Errata ”Principles of Model Checking” (July 2013)

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen, The
Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Holger Hermanns
and Moritz Hahn (Saarland University), Dave Parker (Oxford University, UK), Jeroen
Ketema and Mark Timmer (University of Twente, NL), Stephen Siegel (University of
Delaware, USA), René Thiemann (U. Innsbruck, AT), Martin Lange (University of Kassel
and LMU, D), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Moti Ben-
Ari (Weizmann Institute, ISR), Verena Wolf (Saarland University), Prakash Panangaden
(McGill, Canada), Andrzej Zbrzezny (Jan Dlugosz University), Tobias Schmit-Lechner
(U. Freiburg), Stefan Leue (U. Konstanz), Johann Schuster (Uni Bundeswehr, Munich),
Chris J. Myers (University of Utah, USA), Erika Abrahdm, Christian Dehnert, Alexander
NyfBlen, Daniel Weber and Martin Zimmermann (RWTH Aachen University), Michael
Ummels (ENS Cachan, France), Erik Wognsen (Aalborg University, Denmark) and the
students at the RWTH Aachen University attending the “(Advanced) Model Checking”
course.

Comments are provided as:
(page number) (line number) (short quote of the wrong word(s)) > (correction)

Line number —n means line number n from the last line on that page.

Chapter 1: System Verification

pp- 1, 1. -5, Pentium II > Pentium
pp. 5, L. 9, lines of code lines > lines of code

pp- 5, L. footnote, much higher > as the number of lines of code in the “golden” version
of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp- 6, 1. 4, Pentium II > Pentium

Chapter 2: Modeling Concurrent Systems

pp. 20, 1. 8, arabic > Latin

pp- 25, 1. 11, heading Example 2.8 > Execution fragments of the Beverage Vending Ma-
chine

pp. 27, 1. -15, function Ay > The function A, has no impact on the transitions (as sug-
gested), but only affects the state labeling.

pp- 31, L. Fig. 2.3, beer, soda > bget and sget, respectively
pp. 31, L. Fig. 2.3, state with 1 beer, 2 soda > the grey circle should be a white circle.
pp. 34, 1. 2, (¢,v) > (¢,n)

Effect;(cv, n|yup,)(v) if v € Var;

.40, 1. Def. 2.21, Effq = Effect; Effe =
pp. 40,1, Def. 221, Bifct(a 1) = Bifeti(a)& Bt n)(e) = { 21 Hoe

pp- 42, 1. -10, interlock > interleave

pp. 46, 1. Fig. 2.9, locations in PGy > should be subscripted with 2 (rather than 1)
pp. 48, 1. -1, H = Act; N Acty > H = (Act; N Acte) \ {7}

pp. 51, 1. Fig. 2.12, T || T > TS; || TSz (this occurs twice)

pp. 51, 1. Fig. 2.12, > All downgoing transitions should be labeled with request, and all
upgoing ones with release

pp- 51, 1. -7, all trains > the train
pp. 52, 1. 3, (above) > (page 54)
pp. 53, 1. -1, finite set of channels > set of channels

pp. 54, 1. Fig. 2.16, the transition labeled approach emanating from state (far,3, down) >
should be removed, and all the states that thus become unreachable

pp. 54, 1. Fig. 2.16, the transition labeled exit emanating from state (in,1,up) > should
be removed, and all the states that thus become unreachable

pp. 55, 1. -10, (Cond(Var)x > Cond(Var)x

pp. 60, 1. Definition 2.33, W (occurs four times) > U
pp. 62, 1. -3, gen_msg(1) > snd-msg(1)

pp- 62, 1. 4, ack > message

pp- 65, 1. Fig. 2.21, second do > od

pp. 66, 1. 8, Staements build > Statements built

pp- 71, 1. 15, label in conclusion of inference rule cle > it is meant that the value of
expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, 1. 1, &[ci=va. . o] > & =€[ci=vg. .. v
pp. 74, 1. 1, &[c:i=vy...opv] > & =E[ei= 01 .. vp)

bp.
bp.
bp.
bp.

76, 1. Figure 2.23 (top), > '

78, 1. 8, 800,000-2°° > 8,000,000-2%°

79, 1. -6,-8, |dom(c)|?(©) > |dom(c)|ceP(©)
82, 1. Exercise 2.2, line 2, Pjis > P; is

Chapter 3: Linear-Time Properties

bp.
bp.
bp.

89, 1. 9, parallel systems > reactive systems
90, 1. 1, Fault Designed Traffic Lights > Faulty Traffic Lights

91, 1. 7, a deadlock occurs when all philosophers > a deadlock may occur when all

philosophers

bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.

92, 1. Fig. 3.2, request and release > req and rel

92, 1. 6, requesty > reqy 4; similar to the other request actions

93, 1. -4,-5 and Fig. 3.3, Fig. 3.4, state available; > available; ;

93, 1. -4,-5 and Fig. 3.3, Fig. 3.4, state available;11 > available; ;41
93, . 10, The corresponding is > The corresponding condition is
94, 1. Fig. 3.4, falls x; > x;

96, 1. 3, finite paths > finite path fragments

96, 1. 4, infinite path > infinite path fragment

98, 1. 1, Trace and Trace Fragment > Trace

100, 1. 9, (over AP) > (over 24F)

101, 1. -3, red; greeng > red;, greens

103, 1. 11, lwait; > wait;

103, 1. 11, 3k > j. wait; € A > 3k > j. crit; € A

105, 1. Example 3.16, line 4, (waity, waite,y = 1) — (waity, crity,y = 0) > (wq, we,y =

1) — (wi,e2,y=0)

pbp.
bp.

111, 1. Theorem 3.21, M =} g |Post(s)| > M = ZseReach(TS) | Post(s)|
111, 1. 22, The time needed to check s = ® is linear in the length of ® > Add: This

implicitly assumes that a € L(s) can be checked in O(1) time.

bp.

112, 1. -2, > A minimal bad prefix is one such that the first occurrence of ® is the

last symbol in the word.

pp. 113, 1. Figure 3.9, s Msl > s Msl

pp- 115, 1. Lemma 3.27, Proof > add the following sentence to the beginning of the proof:
First note that for P = (24F)% the claim trivially holds, since closure(P) = P and the fact

that P is a safety property since P is empty. In the remainder of the proof we consider
P 7& (2AP)w.

pp- 117, 1. -3, for any transition system TS. > for any transition system TS without
terminal states.

pp. 118, 1. 10,11, 7ox™ig™m2 _ of rO7lxn? ... such that> 7«0, 7™ 72 . of 70wl 72, ...
such that

pp- 124, 1. -3, By definition > By Lemma 3.27
pp- 130, 1. 3, without being taken beyond > without being taken infinitely often beyond
pp- 131, 1. 17, assignment x = —1 > assignment = := —1

pp. 132, 1. 2, an execution fragment ... but not strongly A-fair. > an execution fragment
that visits infinitely many states in which no A-action is enabled is weakly A-fair (as the
premise of weak A-fairness does not hold) but may not be strongly A-fair.

pp. 134, 1. 10, any finite trace is fair by default > any finite trace is strongly or weakly
fair by default

pp- 136, 1. -5, strong fairness property > fairness property

pp- 138, 1. 4, It forces synchronization actions to happen infinitely often. > It forces syn-
chronization actions to happen infinitely often provided they are enabled infinitely often.

pp. 138, 1. 9, (3.1) does not permit this. > (3.1) does not permit this (except if Syn, ; is
a singleton set).

pp- 138, 1. -14, This requires that ... is enabled. > This requires that infinitely often a
synchronization takes place when such synchronization is infinitely often enabled.

pp. 138, 1. -2, Weak fairness is appropriate for the internal actions o € Act; \ Syn;, as the
ability to perform an internal action is preserved until it will be executed. > should be
deleted

pp- 141, 1. 5, the set of properties that has > the property that has

pp. 145, 1. Exercise 3.5(g), between zero and two > between zero and non-zero

Chapter 4: Regular Properties

pp- 152, 1. 2, an alphabet t> a finite alphabet

bp.
bp.
bp.
bp.
pbp.

157, 1L -11, w=A41... A, € X > w=A4;...4, € &*

157, 1. -10, starts in Qo > starts in state Qg

157, 1. -4, Qo > {Qo}

158, 1. -14, NFAs can be much more efficient. > NFAs can be much smaller.

161, 1. -9, (2) ... foralll <i<nr .. forall 0<i<mn. (Note: the invariant false

has minimal bad prefix ¢.)

bp.
bp.

161,1.-8,1<i<np> 0<i<n

163, 1. Example 4.15, Minimal bad prefizes for this safety property constitute the lan-

guage { pay*drink™ | n > 0} > Bad prefixes for this safety property constitute the
language {o € (2{”“9"1””’“})* | w(o, drink) > w(o, pay) } where w(o,a) denotes the num-
ber of occurrences of a in o.

bp.
bp.
bp.

164, 1. 5,6, two NFAs intersect. > the languages of two NFAs intersect.
164, 1. -8, path fragment w > initial path fragment 7
164, 1. -6, TS® A which has an initial state > TS® A such that there exists an initial

state

bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.

167, 1. 7, 11, -4, Pypya) > Pipy(a)

167, 1. -2, q1,...,qn € F > Note: this condition is not necessary.

168,1. 1,0<i<nD> 0<i<n

169, 1. Theorem 4.22, |TS|-|A| > |TS® A

171, 1. 8, single word 1> a set contaning a single word

171,111, in ¥ > inZ

177, 1. -7, Example 4.13 on page 161 > Example 4.14 on page 162

183, 1.-3,-1, Ly = ... > Lg,4s = C*AB(B + BC*AB)*

188, 1. -2, containing a b > containing only a b

191, 1. -5, no accepting run that starts in g2 > no accepting run that reaches go
196, 1. Example 4.57, page 193 > page 194

200, 1. -7, /\qu > /\qu

202, 1. Fig. 4.22, > The two states should be labeled sy and s;, respectively
203, 1. 4, P = "eventually forever — green > P = infinitely often green

206, 1. Proof:, TS = (S, Act,—,I,AP) > TS = (S, Act,—,I, AP, L)

207, 1. -4, We now DFS-based cycle checks ... checking > We now present a DFS-based

algorithm for persistence checking that searches backwards edges to check for cycles.

bp.

212, 1. 6, ignores all states in T’ > does not revisit the states in T’

pp- 215, 1. Figure, t € Rjp, > te€T
pp- 218, 1. 10, Regula r > Regular

Chapter 5: Linear Temporal Logic

pp- 230, 1. 5, eventually in the future > now or eventually in the future
pp- 236, 1. Figure 5.2, > It is assumed that o = AgA1A4,. ..
Pp. 240, 1. -10, 67«2 = —ry > 57"2 = 1o

pp- 241, 1. Fig. 5.6, > Note that the inputs of the r registers are on the right, and their
outputs on the left.

pp. 243, 1. -1, D<\/1<z‘<N leader;A\N\1<j<n ﬂleaderj> > OVicien (Ieaderi/\/\lgjgN ﬂ]eaderj)
J# 7

JF#i
pp. 244, 1. 7,00 (\/1<i<N leader; A\ \i<jen — Ieaderj) > 00 Vicien <leader¢/\/\1<j<1v ﬂleaderj)
o J#i o J#i

pp. 256, 1. -3, (dfi..] E @) A VE<iolk.]Ev > (di.] Ee A VE<iok.] =y
pp. 263, 1. 20, Act’ = Actw { begin} > Act’ = Act with begin ¢ Act

pp. 266, 1. -8, interlocked > interleaved

pp. 267, 1. 7, as soon as > before

pp- 270, 1. Fig. 5.15, > The bottom cell should be white and not gray.

pp. 276, 1. -11, ¢ € Bif and only if ... > 1 € B if and only if ...

pp. 278, 1. Proof of Theorem 5.37, > It is assumed that o = AgAi1As ... is such that
A; C closure(yp), i.e., A; = B; N AP means A; N closure(p) = B; N AP

pp. 281, 1. 1-5, For ByB1 B3 ... a sequence ... we have for all ¢ € closure(p): ¥ € By <
ApA1Ay... E ¢ > For all ¥ € closure(p) and BgB1Bs... a sequence ... we have:
Y € By < AgAi1As. .. }:w

pp. 283,1. 10, #OQv e Bifand...> = ¢Y € Bifand ...
pp- 283, 1. 17, and p = Oa € B1,Ba > and ¢y =a € By, By
pp- 284, 1. -14, B3 B3 BlBZJ > Bs Bj BlBg)

pp. 287, 1. -5, |=(fair —)| = |fair| + |o| > [=(fair — ¢)| = [=(~fair V ¢)| =
|fair| + o] +3

pp- 289, 1. 11, a new vertex b to G > a new vertex b to TS
pp. 292, 1. Figure 5.23, > the self-loop at state P(n) should be omitted

pp. 292, 1. -1, O%1(q, A,i) — > begin A O % (g, A,i) —

pp- 294, 1. -6, Gyarphi > G,

pp- 297, 1. 7, Membership to > Membership in

pp. 303, 1. Exercise 5.7(b), W > Y (to avoid confusion with unless)
pp. 303, . Exercise 5.8(a), 1 A p2 > @1 Rgo

Chapter 6: Computation Tree Logic

pp- 318, 1. -10, A, > > V,—

pp. 320, 1. -4, state formula > State formula

pp. 327, 1. -12, since I(p Uy V Op) > since V(e Uy Vv Oy)

pp. 333, 1. 10, =30 P = —I(trueU®) > —3IO =P = —=3(true U ~P)

pp. 336, 1. 11, CTL formulae 3¢ (a AVO a) and $ (aANOa) > CTL formula 3¢ (a AVO a)
and LTL formula ¢ (a A O a)

pp. 338, 1.5, TS, = (S,,,...> TS, =(S),...

pp. 338, 1. -5 and -6, > transitions to s, _; are non-existing for n=0

pp. 340, 1. -10, and p =VOI0a > and o =VO3AOa

pp. 342, 1. Algorithm 13, and -8 and -4, maximal genuine > maximal proper
pp. 343, 1. 4, subformula of ¥ 1> subformula of ¥’

pp. 345, 1. -2, Sat(I(PUV¥) > Sat(I(P U D))

pp. 345, L. proof of (g)(ii), Let m = sps1s2... be a path starting in s=so. (As TS has no
terminal states, such a path exists.) > Delete.

pp. 349,1.-9,-7, (a=c)AN(a#b) > (a<>c)A(a D)
pp. 349, 1. -8, Algorithm 14 (see page 348) > Algorithm 15

pp- 351, . Algorithm 15, > comments in the first two lines of algorithm need to be
swapped while replacing £ by T and T by E

pp. 354, l. Example 6.28, see the gray states in Figure 6.13(a). > cf. Figure 6.13(b).
pp. 354, 1. Example 6.28, Figure 6.13(b), Figure 6.13(c) > Figure 6.13(c), Figure 6.13(d)
pp. 358, 1. 11, > Note that the length of ®, € O(n!).

pp- 361, 1. Example 6.35, = in the formulas > —

pp. 371, 1. -6, ifstatement 1> if statement

bp.
bp.
bp.
bp-
pbp.
pbp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.

bp.
bp.
bp.
bp.
bp.

372, 1.
374, 1.
374, 1.
378, 1.
380, 1.
381, 1.
381, 1.
383, L
383, L
386, 1.
387, L
388, 1.
388, L.

388, 1.

388, 1.
388, 1.
388, 1.
389, 1.
389, 1.
390, 1.
390, 1.
391, 1.
391, 1.
391, 1.
393, 1.

395, L
396, L.
396, L.
396, L.
398, L

Algorithm 19, line 4, C'N Sat(b;) # @ > C N Sat(b;) # @

1, path formula of the form Jp > state formula of the form Jp
6, counterzamples > counterexamples

-6, Eaxmple > Example

12, (a Nd')U (ma A =d" Aagpgsr) B> (aA—a')U(ma A —a" A apgr)
9,00(gAT) = 00=(gVvr)> O0(aAb) - OO =(aVb)
9and 12, b=c> b+ c

12,0<n<m<k> 1<n<m<k

9and 10, ...z, > ..., Zm

13, 15 (twice) and 19, s{y < z} > s{Z < 7}

18, t{z/z'} > t{Z « z}

7,2 > 2

T, Njcien(@i < 25) B Nip1cjen(@) € 27)

7-8, > add conjunct A (—u:l = TN Nicjcn(T5 © xé))

9, xB(T) = m > xB(T) = 1

14-17, > x and 2’ should be swapped

Example 6.58 (four times), {x + 2’} > {2/ + z}

9, Ncicn Qi(Ti, T) > Njcicm Di(Ti, TY)

16, Vicicm > Viciem

8, ds' € Ss.t.s' € Post(s) > s’ € S.s' € Post(s)

Algorithm 20, line 4, fj11(Z) := fj+1(Z) V... > fi(Z) = fi(Z) V...
Algorithm 21, line 4, fj11(Z) = fj+1(@) A ... > fi(Z) = fi(Z) A ...

Algorithm 21, line 4, return > return

Kl

19, can be ruled as > can be ruled out as

Figure 6.21 (right), solid line between z3 and 0> dashed line between z3 and

S,0ri =73 > Or z =z

-15, The semantics > The semantics of
-1, foucey(v)lz=c > fsucey(v)lz=b

Def. 6.65, for node > for node v

9, left subtree > right subtree

pp. 400, 1. -9, (var(v),succi(v), succo(v)) = (var(w),succi(w), succo(w)) > var(v) =
var(w) and fsucco(v) = fsucco(w) and fsuccl(v) = fsucc1 (w)

Pp. 402, L. 6, fv == (_‘Z A fSllCCo(’U)) A (Z A fSUCC1(U)) = (_'Z A f’LU) A (Z A fw) = fw >
fo = (=2 A fsucco(v)) V(z A fsucq(v)) = (22 A fu) V(A fu) = fu

pp. 402, 1.8, f, = (_'Z/\fsucco(v))/\(Z/\fsuccl(v)) = (_'Z/\fsucco(w))/\(Z/\fsuccl(w)) = fu-
> fo = (mzA fsucco(v)) V(2 A fsuccl(v)) = (mz A fsucco(w)) V(2 A fsucq(w)) = fu-

pp- 403, 1. 10, ismorphism > isomorphism

pp- 405, 1. 2, zp, = G, 2Zm = by ..oy 2i = 3,2 = b > Zy = Gy Ym = by ..., 2 =
ai,yi = b;

pp. 405, 1. 3, zm = am,2m = b,y .oy Zit1 = Qit1, 2it1 = big1,2i = @i B> Zm = Gy Y =
by -+ Zit1 = Qi1, Yig1 = big1, 20 = a4

pp. 405, 1. -5, ={ic{l,....m} |bj=1> L;={ic{l...,m}|b =1}

pp. 405, 1. -4, As fb,t€{0,1}" > Asb,cc {0,1}™

pp. 409, 1. -12, info(v) = (var(v), succy(v), succo(v)) > info(v) = (var(v),succy(v), succy(v))
pp- 412, 1. 7, u > v

pp. 412, 1. Algorithm 22, line -4, rule (?) > rule

pp. 413, 1. 13, foz1 = b1,...,z6 =b; > fols=by,...ci=b;

pp- 414, 1. Algorithm 23, line -2, return node w > should be just before final fi
pp. 417, 1. heading Algorithm 24, (v, T < 7') > (v, T < 7)

pp. 417, 1. Algorithm 24, > swap 7 and 7’

pp- 417, 1. Algorithm 24, line 4, ist > is a

pp- 417, 1. Algorithm 24, > replace z by x and u by v

pp. 418, 1. -9, f{z + 2'} > f{z' + z}

pp. 418, 1. -6, f|,_5 > flz=p

pp. 420, 1. Algorithm 26, line 10 and 11, Z,7'); >);

pp. 420, 1. Algorithm 26, line 6,7,9,10, v|;,—0 and v|y=1, respectively > U‘xi’zo and v‘xi’:b
respectively

pp. 420, 1. Algorithm 26, line -5, wg := Re]Prod(u|Ii/:0,v);w1 = RelProd(u]wl_/:l,v); >
wo = RelProd(uly/=o, v|z/=0); w1 := RelProd(uly/=1,v|z/=1);

pp. 426, 1. -1, 30(a A 30b) A 3O(bA I0a) > I0(a A30b) Vv 30(b A 30a)

10

Chapter 7: Equivalences and Abstraction

bp.
bp.
bp.
bp.
bp.

bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp-
bp.
bp.
bp.
pbp.
pbp.
pbp-

454, 1.
459, 1.
464, 1.
466, 1.
467, 1.

467, 1.
469, 1.
475, 1.
478, 1.
489, 1.
489, 1.
512, 1.
513, 1.
518, 1.
519, 1.
522, 1.
528, 1.
532, 1.
537, 1.
539, 1.
541, 1.
541, 1.
542, 1.
544, 1.
546, 1.

3, Sssume > Assume

7, [s]w T[]0 > [s]e [~

Figure 7.9, arrows ny ca to wiws and cing to wiws > should be omitted
8, H = Act; NActy > H = (Acty NActo) \ {7}

8, Act =24P U {1} > Act= 24P

10, s T g t > s&mdt

Remark 7.19, line 10, so = ¢, but s1 = ¢ > so = —p, but s1 = -
Corollary 7.27 (¢), =c71r > =071

11, for> of

Algorithm 32, line 647, > these lines need to be swapped
Algorithm 32, g :=11 > ye =14 \{C'} U {C,C"\C}
Definition 7.65, 2nd clause, s %+ s’ and s %+ s" > s— s and s — 5"
9, {a}@ ¢ Traces(TS1) > {a}@ ¢ Traces(TSz)

8, VO e VCTL" > V¥ € VCTL

-10, fragment of CTL* > fragment of CTL

-4, |Post(s2)| > | Post(s2) N Sim(s))

-9, s1 € Pre(sh) > s1 € Pre(s})

-1, (TS)2 > TSs)

-5, (c2,n1) > (n1,c2)

2, R on (S1 X S2) U (S1 x S2) > R on TS; & TSy

Figure 7.36, transition from {3 to £4 > should be deleted

2, {(s,5) |5 €lslr),s €S} > {(s,[s]r) | s €5}

5, (c2,m1) > (n1,c2)

11, finer that > finer than

13, so is =% _divergent whereas sy and s1 are not. > so is not ~%-divergent

whereas sp and s1 are.

pp- 546, 1. after Example 7.110, where the state labelling is indicated by the grey scale >

pp. 549, 1. Definition 7.116, clause 2, T > 7;

pp- 554, 1. 8, amounts > amounts to

11

pp- 556, 1. Figure 7.45, v1 and vo > t; and to

pp. 556, . Figure 7.45 (rechts), s1 > s

pp- 957, 1. -8, since sy and ug are R-equivalent > since s; and ug are R-equivalent
pp. 562, 1. 1, and s13p > and s1 = Jo

pp. 563, 1. 4, U P is a CTL\ formula > 3F(PpUPc) is a CTL, state-formula

pp. 564, 1. Figure 7.46, the states (0,1) and (1,0) with self-loop > should be included in
the “chain”, and not be seperate deadlock states

pp. 566, 1. 16, ¢y : (if (free > 0) then i := 0; free—— fi) > {9 : (if (free > 0) then i :=
0; free—— fi) ; goto {y

pp. 566, 1. -3, (o, t5,2,0,0) — (Lo, £(,2,0,0) > (¢1,45,2,0,0) — (€1, £;,2,0,0)
pp. 568, 1. Definition 7.134, condition 1., BN Pre(C) # @ > BN Pre;;(C) # @
pp. 569, 1. Lemma 7.135 (ii), B N Pre(C) # @ > BN Pref;(C) # @

pp. 569, 1. 7, there are some states in B that cannot reach C' by only visiting states in B.
For such states, the only possibility is to reach C via some other block D # B,C. > C
can only be reached via paths that entirely go through B.

pp. 572, 1. 11, ¢t € Exit(B) > t € Bottom(B)
pp. 577, 1. -2, quotient space S/= > quotient space S

pp. 578, 1. 4, E = {(s,t) € Sx S | L(s) = Lt)} > E = {(s,t) € Sx S| L(s) =
L(t) N s 2>t for some o € Act }

/ gdi’u

pp. 578, 1. item 3., self-loops [s] g, — [s] gjy, > self-loops [s] — [s]
pp. 592, 1. Exercise 7.29, item (B)(2), s1,8]) € R > $),52) € R
pp. 592, 1. Exercise 7.29, item (c¢), TS1—< TSy > TS; /<A TS,

Chapter 8: Partial-Order Reduction

pp- 596, 1. 19, consists > consists of

pp- 597, 1. 11, of state space > of the state space

pp. 601, 1. -11, TS be action-deterministic > TS be an action-deterministic
pp- 602, 1. 5, independent on > independent of

pp. 605, 1. s; = a(t;), t; = a(s;) > pp.
LI e

12

x] 609(A2)If o depends on ample(s)If o & «(s) depends on «(s) pp. 610, 1. 3, all ample

actions > all actions

pp. 610, 1. 4, Note that for n=0, condition (A2) is false, as the existential quantification
(over i) ranges over an empty domain. > Note that condition (A2) is false if there is
an execution fragment s <%t such that o ¢ ample(s) and o depends on ample(s). After
all, in that case n = 0 and the existential quantification (over i) ranges over an empty
domain. This observation will be formalized in Lemma 8.14.

pp. 610, 1. 6, any finite execution in T'S > any finite execution in T'S ending after the first
ample action

pp. 610, 1. 14, s1 -85 59 P25 . with B; independent of ample(s) for 0 < i < n >

s By B2y | with B; independent of ample(s) for 0 < ¢

pp. 611, 1. (A2), If « depends on ample(s) > If a & a(s) depends on «(s)
pp- 611, 1. 6, cycle sgsa2se > cycle s259

pp. 612, 1. -8 and -10, Reach(TS) > Reach(TS)

pp- 613, 1. Lemma 8.15, then for all actions > then all actions

pp- 613, 1. Lemma 8.15, adddition > addition

pp. 613, 1. 8, constraints (A1) and (A2) > constraint (A2)

pp. 613, 1. 10, Act(B(s0)) = Act(s1) > Act(B1(s0)) = Act(sy)

pp- 613, 1. below Notation 8.16, necessary > almost sufficient

pp. 616, 1. -9, ample((so,t;)) = {@it1}, for i=1,2,3 > ample({so,t;)) = {1}, for
i=0,1,2

pp- 623, 1. -10 and -4, Section 5.2 > Section 4.4.2

pp. 624, 1. 5, Section 5.2 > Section 4.4.2

pp. 625, 1. Algorithm 39, line 3, TSEO® > TSE OO

pp. 626, 1. Algorithm 40, line 14, push(t,V) > delete this line

pp. 629,1. -5, 0 = s9g— ... >t trap> o = sog—' ... ="t trap

pp. 634, 1. Algorithm 41, line 8, (3j # 4. Acti(s) x Actj(s) N D = @) > (Vj # i. Act(s) ¥
ACtj) ND =)

N:x:=x+1 b:=-b N:x:=x+1
pp. 645, 1. -4 and pp. 646, line 2, ny © =l g T b gy =TT
b:=—b
fl > N1

pp. 646, 1. Fig. 8.16 (right), edge label B2 from £y to ng 1> edge label 5 from f2 to ngy
pp. 647, 1. Fig. 8.18 (right), edge label By from Ly to ng 1> edge label 5 from f3 to ngy

13

bp.

bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.

648, 1. Algorithm 42, line 8, |J Acty > U Acty

j<k<n i<k<n
650, 1. -4, Figure 8.19 (left) > Figure 8.19 (top)

650, 1. -1, Figure 8.19 (right) > Figure 8.19 (bottom)

651, 1. 5, a-state in TS > a-state in TS

651, 1. 12, Since TS does not contain s > Since TS does not contain sg
652, 1. 10, Figure 8.19 (left) > Figure 8.19

653, 1. (A2), If a depends on ample(s) > If a € a(s) depends on «(s)
654, 1. -4, Natural vo(...) > Natural number vo(. . .)

666, 1. Exercise 8.6, ample(sg) = { a, 5,0 } > ample(sg) ={n, [, }

Chapter 9: Timed Automata

bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.

674, 1. -12, is more an intuitive than > is more intuitive than

678, 1. Definition 9.3, 5th bullet, is a transition relation t> is a finite transition relation
680, 1. -1, transition label true: x > 2,{x} > transition label z > 2:7,{z}

681, 1. Figure 9.6, coming down and going up > comingdown and goingup

683,1.-9, ... [|TA, > ...||gTA,

685, 1. Figure 9.9, (far,0,up)) — (near, 1, up), reset(x,y) > reset(z,y)

687, 1. Definition 9.10, clause for =g > should be omitted

696, 1. 2, n [~ g; or Inu(¢;) > n = g; or n = Inv(l;)

696, 1. 12, n;—1 > n;—1 (this occurs twice!)

696, 1. proof of Lemma 9.24, > The variables ¢, 7 and x depend on the cycle in 7.

For the sake of simplicity, this dependency is not treated here.

bp.
bp.

696, 1. -5, when going from location off to on > when going from location on to off

697, 1. Notation 9.26, line 1, infinitely many actions are > infinitely many actions

from Act are

bp.
bp.
bp.
bp.

699, 1. -4, more than 2 minutes > at least two minutes
699, 1. -3, VO>2—on > VOS2-on

702, 1. Figure 9.16, x > 3 : reset(z) > x > 3 : reset(x)
702, 1. -5, TCTLsemantics > TCTL semantics

14

bp.

bp.
bp.
bp.
bp.
bp.

705, 1. -12, Remark 9.35 > Lemma 9.35

do dq da do d1 da
707, 1. -1, T € sg s1 S9 > TE Sy s1 $9

709, 1. -10, of the form x < c orx < c > of the form x < ¢,z <c,z > corx >c
710, 1. -12, Figure 9.18) > Figure 9.18

T, L -2,m S iff m S1me > n=y iffn =y

713, 1. Definition 9.42, line 3, if and only if either > if and only if either for all z € C

(in the two bullets the universal quantification over x needs to be deleted)

bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
bp.
pbp.
pbp.

716, 1. -3, consraint (C) > constraint (C)

717, 1. Proof of Theorem 9.46, open intervals like]0,1[> (0, 1)
725, 1. 4, delay transitions 1> action transitions

726, 1. -3, > add: where I is the set of initial states of T'S(T'A)
730, 1. 4, V0a > aUb

730,1. 19, Gar> aUb

730, 1. 21, time-convergent > time-divergent

730, 1. -4, fori < jr> foralli<j

730, 1. -4, T Eror, Oa > T FErer, aUb

731, 1. Example 9.63, with n(z) > 1 > with n(z) =2

732, 1. 6, several state regions > several states

740, 1. Exercise 9.1, edge label at location on, x > 2 : sw_on, reset(z) > x > 2:

switch_on, reset(x)

Chapter 10: Probabilistic Systems

bp.
bp.
bp.
bp.

749, 1. Example 10.2, senf off > sent off
753, 1. Notation 10.6, 1. 1, Post*(s) > Post(s)
774, 1. 3, any successor of t > any state reachable from ¢

776, 1. -3, absorbing states > states

15

pp. 778, 1. 4, P'(s,t) = ... >

1 ifs=tand s€ BUS\ (CUB)
P'(s,t)=¢ 0 ifs#tand s€ BUS\ (CUB)
P(s,t) otherwise.

pp. 778, 1. -9, {4,5,6,won } > { won }
pp. 780, 1. 12, it can be shown that Pr(n = 00) < 1 > it can be shown that Pr(n = ¢0) > 0

pp. 782, 1. -3, expresses in addition that almost surely the player will always win > ex-
presses that within five steps, the player reaches a state from which he will win almost
surely

pp- 821, 1. 13, time complezity of the size I> time complexity in the size
pp. 851, 1. Theorem 10.100, > Add the following condition:) gz is minimal.

pp. 857, 1. 2, Z P(s,a,t) oy > — Z P(s,a,t) -z
seS7\{s} s€S?\{s}

pp. 863, 1. Algorithm 46, return 7' > return S\ 7T

pp- 865, 1. Lemma 10.113 + succeeding paragraph, > should be after Theorem 10.109
pp. 870, 1. Lemma 10.119, any s € S > any s€ T

pp. 876, 1. 11, Unop > Unon

pp- 883, 1. Theorem 10.129 and just before, is in 2EXPTIME > is 2EXPTIME-complete
(twice)

pp- 903, 1. Exercise 10.14, o =00%a > ¢ =00a

pp. 903/904, 1. Exercise 10.17, Markov chain M > Markov chain M where all states are
equally labeled

pp. 905, 1. Exercise 10.22, > Compute also the values y;, = Pr'"®(s = C' U B) with
C=5\{s3}and B={s¢}

pp. 905, 1. Exercise 10.23, (a), 1. and (b) > (a), (b), (c)

Appendix

pp. 912, 1. footnote, 0 = A1AsAs3... > 0= AgA1A,...
pp- 918, 1. 8, not to 1 > not ton

16

pp- 925, 1. 1, they are composed of simple paths > they are composed of paths, at least
one of which is simple.

