

Errata "Principles of Model Checking" (July 2013)

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen, The Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Holger Hermanns and Moritz Hahn (Saarland University), Dave Parker (Oxford University, UK), Jeroen Ketema and Mark Timmer (University of Twente, NL), Stephen Siegel (University of Delaware, USA), René Thiemann (U. Innsbruck, AT), Martin Lange (University of Kassel and LMU, D), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Moti Ben-Ari (Weizmann Institute, ISR), Verena Wolf (Saarland University), Prakash Panangaden (McGill, Canada), Andrzej Zbrzezny (Jan Dlugosz University), Tobias Schmit-Lechner (U. Freiburg), Stefan Leue (U. Konstanz), Johann Schuster (Uni Bundeswehr, Munich), Chris J. Myers (University of Utah, USA), Erika Abráhám, Christian Dehnert, Alexander Nyßen, Daniel Weber and Martin Zimmermann (RWTH Aachen University), Michael Ummels (ENS Cachan, France), Erik Wogensen (Aalborg University, Denmark) and the students at the RWTH Aachen University attending the "(Advanced) Model Checking" course.

Comments are provided as:

⟨ page number ⟩ ⟨ line number ⟩ ⟨ short quote of the wrong word(s) ⟩ ▷ ⟨ correction ⟩

Line number $-n$ means line number n from the last line on that page.

Chapter 1: System Verification

pp. 1, l. -5, *Pentium II* ▷ Pentium

pp. 5, l. 9, *lines of code lines* ▷ lines of code

pp. 5, l. footnote, *much higher* ▷ as the number of lines of code in the "golden" version of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp. 6, l. 4, *Pentium II* ▷ Pentium

Chapter 2: Modeling Concurrent Systems

pp. 20, l. 8, *arabic* ▷ Latin

pp. 25, l. 11, *heading Example 2.8* \triangleright Execution fragments of the Beverage Vending Machine

pp. 27, l. -15, *function* λ_y \triangleright The function λ_y has no impact on the transitions (as suggested), but only affects the state labeling.

pp. 31, l. Fig. 2.3, *beer, soda* \triangleright *bget* and *sget*, respectively

pp. 31, l. Fig. 2.3, *state with 1 beer, 2 soda* \triangleright the grey circle should be a white circle.

pp. 34, l. 2, $\langle \ell, v \rangle$ \triangleright $\langle \ell, \eta \rangle$

pp. 40, l. Def. 2.21, $\text{Effect}(\alpha, \eta) = \text{Effect}_i(\alpha, \eta)$ \triangleright $\text{Effect}(\alpha, \eta)(v) = \begin{cases} \text{Effect}_i(\alpha, \eta|_{\text{Var}_i})(v) & \text{if } v \in \text{Var}_i \\ \eta(v) & \text{otherwise} \end{cases}$

pp. 42, l. -10, *interlock* \triangleright interleave

pp. 46, l. Fig. 2.9, *locations in PG*₂ \triangleright should be subscripted with 2 (rather than 1)

pp. 48, l. -1, $H = \text{Act}_1 \cap \text{Act}_2$ \triangleright $H = (\text{Act}_1 \cap \text{Act}_2) \setminus \{\tau\}$

pp. 51, l. Fig. 2.12, $T_1 \parallel T_2$ \triangleright $TS_1 \parallel TS_2$ (this occurs twice)

pp. 51, l. Fig. 2.12, \triangleright All downgoing transitions should be labeled with *request*, and all upgoing ones with *release*

pp. 51, l. -7, *all trains* \triangleright the train

pp. 52, l. 3, *(above)* \triangleright (page 54)

pp. 53, l. -1, *finite set of channels* \triangleright set of channels

pp. 54, l. Fig. 2.16, *the transition labeled emanating from state* $\langle \text{far}, 3, \text{down} \rangle$ \triangleright should be removed, and all the states that thus become unreachable

pp. 54, l. Fig. 2.16, *the transition labeled exit emanating from state* $\langle \text{in}, 1, \text{up} \rangle$ \triangleright should be removed, and all the states that thus become unreachable

pp. 55, l. -10, $(\text{Cond}(\text{Var}) \times) \triangleright \text{Cond}(\text{Var}) \times$

pp. 60, l. Definition 2.33, \uplus (*occurs four times*) $\triangleright \cup$

pp. 62, l. -3, $\text{gen_msg}(1) \triangleright \text{snd_msg}(1)$

pp. 62, l. 4, *ack* \triangleright message

pp. 65, l. Fig. 2.21, *second do* $\triangleright \text{od}$

pp. 66, l. 8, *Staements build* \triangleright Statements built

pp. 71, l. 15, *label in conclusion of inference rule* $c!e$ \triangleright it is meant that the value of expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, l. 1, $\xi[c := v_2 \dots v_k] \triangleright \xi' = \xi[c := v_2 \dots v_k]$

pp. 74, l. 1, $\xi[c := v_1 \dots v_k v] \triangleright \xi' = \xi[c := v_1 \dots v_k v]$

pp. 76, l. Figure 2.23 (top), $x \triangleright x'$
 pp. 78, l. 8, $800,000 \cdot 2^{50} \triangleright 8,000,000 \cdot 2^{50}$
 pp. 79, l. -6,-8, $|dom(c)|^{cp(c)} \triangleright |dom(c)|^{cap(c)}$
 pp. 82, l. Exercise 2.2, line 2, $P_i is \triangleright P_i$ is

Chapter 3: Linear-Time Properties

pp. 89, l. 9, *parallel systems* \triangleright reactive systems
 pp. 90, l. 1, *Fault Designed Traffic Lights* \triangleright Faulty Traffic Lights
 pp. 91, l. 7, *a deadlock occurs when all philosophers* \triangleright a deadlock may occur when all philosophers
 pp. 92, l. Fig. 3.2, *request and release* \triangleright req and rel
 pp. 92, l. 6, *request₄* \triangleright *req_{4,4}*; similar to the other request actions
 pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, *state available_i* \triangleright *available_{i,i}*
 pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, *state available_{i+1}* \triangleright *available_{i,i+1}*
 pp. 93, l. 10, *The corresponding is* \triangleright The corresponding condition is
 pp. 94, l. Fig. 3.4, *falls x_i* \triangleright *x_i*
 pp. 96, l. 3, *finite paths* \triangleright finite path fragments
 pp. 96, l. 4, *infinite path* \triangleright infinite path fragment
 pp. 98, l. 1, *Trace and Trace Fragment* \triangleright Trace
 pp. 100, l. 9, *(over AP)* \triangleright (over 2^{AP})
 pp. 101, l. -3, *red₁ green₂* \triangleright *red₁, green₂*
 pp. 103, l. 11, *lwait_i* \triangleright *wait_i*
 pp. 103, l. 11, $\exists k \geq j. wait_i \in A_k \triangleright \exists k > j. crit_i \in A_k$
 pp. 105, l. Example 3.16, line 4, $\langle wait_1, wait_2, y = 1 \rangle \rightarrow \langle wait_1, crit_2, y = 0 \rangle \triangleright \langle w_1, w_2, y = 1 \rangle \rightarrow \langle w_1, c_2, y = 0 \rangle$
 pp. 111, l. Theorem 3.21, $M = \sum_{s \in S} |Post(s)| \triangleright M = \sum_{s \in \text{Reach}(TS)} |Post(s)|$
 pp. 111, l. 22, *The time needed to check s $\models \Phi$ is linear in the length of Φ* \triangleright Add: This implicitly assumes that $a \in L(s)$ can be checked in $\mathcal{O}(1)$ time.
 pp. 112, l. -2, \triangleright A minimal bad prefix is one such that the first occurrence of Φ is the last symbol in the word.

pp. 113, l. Figure 3.9, $s_0 \xrightarrow{\text{yellow}} s_1 \triangleright s_0 \xrightarrow{\text{yellow} \wedge \neg \text{red}} s_1$

pp. 115, l. Lemma 3.27, *Proof* \triangleright add the following sentence to the beginning of the proof: First note that for $P = (2^{AP})^\omega$ the claim trivially holds, since $\text{closure}(P) = P$ and the fact that P is a safety property since \overline{P} is empty. In the remainder of the proof we consider $P \neq (2^{AP})^\omega$.

pp. 117, l. -3, *for any transition system TS*. \triangleright for any transition system *TS* without terminal states.

pp. 118, l. 10, 11, $\pi^{m_0} \pi^{m_1} \pi^{m_2} \dots$ of $\pi^0 \pi^1 \pi^2 \dots$ such that $\triangleright \pi^{m_0}, \pi^{m_1}, \pi^{m_2}, \dots$ of $\pi^0, \pi^1, \pi^2, \dots$ such that

pp. 124, l. -3, *By definition* \triangleright By Lemma 3.27

pp. 130, l. 3, *without being taken beyond* \triangleright without being taken infinitely often beyond

pp. 131, l. 17, *assignment* $x = -1 \triangleright$ assignment $x := -1$

pp. 132, l. 2, *an execution fragment ... but not strongly A-fair*. \triangleright an execution fragment that visits infinitely many states in which no *A*-action is enabled is weakly *A*-fair (as the premise of weak *A*-fairness does not hold) but may not be strongly *A*-fair.

pp. 134, l. 10, *any finite trace is fair by default* \triangleright any finite trace is strongly or weakly fair by default

pp. 136, l. -5, *strong fairness property* \triangleright fairness property

pp. 138, l. 4, *It forces synchronization actions to happen infinitely often*. \triangleright It forces synchronization actions to happen infinitely often provided they are enabled infinitely often.

pp. 138, l. 9, *(3.1) does not permit this*. \triangleright (3.1) does not permit this (except if $\text{Syn}_{i,j}$ is a singleton set).

pp. 138, l. -14, *This requires that ... is enabled*. \triangleright This requires that infinitely often a synchronization takes place when such synchronization is infinitely often enabled.

pp. 138, l. -2, *Weak fairness is appropriate for the internal actions $\alpha \in \text{Act}_i \setminus \text{Syn}_i$, as the ability to perform an internal action is preserved until it will be executed*. \triangleright should be deleted

pp. 141, l. 5, *the set of properties that has* \triangleright the property that has

pp. 145, l. Exercise 3.5(g), *between zero and two* \triangleright between zero and non-zero

Chapter 4: Regular Properties

pp. 152, l. 2, *an alphabet* \triangleright a finite alphabet

pp. 157, l. -11, $w = A_1 \dots A_n \in \Sigma \triangleright w = A_1 \dots A_n \in \Sigma^*$

pp. 157, l. -10, *starts in $Q_0 \triangleright$ starts in state Q_0*

pp. 157, l. -4, $Q_0 \triangleright \{Q_0\}$

pp. 158, l. -14, *NFAs can be much more efficient. \triangleright NFAs can be much smaller.*

pp. 161, l. -9, (2) ... *for all $1 \leq i < n \triangleright \dots$ for all $0 \leq i < n$.* (Note: the invariant false has minimal bad prefix ε .)

pp. 161, l. -8, $1 \leq i < n \triangleright 0 \leq i < n$

pp. 163, l. Example 4.15, *Minimal bad prefixes for this safety property constitute the language $\{pay^n drink^{n+1} \mid n \geq 0\} \triangleright$ Bad prefixes for this safety property constitute the language $\{\sigma \in (2^{\{pay, drink\}})^* \mid w(\sigma, drink) > w(\sigma, pay)\}$ where $w(\sigma, a)$ denotes the number of occurrences of a in σ .*

pp. 164, l. 5,6, *two NFAs intersect. \triangleright the languages of two NFAs intersect.*

pp. 164, l. -8, *path fragment $\pi \triangleright$ initial path fragment π*

pp. 164, l. -6, *TS $\otimes \mathcal{A}$ which has an initial state \triangleright TS $\otimes \mathcal{A}$ such that there exists an initial state*

pp. 167, l. 7, 11, -4, $P_{inv(A)} \triangleright P_{inv(\mathcal{A})}$

pp. 167, l. -2, $q_1, \dots, q_n \notin F \triangleright$ Note: this condition is not necessary.

pp. 168, l. 1, $0 \leq i \leq n \triangleright 0 < i \leq n$

pp. 169, l. Theorem 4.22, $|TS| \cdot |\mathcal{A}| \triangleright |TS \otimes \mathcal{A}|$

pp. 171, l. 8, *single word \triangleright a set containing a single word*

pp. 171, l. 11, *in $\Sigma \triangleright$ in \mathcal{I}*

pp. 177, l. -7, *Example 4.13 on page 161 \triangleright Example 4.14 on page 162*

pp. 183, l. -3, -1, $\mathcal{L}_{q_1 q_3} = \dots \triangleright \mathcal{L}_{q_1 q_3} = C^* AB(B + BC^* AB)^*$

pp. 188, l. -2, *containing a b \triangleright containing only a b*

pp. 191, l. -5, *no accepting run that starts in $q_2 \triangleright$ no accepting run that reaches q_2*

pp. 196, l. Example 4.57, *page 193 \triangleright page 194*

pp. 200, l. -7, $\bigwedge_{q \in Q} \triangleright \bigwedge_{q \in F}$

pp. 202, l. Fig. 4.22, \triangleright The two states should be labeled s_0 and s_1 , respectively

pp. 203, l. 4, $\overline{P} = \text{"eventually forever } \neg \text{green} \triangleright P = \text{infinitely often green}$

pp. 206, l. Proof:, $TS = (S, Act, \rightarrow, I, AP) \triangleright TS = (S, Act, \rightarrow, I, AP, L)$

pp. 207, l. -4, *We now DFS-based cycle checks ... checking \triangleright We now present a DFS-based algorithm for persistence checking that searches backwards edges to check for cycles.*

pp. 212, l. 6, *ignores all states in $T \triangleright$ does not revisit the states in T*

pp. 215, l. Figure, $t \in R_{in} \triangleright t \in T$

pp. 218, l. 10, *Regula r* \triangleright Regular

Chapter 5: Linear Temporal Logic

pp. 230, l. 5, *eventually in the future* \triangleright now or eventually in the future

pp. 236, l. Figure 5.2, \triangleright It is assumed that $\sigma = A_0A_1A_2\dots$

pp. 240, l. -10, $\delta_{r_2} = \neg r_1 \triangleright \delta_{r_2} = \neg r_2$

pp. 241, l. Fig. 5.6, \triangleright Note that the inputs of the r registers are on the right, and their outputs on the left.

pp. 243, l. -1, $\square \left(\bigvee_{1 \leq i \leq N} \text{leader}_i \wedge \bigwedge_{\substack{1 \leq j \leq N \\ j \neq i}} \neg \text{leader}_j \right) \triangleright \square \bigvee_{1 \leq i \leq N} \left(\text{leader}_i \wedge \bigwedge_{\substack{1 \leq j \leq N \\ j \neq i}} \neg \text{leader}_j \right)$

pp. 244, l. 7, $\square \diamond \left(\bigvee_{1 \leq i \leq N} \text{leader}_i \wedge \bigwedge_{\substack{1 \leq j \leq N \\ j \neq i}} \neg \text{leader}_j \right) \triangleright \square \diamond \bigvee_{1 \leq i \leq N} \left(\text{leader}_i \wedge \bigwedge_{\substack{1 \leq j \leq N \\ j \neq i}} \neg \text{leader}_j \right)$

pp. 256, l. -3, $(\sigma[i..] \models \varphi) \wedge \forall k \leq i. \sigma[k..] \models \psi \triangleright (\sigma[i..] \models \varphi \wedge \forall k \leq i. \sigma[k..] \models \psi)$

pp. 263, l. 20, $Act' = Act \uplus \{ \text{begin} \} \triangleright Act' = Act$ with $\text{begin} \notin Act$

pp. 266, l. -8, *interlocked* \triangleright interleaved

pp. 267, l. 7, *as soon as* \triangleright before

pp. 270, l. Fig. 5.15, \triangleright The bottom cell should be white and not gray.

pp. 276, l. -11, $\psi \in B$ if and only if $\dots \triangleright \psi \in B$ if and only if \dots

pp. 278, l. Proof of Theorem 5.37, \triangleright It is assumed that $\sigma = A_0A_1A_2\dots$ is such that $A_i \subseteq \text{closure}(\varphi)$, i.e., $A_i = B_i \cap AP$ means $A_i \cap \text{closure}(\varphi) = B_i \cap AP$

pp. 281, l. 1-5, *For $B_0B_1B_2\dots$ a sequence \dots we have for all $\psi \in \text{closure}(\varphi)$: $\psi \in B_0 \Leftrightarrow A_0A_1A_2\dots \models \psi \triangleright$ For all $\psi \in \text{closure}(\varphi)$ and $B_0B_1B_2\dots$ a sequence \dots we have: $\psi \in B_0 \Leftrightarrow A_0A_1A_2\dots \models \psi$*

pp. 283, l. 10, $\neq \bigcirc \psi \in B$ if and $\dots \triangleright \neg \bigcirc \psi \in B$ if and \dots

pp. 283, l. 17, *and* $\varphi = \bigcirc a \in B_1, B_2 \triangleright$ *and* $\varphi = a \in B_1, B_2$

pp. 284, l. -14, $B_3 B_3 B_1 B_4^\omega \triangleright B_3 B_3 B_1 B_5^\omega$

pp. 287, l. -5, $|\neg(fair \rightarrow \varphi)| = |fair| + |\varphi| \triangleright |\neg(fair \rightarrow \varphi)| = |\neg(\neg fair \vee \varphi)| = |fair| + |\varphi| + 3$

pp. 289, l. 11, *a new vertex b to G* \triangleright a new vertex b to TS

pp. 292, l. Figure 5.23, \triangleright the self-loop at state $P(n)$ should be omitted

pp. 292, l. -1, $\bigcirc^{2i-1}(q, A, i) \rightarrow \triangleright \text{ begin} \wedge \bigcirc^{2i-1}(q, A, i) \rightarrow$
 pp. 294, l. -6, $\mathcal{G}_{varphi} \triangleright \mathcal{G}_\varphi$
 pp. 297, l. 7, *Membership to* \triangleright *Membership in*
 pp. 303, l. Exercise 5.7(b), $W \triangleright Y$ (to avoid confusion with unless)
 pp. 303, l. Exercise 5.8(a), $\varphi_1 \wedge \varphi_2 \triangleright \varphi_1 R \varphi_2$

Chapter 6: Computation Tree Logic

pp. 318, l. -10, $\wedge, \rightarrow \triangleright \vee, \rightarrow$
 pp. 320, l. -4, *state formula* \triangleright *State formula*
 pp. 327, l. -12, *since* $\exists(\varphi U \psi \vee \Box \varphi) \triangleright$ *since* $\forall(\varphi U \psi \vee \Box \varphi)$
 pp. 333, l. 10, $\neg \exists \Diamond \neg \Phi = \neg \exists(\text{true} U \Phi) \triangleright \neg \exists \Diamond \neg \Phi \equiv \neg \exists(\text{true} U \neg \Phi)$
 pp. 336, l. 11, *CTL formulae* $\exists \Diamond (a \wedge \forall \bigcirc a)$ *and* $\Diamond (a \wedge \bigcirc a) \triangleright$ *CTL formula* $\exists \Diamond (a \wedge \forall \bigcirc a)$
and LTL formula $\Diamond (a \wedge \bigcirc a)$
 pp. 338, l. 5, $TS_n = (S'_n, \dots \triangleright TS'_n = (S'_n, \dots$
 pp. 338, l. -5 and -6, \triangleright *transitions to* s'_{n-1} *are non-existing for* $n=0$
 pp. 340, l. -10, *and* $\varphi = \forall \Diamond \exists \Diamond a \triangleright$ *and* $\varphi = \forall \Box \exists \Diamond a$
 pp. 342, l. Algorithm 13, *and* -8 and -4, *maximal genuine* \triangleright *maximal proper*
 pp. 343, l. 4, *subformula of* $\Psi \triangleright$ *subformula of* Ψ'
 pp. 345, l. -2, $\text{Sat}(\exists(\Phi U \Psi) \triangleright \text{Sat}(\exists(\Phi U \Psi))$
 pp. 345, l. proof of (g)(ii), *Let* $\pi = s_0 s_1 s_2 \dots$ *be a path starting in* $s=s_0$. *(As TS has no terminal states, such a path exists.)* \triangleright *Delete.*
 pp. 349, l. -9, -7, $(a = c) \wedge (a \neq b) \triangleright (a \leftrightarrow c) \wedge (a \not\leftrightarrow b)$
 pp. 349, l. -8, *Algorithm 14 (see page 348)* \triangleright *Algorithm 15*
 pp. 351, l. Algorithm 15, \triangleright *comments in the first two lines of algorithm need to be swapped while replacing E by T and T by E*
 pp. 354, l. Example 6.28, *see the gray states in Figure 6.13(a).* \triangleright *cf. Figure 6.13(b).*
 pp. 354, l. Example 6.28, *Figure 6.13(b), Figure 6.13(c)* \triangleright *Figure 6.13(c), Figure 6.13(d)*
 pp. 358, l. 11, \triangleright *Note that the length of* $\Phi_n \in \mathcal{O}(n!)$.
 pp. 361, l. Example 6.35, \Rightarrow *in the formulas* $\triangleright \rightarrow$
 pp. 371, l. -6, *ifstatement* \triangleright *if statement*

pp. 372, l. Algorithm 19, line 4, $C \cap \text{Sat}(b_j) \neq \emptyset \triangleright C \cap \text{Sat}(b_i) \neq \emptyset$

pp. 374, l. 1, *path formula of the form* $\exists \varphi \triangleright$ state formula of the form $\exists \varphi$

pp. 374, l. 6, *counterexamples* \triangleright counterexamples

pp. 378, l. -6, *Eaxmple* \triangleright Example

pp. 380, l. 12, $(a \wedge a') \cup (\neg a \wedge \neg a' \wedge a_{\text{fair}}) \triangleright (a \wedge \neg a') \cup (\neg a \wedge \neg a' \wedge a_{\text{fair}})$

pp. 381, l. 9, $\square \diamond (q \wedge r) \rightarrow \square \diamond \neg(q \vee r) \triangleright \square \diamond (a \wedge b) \rightarrow \square \diamond \neg(a \vee b)$

pp. 381, l. 9 and 12, $b = c \triangleright b \leftrightarrow c$

pp. 383, l. 12, $0 \leq n \leq m \leq k \triangleright 1 \leq n \leq m \leq k$

pp. 383, l. 9 and 10, $\dots z_m \triangleright \dots, z_m$

pp. 386, l. 13, 15 (twice) and 19, $s\{\bar{y} \leftarrow \bar{z}\} \triangleright s\{\bar{z} \leftarrow \bar{y}\}$

pp. 387, l. 18, $t\{\bar{x}/\bar{x}'\} \triangleright t\{\bar{x}' \leftarrow \bar{x}\}$

pp. 388, l. 7, $x' \triangleright x'_1$

pp. 388, l. 7, $\bigwedge_{j < i \leq n} (x_j \leftrightarrow x'_j) \triangleright \bigwedge_{i+1 < j \leq n} (x_j \leftrightarrow x'_j)$

pp. 388, l. 7-8, \triangleright add conjunct $\wedge \left(\neg x_1 \rightarrow x'_1 \wedge \bigwedge_{1 < j \leq n} (x_j \leftrightarrow x'_j) \right)$

pp. 388, l. 9, $\chi_B(\bar{x}) = x_1 \triangleright \chi_B(\bar{x}) = \neg x_1$

pp. 388, l. 14–17, \triangleright x and x' should be swapped

pp. 388, l. Example 6.58 (four times), $\{x \leftarrow x'\} \triangleright \{x' \leftarrow x\}$

pp. 389, l. 9, $\bigwedge_{1 \leq i \leq n} \Delta_i(\bar{x}_i, \bar{x}'_i) \triangleright \bigwedge_{1 \leq i \leq m} \Delta_i(\bar{x}_i, \bar{x}'_i)$

pp. 389, l. 16, $\bigvee_{1 \leq i \leq m} \triangleright \bigvee_{1 \leq i \leq m}$

pp. 390, l. 8, $\exists s' \in S \text{ s.t. } s' \in \text{Post}(s) \triangleright \exists s' \in S. s' \in \text{Post}(s)$

pp. 390, l. Algorithm 20, line 4, $f_{j+1}(\bar{x}) := f_{j+1}(\bar{x}) \vee \dots \triangleright f_{j+1}(\bar{x}) := f_j(\bar{x}) \vee \dots$

pp. 391, l. Algorithm 21, line 4, $f_{j+1}(\bar{x}) := f_{j+1}(\bar{x}) \wedge \dots \triangleright f_{j+1}(\bar{x}) := f_j(\bar{x}) \wedge \dots$

pp. 391, l. Algorithm 21, line 4, *return* \triangleright **return**

pp. 391, l. 19, *can be ruled as* \triangleright can be ruled out as

pp. 393, l. Figure 6.21 (right), *solid line between z_3 and 0* \triangleright dashed line between z_3 and 0

pp. 395, l. 5, *or $i = j$* \triangleright or $z_i = z_j$

pp. 396, l. -15, *The semantics* \triangleright The semantics of

pp. 396, l. -1, $f_{\text{succ}_b(v)}|_{z=c} \triangleright f_{\text{succ}_b(v)}|_{z=b}$

pp. 396, l. Def. 6.65, *for node* \triangleright for node v

pp. 398, l. 9, *left subtree* \triangleright right subtree

pp. 400, l. -9, $\langle \text{var}(v), \text{succ}_1(v), \text{succ}_0(v) \rangle = \langle \text{var}(w), \text{succ}_1(w), \text{succ}_0(w) \rangle \triangleright \text{var}(v) = \text{var}(w)$ and $f_{\text{succ}_0(v)} = f_{\text{succ}_0(w)}$ and $f_{\text{succ}_1(v)} = f_{\text{succ}_1(w)}$

pp. 402, l. 6, $f_v = (\neg z \wedge f_{\text{succ}_0(v)}) \wedge (z \wedge f_{\text{succ}_1(v)}) = (\neg z \wedge f_w) \wedge (z \wedge f_w) = f_w \triangleright f_v = (\neg z \wedge f_{\text{succ}_0(v)}) \vee (z \wedge f_{\text{succ}_1(v)}) = (\neg z \wedge f_w) \vee (z \wedge f_w) = f_w$

pp. 402, l. 8, $f_v = (\neg z \wedge f_{\text{succ}_0(v)}) \wedge (z \wedge f_{\text{succ}_1(v)}) = (\neg z \wedge f_{\text{succ}_0(w)}) \wedge (z \wedge f_{\text{succ}_1(w)}) = f_w \triangleright f_v = (\neg z \wedge f_{\text{succ}_0(v)}) \vee (z \wedge f_{\text{succ}_1(v)}) = (\neg z \wedge f_{\text{succ}_0(w)}) \vee (z \wedge f_{\text{succ}_1(w)}) = f_w$.

pp. 403, l. 10, *ismorphism* \triangleright isomorphism

pp. 405, l. 2, $z_m = a_m, z_m = b_m, \dots, z_i = a_i, z_i = b_i \triangleright z_m = a_m, y_m = b_m, \dots, z_i = a_i, y_i = b_i$

pp. 405, l. 3, $z_m = a_m, z_m = b_m, \dots, z_{i+1} = a_{i+1}, z_{i+1} = b_{i+1}, z_i = a_i \triangleright z_m = a_m, y_m = b_m, \dots, z_{i+1} = a_{i+1}, y_{i+1} = b_{i+1}, z_i = a_i$

pp. 405, l. -5, $I_{\bar{b}} = \{i \in \{1, \dots, m\} \mid b_i = 1\} \triangleright I_{\bar{b}} = \{i \in \{1, \dots, m\} \mid b_i = 1\}$

pp. 405, l. -4, As $f \bar{b}, \bar{c} \in \{0, 1\}^m \triangleright$ As $\bar{b}, \bar{c} \in \{0, 1\}^m$

pp. 409, l. -12, $\text{info}(v) = \langle \text{var}(v), \text{succ}_0(v), \text{succ}_0(v) \rangle \triangleright \text{info}(v) = \langle \text{var}(v), \text{succ}_1(v), \text{succ}_0(v) \rangle$

pp. 412, l. 7, $u \triangleright v$

pp. 412, l. Algorithm 22, line -4, *rule (?)* \triangleright rule

pp. 413, l. 13, $f_2 z_1 = b_1, \dots, z_i = b_i \triangleright f_2|_{z_1=b_1, \dots, z_i=b_i}$

pp. 414, l. Algorithm 23, line -2, **return** *node w* \triangleright should be just before final **fi**

pp. 417, l. heading Algorithm 24, $(v, \bar{x} \leftarrow \bar{x}') \triangleright (v, \bar{x}' \leftarrow \bar{x})$

pp. 417, l. Algorithm 24, \triangleright swap \bar{x} and \bar{x}'

pp. 417, l. Algorithm 24, line 4, *ist* \triangleright is a

pp. 417, l. Algorithm 24, \triangleright replace z by x and u by v

pp. 418, l. -9, $f\{x \leftarrow x'\} \triangleright f\{x' \leftarrow x\}$

pp. 418, l. -6, $f|_{x=\bar{b}} \triangleright f|_{x=b}$

pp. 420, l. Algorithm 26, line 10 and 11, $\bar{x}, \bar{x}'); \triangleright \)$;

pp. 420, l. Algorithm 26, line 6, 7, 9, 10, $v|_{x_i=0}$ and $v|_{x_i=1}$, respectively $\triangleright v|_{x'_i=0}$ and $v|_{x'_i=1}$, respectively

pp. 420, l. Algorithm 26, line -5, $w_0 := \text{RelProd}(u|_{x'_i=0}, v); w_1 := \text{RelProd}(u|_{x'_i=1}, v); \triangleright w_0 := \text{RelProd}(u|_{x'_i=0}, v|_{x'_i=0}); w_1 := \text{RelProd}(u|_{x'_i=1}, v|_{x'_i=1});$

pp. 426, l. -1, $\exists \lozenge(a \wedge \exists \lozenge b) \wedge \exists \lozenge(b \wedge \exists \lozenge a) \triangleright \exists \lozenge(a \wedge \exists \lozenge b) \vee \exists \lozenge(b \wedge \exists \lozenge a)$

Chapter 7: Equivalences and Abstraction

pp. 454, l. 3, *Sssume* \triangleright Assume

pp. 459, l. 7, $[s]_\sim \xrightarrow{\tau} [s']_\sim \triangleright [s]_\sim \xrightarrow{\tau'} [s']_\sim$

pp. 464, l. Figure 7.9, *arrows* $n_1 c_2$ to $w_1 w_2$ and $c_1 n_2$ to $w_1 w_2 \triangleright$ should be omitted

pp. 466, l. 8, $H = \text{Act}_1 \cap \text{Act}_2 \triangleright H = (\text{Act}_1 \cap \text{Act}_2) \setminus \{\tau\}$

pp. 467, l. 8, $\text{Act} = 2^{\text{AP}} \cup \{\tau\} \triangleright \text{Act} = 2^{\text{AP}}$

pp. 467, l. 10, $s \xrightarrow{\tau} \text{act } t \triangleright s \xrightarrow{L(s)} \text{act } t$

pp. 469, l. Remark 7.19, line 10, $s_2 \models \varphi$, but $s_1 \not\models \varphi \triangleright s_2 \not\models \neg\varphi$, but $s_1 \models \neg\varphi$

pp. 475, l. Corollary 7.27 (c), $\equiv_{\text{CTL}} \triangleright \equiv_{\text{CTL}}^*$

pp. 478, l. 11, *fo* \triangleright of

pp. 489, l. Algorithm 32, line 6+7, \triangleright these lines need to be swapped

pp. 489, l. Algorithm 32, $\Pi_{\text{old}} := \Pi \triangleright \Pi_{\text{old}} := \Pi_{\text{old}} \setminus \{C'\} \cup \{C, C' \setminus C\}$

pp. 512, l. Definition 7.65, 2nd clause, $s \xrightarrow{\alpha} s'$ and $s \xrightarrow{\alpha} s'' \triangleright s \rightarrow s'$ and $s \rightarrow s''$

pp. 513, l. 9, $\{a\} \not\in \text{Traces}(\text{TS}_1) \triangleright \{a\} \not\in \text{Traces}(\text{TS}_2)$

pp. 518, l. 8, $\forall \Phi \in \forall \text{CTL}^* \triangleright \forall \Phi \in \forall \text{CTL}$

pp. 519, l. -10, *fragment of CTL*^{*} \triangleright fragment of CTL

pp. 522, l. -4, $|\text{Post}(s_2)| \triangleright |\text{Post}(s_2) \cap \text{Sim}(s'_1)$

pp. 528, l. -9, $s_1 \in \text{Pre}(s'_2) \triangleright s_1 \in \text{Pre}(s'_1)$

pp. 532, l. -1, (TS)2 \triangleright TS₂)

pp. 537, l. -5, $\langle c_2, n_1 \rangle \triangleright \langle n_1, c_2 \rangle$

pp. 539, l. 2, \mathcal{R} on $(S_1 \times S_2) \cup (S_1 \times S_2)$ \triangleright \mathcal{R} on $\text{TS}_1 \oplus \text{TS}_2$

pp. 541, l. Figure 7.36, *transition from* ℓ_3 *to* $\ell_4 \triangleright$ should be deleted

pp. 541, l. -2, $\{(s, s') \mid s' \in [s]_{\mathcal{R}}, s \in S\} \triangleright \{(s, [s]_{\mathcal{R}}) \mid s \in S\}$

pp. 542, l. 5, $\langle c_2, n_1 \rangle \triangleright \langle n_1, c_2 \rangle$

pp. 544, l. 11, *finer that* \triangleright finer than

pp. 546, l. 13, s_2 is $\approx_{\text{TS}}^{\text{div}}$ -divergent whereas s_0 and s_1 are not. $\triangleright s_2$ is not $\approx_{\text{TS}}^{\text{div}}$ -divergent whereas s_0 and s_1 are.

pp. 546, l. after Example 7.110, *where the state labelling is indicated by the grey scale* \triangleright

pp. 549, l. Definition 7.116, clause 2, $\widehat{\pi}_1 \triangleright \widehat{\pi}_i$

pp. 554, l. 8, *amounts* \triangleright amounts to

pp. 556, l. Figure 7.45, v_1 and $v_2 \triangleright t_1$ and t_2

pp. 556, l. Figure 7.45 (rechts), $s_1 \triangleright s_2$

pp. 557, l. -8, since s_2 and u_2 are \mathcal{R} -equivalent \triangleright since s_1 and u_2 are \mathcal{R} -equivalent

pp. 562, l. 1, and $s_1 \exists \varphi \triangleright$ and $s_1 \models \exists \varphi$

pp. 563, l. 4, $\Phi_B \cup \Phi_C$ is a $CTL_{\setminus \circlearrowright}$ formula $\triangleright \exists(\Phi_B \cup \Phi_C)$ is a $CTL_{\setminus \circlearrowright}$ state-formula

pp. 564, l. Figure 7.46, the states $(0, 1)$ and $(1, 0)$ with self-loop \triangleright should be included in the “chain”, and not be separate deadlock states

pp. 566, l. 16, $\ell_2 : \langle \text{if } (\text{free} > 0) \text{ then } i := 0; \text{free}-- \text{ fi} \rangle \triangleright \ell_2 : \langle \text{if } (\text{free} > 0) \text{ then } i := 0; \text{free}-- \text{ fi} \rangle ; \text{goto } \ell_0$

pp. 566, l. -3, $\langle \ell_0, \ell'_2, 2, 0, 0 \rangle \rightarrow \langle \ell_0, \ell'_0, 2, 0, 0 \rangle \triangleright \langle \ell_1, \ell'_2, 2, 0, 0 \rangle \rightarrow \langle \ell_1, \ell'_0, 2, 0, 0 \rangle$

pp. 568, l. Definition 7.134, condition 1., $B \cap \text{Pre}(C) \neq \emptyset \triangleright B \cap \text{Pre}_\Pi^*(C) \neq \emptyset$

pp. 569, l. Lemma 7.135 (ii), $B \cap \text{Pre}(C) \neq \emptyset \triangleright B \cap \text{Pre}_\Pi^*(C) \neq \emptyset$

pp. 569, l. 7, there are some states in B that cannot reach C by only visiting states in B . For such states, the only possibility is to reach C via some other block $D \neq B, C$. $\triangleright C$ can only be reached via paths that entirely go through B .

pp. 572, l. 11, $t \in \text{Exit}(B) \triangleright t \in \text{Bottom}(B)$

pp. 577, l. -2, quotient space $S/\cong \triangleright$ quotient space S/\cong^{div}

pp. 578, l. 4, $E = \{ (s, t) \in S \times S \mid L(s) = L(t) \} \triangleright E = \{ (s, t) \in S \times S \mid L(s) = L(t) \wedge s \xrightarrow{\alpha} t \text{ for some } \alpha \in \text{Act} \}$

pp. 578, l. item 3., self-loops $[s]_{\text{div}} \rightarrow [s]_{\text{div}} \triangleright$ self-loops $[s] \rightarrow [s]$

pp. 592, l. Exercise 7.29, item (B)(2), $s_1, s'_1 \notin \mathcal{R} \triangleright s'_1, s_2 \notin \mathcal{R}$

pp. 592, l. Exercise 7.29, item (c), $TS_1 \neg \trianglelefteq TS_2 \triangleright TS_1 \not\trianglelefteq TS_2$

Chapter 8: Partial-Order Reduction

pp. 596, l. 19, consists \triangleright consists of

pp. 597, l. 11, of state space \triangleright of the state space

pp. 601, l. -11, TS be action-deterministic \triangleright TS be an action-deterministic

pp. 602, l. 5, independent on \triangleright independent of

pp. 605, l. $s_i = \alpha(t_i), t_i = \alpha(s_i) \triangleright$ pp.
, l. [, 1 \triangleright e

x] 609(A2) If α depends on $\text{ample}(s)$ If $\alpha \notin \alpha(s)$ depends on $\alpha(s)$ pp. 610, l. 3, all ample actions \triangleright all actions

pp. 610, l. 4, Note that for $n=0$, condition (A2) is false, as the existential quantification (over i) ranges over an empty domain. \triangleright Note that condition (A2) is false if there is an execution fragment $s \xrightarrow{\alpha} t$ such that $\alpha \notin \text{ample}(s)$ and α depends on $\text{ample}(s)$. After all, in that case $n = 0$ and the existential quantification (over i) ranges over an empty domain. This observation will be formalized in Lemma 8.14.

pp. 610, l. 6, any finite execution in $TS \triangleright$ any finite execution in TS ending after the first ample action

pp. 610, l. 14, $s_1 \xrightarrow{\beta_1} s_2 \xrightarrow{\beta_2} \dots$ with β_i independent of $\text{ample}(s)$ for $0 < i \leq n \triangleright$ $s \xrightarrow{\beta_1} s_1 \xrightarrow{\beta_2} \dots$ with β_i independent of $\text{ample}(s)$ for $0 < i$

pp. 611, l. (A2), If α depends on $\text{ample}(s) \triangleright$ If $\alpha \notin \alpha(s)$ depends on $\alpha(s)$

pp. 611, l. 6, cycle $s_0 s_2 s_2 \triangleright$ cycle $s_2 s_2$

pp. 612, l. -8 and -10, $\text{Reach}(TS) \triangleright \text{Reach}(\hat{TS})$

pp. 613, l. Lemma 8.15, then for all actions \triangleright then all actions

pp. 613, l. Lemma 8.15, addition \triangleright addition

pp. 613, l. 8, constraints (A1) and (A2) \triangleright constraint (A2)

pp. 613, l. 10, $\text{Act}(\beta(s_0)) = \text{Act}(s_1) \triangleright \text{Act}(\beta_1(s_0)) = \text{Act}(s_1)$

pp. 613, l. below Notation 8.16, necessary \triangleright almost sufficient

pp. 616, l. -9, $\text{ample}(\langle s_0, t_i \rangle) = \{\alpha_{i+1}\}$, for $i=1, 2, 3 \triangleright \text{ample}(\langle s_0, t_i \rangle) = \{\alpha_{i+1}\}$, for $i=0, 1, 2$

pp. 623, l. -10 and -4, Section 5.2 \triangleright Section 4.4.2

pp. 624, l. 5, Section 5.2 \triangleright Section 4.4.2

pp. 625, l. Algorithm 39, line 3, $TS \models \Box \Phi \triangleright TS \models \Diamond \Box \Phi$

pp. 626, l. Algorithm 40, line 14, $\text{push}(t, V) \triangleright$ delete this line

pp. 629, l. -5, $\varrho = s_0 \rightarrow \dots \rightarrow t \xrightarrow{\alpha} \text{trap} \triangleright \varrho = s_0 \rightarrow' \dots \rightarrow' t \xrightarrow{\alpha'} \text{trap}$

pp. 634, l. Algorithm 41, line 8, $(\exists j \neq i. \text{Act}_i(s) \times \text{Act}_j(s) \cap D = \emptyset) \triangleright (\forall j \neq i. \text{Act}_i(s) \times \text{Act}_j) \cap D = \emptyset$

pp. 645, l. -4 and pp. 646, line 2, $n_1 \xleftarrow[x < N: x := x + 1]{\ell_1} n_1 \xrightarrow[b := -b]{\ell_2} n_1 \triangleright n_1 \xleftarrow[x < N: x := x + 1]{\ell_2} n_1$

pp. 646, l. Fig. 8.16 (right), edge label β_2 from ℓ_2 to $n_2 \triangleright$ edge label γ_2 from ℓ_2 to n_2

pp. 647, l. Fig. 8.18 (right), edge label β_2 from ℓ_2 to $n_2 \triangleright$ edge label γ_2 from ℓ_2 to n_2

pp. 648, l. Algorithm 42, line 8, $\bigcup_{j < k \leq n} Act_k \triangleright \bigcup_{i < k \leq n} Act_k$

pp. 650, l. -4, *Figure 8.19 (left)* \triangleright Figure 8.19 (top)

pp. 650, l. -1, *Figure 8.19 (right)* \triangleright Figure 8.19 (bottom)

pp. 651, l. 5, *a-state in TS* \triangleright *a-state in \hat{TS}*

pp. 651, l. 12, *Since \hat{TS} does not contain s* \triangleright *Since \hat{TS} does not contain s_0*

pp. 652, l. 10, *Figure 8.19 (left)* \triangleright Figure 8.19

pp. 653, l. (A2), *If α depends on $\text{ample}(s)$* \triangleright *If $\alpha \notin \alpha(s)$ depends on $\alpha(s)$*

pp. 654, l. -4, *Natural $\nu_2(\dots)$* \triangleright *Natural number $\nu_2(\dots)$*

pp. 666, l. Exercise 8.6, $\text{ample}(s_9) = \{\alpha, \beta, \delta\}$ \triangleright $\text{ample}(s_9) = \{\eta, \beta, \delta\}$

Chapter 9: Timed Automata

pp. 674, l. -12, *is more an intuitive than* \triangleright *is more intuitive than*

pp. 678, l. Definition 9.3, 5th bullet, *is a transition relation* \triangleright *is a finite transition relation*

pp. 680, l. -1, *transition label true : $x \geq 2, \{x\}$* \triangleright *transition label $x \geq 2 : \tau, \{x\}$*

pp. 681, l. Figure 9.6, *coming down and going up* \triangleright *comingdown and goingup*

pp. 683, l. -9, $\dots || TA_n \triangleright \dots ||_H TA_n$

pp. 685, l. Figure 9.9, $\langle \text{far}, 0, \text{up} \rangle \rightarrow \langle \text{near}, 1, \text{up} \rangle$, $\text{reset}(x, y) \triangleright \text{reset}(z, y)$

pp. 687, l. Definition 9.10, *clause for $\neg g$* \triangleright *should be omitted*

pp. 696, l. 2, $\eta \not\models g_j \text{ or } \text{Inv}(\ell_j) \triangleright \eta \not\models g_j \text{ or } \eta \not\models \text{Inv}(\ell_j)$

pp. 696, l. 12, $\eta_{i-1} \triangleright \eta_{j-1}$ (this occurs twice!)

pp. 696, l. proof of Lemma 9.24, \triangleright The variables i, j and x depend on the cycle in π . For the sake of simplicity, this dependency is not treated here.

pp. 696, l. -5, *when going from location off to on* \triangleright *when going from location on to off*

pp. 697, l. Notation 9.26, line 1, *infinitely many actions are* \triangleright *infinitely many actions from Act are*

pp. 699, l. -4, *more than 2 minutes* \triangleright *at least two minutes*

pp. 699, l. -3, $\forall \Diamond^{>2} \neg \text{on} \triangleright \forall \Diamond^{\leq 2} \neg \text{on}$

pp. 702, l. Figure 9.16, $x > 3 : \text{reset}(x) \triangleright x \geq 3 : \text{reset}(x)$

pp. 702, l. -5, *TCTL semantics* \triangleright *TCTL semantics*

pp. 705, l. -12, *Remark 9.35* \triangleright Lemma 9.35

pp. 707, l. -1, $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} \dots \triangleright \pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} \dots$

pp. 709, l. -10, *of the form* $x \leq c$ *or* $x < c \triangleright$ *of the form* $x \leq c, x < c, x \geq c$ *or* $x > c$

pp. 710, l. -12, *Figure 9.18* \triangleright Figure 9.18

pp. 711, l. -2, $\eta_1 \cong_2 \eta_2$ *iff* $\eta_1 \cong_1 \eta_2 \triangleright \eta \cong_2 \eta'$ *iff* $\eta \cong_1 \eta'$

pp. 713, l. Definition 9.42, line 3, *if and only if either* \triangleright *if and only if either for all* $x \in C$ *(in the two bullets the universal quantification over* x *needs to be deleted)*

pp. 716, l. -3, *constraint (C)* \triangleright constraint (C)

pp. 717, l. Proof of Theorem 9.46, *open intervals like* $]0, 1[\triangleright (0, 1)$

pp. 725, l. 4, *delay transitions* \triangleright action transitions

pp. 726, l. -3, \triangleright add: where I is the set of initial states of $TS(TA)$

pp. 730, l. 4, $\forall \Diamond a \triangleright a \mathbf{U} b$

pp. 730, l. 19, $\Diamond a \triangleright a \mathbf{U} b$

pp. 730, l. 21, *time-convergent* \triangleright time-divergent

pp. 730, l. -4, *for* $i \leq j \triangleright$ *for all* $i \leq j$

pp. 730, l. -4, $\pi \models_{TCTL} \Diamond a \triangleright \pi \models_{TCTL} a \mathbf{U} b$

pp. 731, l. Example 9.63, *with* $\eta(x) > 1 \triangleright$ *with* $\eta(x) = 2$

pp. 732, l. 6, *several state regions* \triangleright several states

pp. 740, l. Exercise 9.1, edge label at location *on*, $x \geq 2 : sw_on, reset(x) \triangleright x \geq 2 : switch_on, reset(x)$

Chapter 10: Probabilistic Systems

pp. 749, l. Example 10.2, *sent off* \triangleright sent off

pp. 753, l. Notation 10.6, l. 1, $Post^*(s) \triangleright Post(s)$

pp. 774, l. 3, *any successor of t* \triangleright any state reachable from t

pp. 776, l. -3, *absorbing states* \triangleright states

pp. 778, l. 4, $\mathbf{P}'(s, t) = \dots \triangleright$

$$\mathbf{P}'(s, t) = \begin{cases} 1 & \text{if } s = t \text{ and } s \in B \cup S \setminus (C \cup B) \\ 0 & \text{if } s \neq t \text{ and } s \in B \cup S \setminus (C \cup B) \\ \mathbf{P}(s, t) & \text{otherwise.} \end{cases}$$

pp. 778, l. -9, $\{4, 5, 6, \text{won}\} \triangleright \{ \text{won} \}$

pp. 780, l. 12, *it can be shown that $\Pr(n \models \diamond 0) < 1 \triangleright$ it can be shown that $\Pr(n \models \diamond 0) > 0$*

pp. 782, l. -3, *expresses in addition that almost surely the player will always win \triangleright expresses that within five steps, the player reaches a state from which he will win almost surely*

pp. 821, l. 13, *time complexity of the size \triangleright time complexity in the size*

pp. 851, l. Theorem 10.100, \triangleright Add the following condition: $\sum_{s \in S} x_s$ is minimal.

pp. 857, l. 2, $\sum_{s \in S \setminus \{s\}} \mathbf{P}(s, \alpha, t) \cdot x_t \triangleright - \sum_{s \in S \setminus \{s\}} \mathbf{P}(s, \alpha, t) \cdot x_t$

pp. 863, l. Algorithm 46, **return** $T \triangleright$ **return** $S \setminus T$

pp. 865, l. Lemma 10.113 + succeeding paragraph, \triangleright should be after Theorem 10.109

pp. 870, l. Lemma 10.119, *any $s \in S \triangleright$ any $s \in T$*

pp. 876, l. 11, $U_{\square \diamond P} \triangleright U_{\square \diamond B}$

pp. 883, l. Theorem 10.129 and just before, *is in 2EXPTIME \triangleright is 2EXPTIME-complete (twice)*

pp. 903, l. Exercise 10.14, $\varphi = \square \diamond a \triangleright \varphi = \diamond \square a$

pp. 903/904, l. Exercise 10.17, *Markov chain $\mathcal{M} \triangleright$ Markov chain \mathcal{M} where all states are equally labeled*

pp. 905, l. Exercise 10.22, \triangleright Compute also the values $y_s = \Pr^{\max}(s \models C \cup B)$ with $C = S \setminus \{s_3\}$ and $B = \{s_6\}$

pp. 905, l. Exercise 10.23, (a), 1. and (b) \triangleright (a), (b), (c)

Appendix

pp. 912, l. footnote, $\sigma = A_1 A_2 A_3 \dots \triangleright \sigma = A_0 A_1 A_2 \dots$

pp. 918, l. 8, *not to 1 \triangleright not to n*

pp. 925, l. 1, *they are composed of simple paths* \triangleright they are composed of paths, at least one of which is simple.