probabilities

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:
I Outcomes := set of all infinite paths starting in s.

I Events := subsets of these outcomes.

I These events are defined using cylinder sets.

I Cylinder set of a finite path := set of all its infinite continuations.

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 20/43



Reachability probabilities

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:
I Outcomes := set of all infinite paths starting in s.

I Events := subsets of these outcomes.

I These events are defined using cylinder sets.

I Cylinder set of a finite path := set of all its infinite continuations.

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 20/43



Reachability probabilities

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:
I Outcomes := set of all infinite paths starting in s.

I Events := subsets of these outcomes.

I These events are defined using cylinder sets.

I Cylinder set of a finite path := set of all its infinite continuations.

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 20/43



Reachability probabilities

Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:
I Outcomes := set of all infinite paths starting in s.

I Events := subsets of these outcomes.

I These events are defined using cylinder sets.

I Cylinder set of a finite path := set of all its infinite continuations.

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 20/43



Reachability probabilities

Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}

The cylinder set spanned by finite path π̂ thus consists of all infinite paths
that have prefix π̂.

Probability space of a DTMC
The set of events of the probability space DTMC D contains all cylinder
sets Cyl(π̂) where π̂ ranges over all finite paths in D.
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Reachability probabilities

Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}

Probability measure
Pr is the unique probability measure defined by:

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 s1 . . . sn)

where P(s0 s1 . . . sn) =
∏

06i<n
P(si , si+1) for n > 0 and P(s0) = ιinit(s0).
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Reachability probabilities

Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event has to be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— of a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.
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Reachability probabilities

Proof for ♦G
Which event does ♦G exactly mean?

the union of all cylinders Cyl(s0 . . . sn) where

s0 . . . sn is a finite path in D with s0, . . . , sn−1 /∈ G and sn ∈ G , i.e.,

♦G =
⋃

s0...sn∈Paths∗(D)∩(S\G)∗G

Cyl(s0 . . . sn)

Thus ♦G is measurable.
As all cylinder sets are pairwise disjoint, its probability is defined by:

Pr(♦G) =
∑

s0...sn∈Paths∗(D)∩(S\G)∗G

Pr
(
Cyl(s0 . . . sn)

)
=

∑
s0...sn∈Paths∗(D)∩(S\G)∗G

ιinit(s0) · P(s0 . . . sn)

A similar proof strategy applies to the case F UG .
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Reachability probabilities

Reachability probabilities: Knuth’s die

I Consider the event ♦4

I Using the previous theorem we obtain:

Pr(♦4) =
∑

s0...sn∈(S\4∗)4

P(s0 . . . sn)

I This yields:
P(s0s2s54) + P(s0s2s6s2s54) + . . . . . .

I Or:
∞∑

k=0
P(s0s2(s6s2)ks54)

I Or: 18 ·
∞∑

k=0

(1
4
)k

I Geometric series: 18 ·
1

1− 1
4

=
1
8 ·

4
3 =

1
6

There is however an simpler way to obtain reachability probabilities!
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Reachability probabilities

Reachability probabilities in finite DTMCs
Problem statement
Let D be a DTMC with finite state space S, s ∈ S and G ⊆ S.

Aim: determine Pr(s |= ♦G) = Prs(♦G) = Prs{π ∈ Paths(s) | π ∈ ♦G }
where Prs is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ♦G) for any state s
I if G is not reachable from s, then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ Pre∗(G) \ G :

xs =
∑

t∈S\G
P(s, t) · xt

︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Reachability probabilities

Reachability probabilities: Knuth’s die

I Consider the event ♦4

I Using the previous characterisation we
obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 = 1
2xs1 + 1

2xs2

xs2 = 1
2xs5 + 1

2xs6

xs5 = 1
2x5 + 1

2x4
xs6 = 1

2xs2 + 1
2x6

I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Reachability probabilities

Linear equation system

Reachability probabilities as linear equation system

I Let S? = Pre∗(G) \ G , the states that can reach G by > 0 steps
I A =

(
P(s, t)

)
s,t∈S?

, the transition probabilities in S?

I b =
(
bs
)

s∈S?
, the probs to reach G in 1 step, i.e., bs =

∑
u∈G

P(s, u)

Then: x = (xs)s∈S?
with xs = Pr(s |= ♦G) is the unique solution of:

x = A·x + b or (I− A)·x = b

where I is the identity matrix of cardinality |S?| × |S?|.
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Reachability probabilities

Reachability probabilities: Knuth’s die

I Consider the event ♦4

I S? = { s0, s2, s5, s6 } 1 − 1
2 0 0

0 1 − 1
2 − 1

2
0 0 1 0
0 − 1

2 0 1

·
 xs0

xs2
xs5
xs6

 +

 0
0
1
2
0


I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Reachability probabilities

Remark
Iterative algorithms to compute x

There are various algorithms to compute x = limn→∞ x(n) where:

x(0) = 0 and x(i+1) = A·x(i) + b for 0 6 i .

Then:
1. x(n)(s) = Pr(s |= ♦6n G) for s ∈ S?

2. x(0) 6 x(1) 6 x(2) 6 . . . 6 x and x = limn→∞ x(n)

The Power method computes vectors x(0), x(1), x(2), . . . and aborts if:

max
s∈S?

| x (n+1)
s − x (n)

s | < ε for some small tolerance ε

This technique guarantees convergence.
Alternatives: e.g., Jacobi or Gauss-Seidel, successive overrelaxation (SOR).
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Reachability probabilities

Example: Knuth’s die

I Let G = { 1, 2, 3, 4, 5, 6 }
I Then Pr(s0 |= ♦G) = 1
I And Pr(s0 |= ♦6kG)

for k ∈ IN is given by:
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Reachability probabilities

Reachability probability = transient probabilities
Aim

Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D.

Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important.

This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S.

The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .

All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

=

Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

=

ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

=

ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G]

= ΘD[G]
n

Joost-Pieter Katoen Reachability Probabilities in Markov Chains 32/43



Reachability probabilities

Constrained reachability = transient probabilities

Aim

Compute Pr(F U6n G) in DTMC D. Observe (as before) that once a path
π reaches G via F , then the remaining behaviour along π is not important.
Now also observe that once s ∈ F \ G is reached, then the remaining
behaviour along π is not important. This suggests to make all states in G
and F \ G absorbing.

Lemma

Pr(F U6n G)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[F ∪ G]

= ιinit · Pn
F∪G︸ ︷︷ ︸

in D[F ∪ G]

= ΘD[F∪G]
n
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Reachability probabilities

Spare time tonight? Play Craps!
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Reachability probabilities

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again
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Reachability probabilities

A DTMC model of Craps

I Come-out roll:
I 7 or 11: win
I 2, 3, or 12:

lose
I else: roll

again

I Next roll(s):
I 7: lose
I point: win
I else: roll

again

What is the probability to win the Craps game?
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Reachability probabilities

Summary

How to determine reachability probabilities?

1. Probabilities of sets of infinite paths defined using cylinders.
2. Events ♦G , �♦G and F UG are measurable.
3. Reachability probabilities = unique solution of linear equation system.
4. . . . and they are transient probabilities in a slightly modified DTMC.
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Reachability probabilities

Where do we end up in the end?

Which states have a probability > 0 when repeating this on the long run?
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Reachability probabilities

On the long run

The probability mass on the long run is only left in bottom SCCs.
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Reachability probabilities

What is a BSCC?

Let D = (S,P, ιinit,AP, L) be a (possibly infinite) DTMC.

Strongly connected component

I T ⊆ S is strongly connected if for any s, t ∈ T , states s and t ∈ T
are mutually reachable via edges in T .

I T is a strongly connected component (SCC) of D if it is strongly
connected and no proper superset of T is strongly connected.

I SCC T is a bottom SCC (BSCC) if no state outside T is reachable
from T , i.e., for any state s ∈ T , P(s,T ) =

∑
t∈T P(s, t) = 1.
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Reachability probabilities

Example
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Reachability probabilities

Long-run theorem
Long-run theorem

For each state s of a finite Markov chain D:

Prs
{
π ∈ Paths(s) | inf(π) is a BSSC of D

}
= 1.

where inf(π) is the set of states that are visited infinitely often along π.

Intuition
Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.

Remark
For any state s in (possibly infinite) DTMC D:

{π ∈ Paths(s) | inf(π) is a BSSC of D } is measurable.
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Reachability probabilities

Repeated reachability and persistence

Consider a finite Markov chain D with state space S, G ⊆ S, and s ∈ S.

Repeated reachability = Reachability
Pr(s |= �♦G) = Pr(s |= ♦U)

where U is the union of all BSCCs T in D with T ∩ G 6= ∅.

Persistency = Reachability
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= ♦�G) = Pr(s |= ♦U)

where U is the union of all BSCCs T in D with T ⊆ G .
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