
1

Errata ”Principles of Model Checking” (July 2013)

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen, The
Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Holger Hermanns
and Moritz Hahn (Saarland University), Dave Parker (Oxford University, UK), Jeroen
Ketema and Mark Timmer (University of Twente, NL), Stephen Siegel (University of
Delaware, USA), René Thiemann (U. Innsbruck, AT), Martin Lange (University of Kassel
and LMU, D), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Moti Ben-
Ari (Weizmann Institute, ISR), Verena Wolf (Saarland University), Prakash Panangaden
(McGill, Canada), Andrzej Zbrzezny (Jan Dlugosz University), Tobias Schmit-Lechner
(U. Freiburg), Stefan Leue (U. Konstanz), Johann Schuster (Uni Bundeswehr, Munich),
Chris J. Myers (University of Utah, USA), Erika Abráhám, Christian Dehnert, Alexander
Nyßen, Daniel Weber and Martin Zimmermann (RWTH Aachen University), Michael
Ummels (ENS Cachan, France), Erik Wognsen (Aalborg University, Denmark) and the
students at the RWTH Aachen University attending the “(Advanced) Model Checking”
course.

Comments are provided as:

〈 page number 〉 〈 line number 〉 〈 short quote of the wrong word(s) 〉 B 〈 correction 〉

Line number −n means line number n from the last line on that page.

Chapter 1: System Verification

pp. 1, l. -5, Pentium II B Pentium

pp. 5, l. 9, lines of code lines B lines of code

pp. 5, l. footnote, much higher B as the number of lines of code in the “golden” version
of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp. 6, l. 4, Pentium II B Pentium

Chapter 2: Modeling Concurrent Systems

pp. 20, l. 8, arabic B Latin

2

pp. 25, l. 11, heading Example 2.8 B Execution fragments of the Beverage Vending Ma-
chine

pp. 27, l. -15, function λy B The function λy has no impact on the transitions (as sug-
gested), but only affects the state labeling.

pp. 31, l. Fig. 2.3, beer, soda B bget and sget, respectively

pp. 31, l. Fig. 2.3, state with 1 beer, 2 soda B the grey circle should be a white circle.

pp. 34, l. 2, 〈`, v〉 B 〈`, η〉

pp. 40, l. Def. 2.21, Effect(α, η) = Effecti(α, η)B Effect(α, η)(v) =

{
Effecti(α, η|Vari)(v) if v ∈ Vari
η(v) otherwise

pp. 42, l. -10, interlock B interleave

pp. 46, l. Fig. 2.9, locations in PG2 B should be subscripted with 2 (rather than 1)

pp. 48, l. -1, H = Act1 ∩Act2 B H = (Act1 ∩Act2) \ { τ }
pp. 51, l. Fig. 2.12, T1 ‖ T2 B TS1 ‖ TS2 (this occurs twice)

pp. 51, l. Fig. 2.12, B All downgoing transitions should be labeled with request, and all
upgoing ones with release

pp. 51, l. -7, all trains B the train

pp. 52, l. 3, (above) B (page 54)

pp. 53, l. -1, finite set of channels B set of channels

pp. 54, l. Fig. 2.16, the transition labeled approach emanating from state 〈far , 3, down〉 B
should be removed, and all the states that thus become unreachable

pp. 54, l. Fig. 2.16, the transition labeled exit emanating from state 〈in, 1, up〉 B should
be removed, and all the states that thus become unreachable

pp. 55, l. -10, (Cond(Var)× B Cond(Var)×
pp. 60, l. Definition 2.33,] (occurs four times) B ∪
pp. 62, l. -3, gen msg(1) B snd msg(1)

pp. 62, l. 4, ack B message

pp. 65, l. Fig. 2.21, second do B od

pp. 66, l. 8, Staements build B Statements built

pp. 71, l. 15, label in conclusion of inference rule c!e B it is meant that the value of
expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, l. 1, ξ[c := v2 . . . vk] B ξ′ = ξ[c := v2 . . . vk]

pp. 74, l. 1, ξ[c := v1 . . . vkv] B ξ′ = ξ[c := v1 . . . vkv]

3

pp. 76, l. Figure 2.23 (top), x B x′

pp. 78, l. 8, 800,000·250 B 8,000,000·250

pp. 79, l. -6,-8, |dom(c)|cp(c) B |dom(c)|cap(c)

pp. 82, l. Exercise 2.2, line 2, Piis B Pi is

Chapter 3: Linear-Time Properties

pp. 89, l. 9, parallel systems B reactive systems

pp. 90, l. 1, Fault Designed Traffic Lights B Faulty Traffic Lights

pp. 91, l. 7, a deadlock occurs when all philosophers B a deadlock may occur when all
philosophers

pp. 92, l. Fig. 3.2, request and release B req and rel

pp. 92, l. 6, request4 B req4,4; similar to the other request actions

pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, state availablei B availablei,i

pp. 93, l. -4,-5 and Fig. 3.3, Fig. 3.4, state availablei+1 B availablei,i+1

pp. 93, l. 10, The corresponding is B The corresponding condition is

pp. 94, l. Fig. 3.4, falls xi B xi

pp. 96, l. 3, finite paths B finite path fragments

pp. 96, l. 4, infinite path B infinite path fragment

pp. 98, l. 1, Trace and Trace Fragment B Trace

pp. 100, l. 9, (over AP) B (over 2AP)

pp. 101, l. -3, red1 green2 B red1, green2

pp. 103, l. 11, lwaiti B waiti

pp. 103, l. 11, ∃k > j.wait i ∈ Ak B ∃k > j. crit i ∈ Ak
pp. 105, l. Example 3.16, line 4, 〈wait1,wait2, y = 1〉 −→ 〈wait1, crit2, y = 0〉B 〈w1, w2, y =
1〉 −→ 〈w1, c2, y = 0〉
pp. 111, l. Theorem 3.21, M =

∑
s∈S |Post(s)| B M =

∑
s∈Reach(TS) |Post(s)|

pp. 111, l. 22, The time needed to check s |= Φ is linear in the length of Φ B Add: This
implicitly assumes that a ∈ L(s) can be checked in O(1) time.

pp. 112, l. -2, B A minimal bad prefix is one such that the first occurrence of Φ is the
last symbol in the word.

4

pp. 113, l. Figure 3.9, s0
yellow−−−−−−→ s1 B s0

yellow∧ ¬red−−−−−−−−−−−→ s1

pp. 115, l. Lemma 3.27, Proof B add the following sentence to the beginning of the proof:
First note that for P = (2AP)ω the claim trivially holds, since closure(P) = P and the fact
that P is a safety property since P is empty. In the remainder of the proof we consider
P 6= (2AP)ω.

pp. 117, l. -3, for any transition system TS. B for any transition system TS without
terminal states.

pp. 118, l. 10,11, πm0πm1πm2 . . . of π0π1π2 . . . such thatB πm0 , πm1 , πm2 , . . . of π0, π1, π2, . . .
such that

pp. 124, l. -3, By definition B By Lemma 3.27

pp. 130, l. 3, without being taken beyond B without being taken infinitely often beyond

pp. 131, l. 17, assignment x = −1 B assignment x := −1

pp. 132, l. 2, an execution fragment . . . but not strongly A-fair. B an execution fragment
that visits infinitely many states in which no A-action is enabled is weakly A-fair (as the
premise of weak A-fairness does not hold) but may not be strongly A-fair.

pp. 134, l. 10, any finite trace is fair by default B any finite trace is strongly or weakly
fair by default

pp. 136, l. -5, strong fairness property B fairness property

pp. 138, l. 4, It forces synchronization actions to happen infinitely often. B It forces syn-
chronization actions to happen infinitely often provided they are enabled infinitely often.

pp. 138, l. 9, (3.1) does not permit this. B (3.1) does not permit this (except if Syni,j is
a singleton set).

pp. 138, l. -14, This requires that . . . is enabled. B This requires that infinitely often a
synchronization takes place when such synchronization is infinitely often enabled.

pp. 138, l. -2, Weak fairness is appropriate for the internal actions α ∈ Acti \ Syni, as the
ability to perform an internal action is preserved until it will be executed. B should be
deleted

pp. 141, l. 5, the set of properties that has B the property that has

pp. 145, l. Exercise 3.5(g), between zero and two B between zero and non-zero

Chapter 4: Regular Properties

pp. 152, l. 2, an alphabet B a finite alphabet

5

pp. 157, l. -11, w = A1 . . . An ∈ Σ B w = A1 . . . An ∈ Σ∗

pp. 157, l. -10, starts in Q0 B starts in state Q0

pp. 157, l. -4, Q0 B {Q0 }
pp. 158, l. -14, NFAs can be much more efficient. B NFAs can be much smaller.

pp. 161, l. -9, (2) ... for all 1 6 i < n B ... for all 0 6 i < n. (Note: the invariant false
has minimal bad prefix ε.)

pp. 161, l. -8, 1 6 i < n B 0 6 i < n

pp. 163, l. Example 4.15, Minimal bad prefixes for this safety property constitute the lan-
guage { payndrinkn+1 | n > 0 } B Bad prefixes for this safety property constitute the
language {σ ∈

(
2{pay,drink}

)∗ | w(σ, drink) > w(σ, pay) } where w(σ, a) denotes the num-
ber of occurrences of a in σ.

pp. 164, l. 5,6, two NFAs intersect. B the languages of two NFAs intersect.

pp. 164, l. -8, path fragment π B initial path fragment π

pp. 164, l. -6, TS⊗A which has an initial state B TS⊗A such that there exists an initial
state

pp. 167, l. 7, 11, -4, Pinv(A) B Pinv(A)

pp. 167, l. -2, q1, . . . , qn 6∈ F B Note: this condition is not necessary.

pp. 168, l. 1, 0 6 i 6 n B 0 < i 6 n

pp. 169, l. Theorem 4.22, |TS|·|A| B |TS⊗A|
pp. 171, l. 8, single word B a set contaning a single word

pp. 171, l. 11, in Σ B in I
pp. 177, l. -7, Example 4.13 on page 161 B Example 4.14 on page 162

pp. 183, l. -3, -1, Lq1q3 = . . . B Lq1q3 = C∗AB(B +BC∗AB)∗

pp. 188, l. -2, containing a b B containing only a b

pp. 191, l. -5, no accepting run that starts in q2 B no accepting run that reaches q2

pp. 196, l. Example 4.57, page 193 B page 194

pp. 200, l. -7,
∧
q∈Q B

∧
q∈F

pp. 202, l. Fig. 4.22, B The two states should be labeled s0 and s1, respectively

pp. 203, l. 4, P = ”eventually forever ¬ green B P = infinitely often green

pp. 206, l. Proof:, TS = (S,Act,→, I,AP) B TS = (S,Act,→, I,AP, L)

pp. 207, l. -4, We now DFS-based cycle checks . . . checking B We now present a DFS-based
algorithm for persistence checking that searches backwards edges to check for cycles.

pp. 212, l. 6, ignores all states in T B does not revisit the states in T

6

pp. 215, l. Figure, t ∈ Rin B t ∈ T
pp. 218, l. 10, Regula r B Regular

Chapter 5: Linear Temporal Logic

pp. 230, l. 5, eventually in the future B now or eventually in the future

pp. 236, l. Figure 5.2, B It is assumed that σ = A0A1A2 . . .

pp. 240, l. -10, δr2 = ¬r1 B δr2 = ¬r2

pp. 241, l. Fig. 5.6, B Note that the inputs of the r registers are on the right, and their
outputs on the left.

pp. 243, l. -1, �
(∨

16i6N leaderi∧
∧

16j6N

j 6=i
¬ leaderj

)
B �

∨
16i6N

(
leaderi∧

∧
16j6N

j 6=i
¬ leaderj

)
pp. 244, l. 7, �♦

(∨
16i6N leaderi∧

∧
16j6N

j 6=i
¬ leaderj

)
B �♦

∨
16i6N

(
leaderi∧

∧
16j6N

j 6=i
¬ leaderj

)
pp. 256, l. -3, (σ[i..] |= ϕ) ∧ ∀k 6 i.σ[k..] |= ψ B (σ[i..] |= ϕ ∧ ∀k 6 i.σ[k..] |= ψ

pp. 263, l. 20, Act′ = Act] { begin } B Act′ = Act with begin 6∈ Act

pp. 266, l. -8, interlocked B interleaved

pp. 267, l. 7, as soon as B before

pp. 270, l. Fig. 5.15, B The bottom cell should be white and not gray.

pp. 276, l. -11, ψ ∈ Bif and only if . . . B ψ ∈ B if and only if . . .

pp. 278, l. Proof of Theorem 5.37, B It is assumed that σ = A0A1A2 . . . is such that
Ai ⊆ closure(ϕ), i.e., Ai = Bi ∩AP means Ai ∩ closure(ϕ) = Bi ∩AP

pp. 281, l. 1-5, For B0B1B2 . . . a sequence . . . we have for all ψ ∈ closure(ϕ): ψ ∈ B0 ⇔
A0A1A2 . . . |= ψ B For all ψ ∈ closure(ϕ) and B0B1B2 . . . a sequence . . . we have:
ψ ∈ B0 ⇔ A0A1A2 . . . |= ψ

pp. 283, l. 10, 6=©ψ ∈ B if and . . . B ¬© ψ ∈ B if and . . .

pp. 283, l. 17, and ϕ =© a ∈ B1, B2 B and ϕ = a ∈ B1, B2

pp. 284, l. -14, B3B3B1B
ω
4 B B3B3B1B

ω
5

pp. 287, l. -5, |¬(fair → ϕ)| = |fair | + |ϕ| B |¬(fair → ϕ)| = |¬(¬fair ∨ ϕ)| =
|fair |+ |ϕ|+ 3

pp. 289, l. 11, a new vertex b to G B a new vertex b to TS

pp. 292, l. Figure 5.23, B the self-loop at state P (n) should be omitted

7

pp. 292, l. -1, ©2i−1(q, A, i)→ B begin ∧ © 2i−1(q, A, i)→
pp. 294, l. -6, Gvarphi B Gϕ
pp. 297, l. 7, Membership to B Membership in

pp. 303, l. Exercise 5.7(b), W B Y (to avoid confusion with unless)

pp. 303, l. Exercise 5.8(a), ϕ1 ∧ ϕ2 B ϕ1 Rϕ2

Chapter 6: Computation Tree Logic

pp. 318, l. -10, ∧,→ B ∨,→
pp. 320, l. -4, state formula B State formula

pp. 327, l. -12, since ∃(ϕUψ ∨ �ϕ) B since ∀(ϕUψ ∨ �ϕ)

pp. 333, l. 10, ¬∃♦¬Φ = ¬∃(trueUΦ) B ¬∃♦¬Φ ≡ ¬∃(trueU¬Φ)

pp. 336, l. 11, CTL formulae ∃♦ (a∧∀© a) and ♦ (a∧© a) B CTL formula ∃♦ (a∧∀© a)
and LTL formula ♦ (a ∧© a)

pp. 338, l. 5, TSn = (S′n, . . . B TS′n = (S′n, . . .

pp. 338, l. -5 and -6, B transitions to s′n−1 are non-existing for n=0

pp. 340, l. -10, and ϕ = ∀♦∃♦ a B and ϕ = ∀�∃♦ a
pp. 342, l. Algorithm 13, and -8 and -4, maximal genuine B maximal proper

pp. 343, l. 4, subformula of Ψ B subformula of Ψ′

pp. 345, l. -2, Sat(∃(ΦUΨ) B Sat(∃(ΦUΨ))

pp. 345, l. proof of (g)(ii), Let π = s0s1s2 . . . be a path starting in s=s0. (As TS has no
terminal states, such a path exists.) B Delete.

pp. 349, l. -9, -7, (a = c)∧ (a 6= b) B (a↔ c)∧ (a 6↔ b)

pp. 349, l. -8, Algorithm 14 (see page 348) B Algorithm 15

pp. 351, l. Algorithm 15, B comments in the first two lines of algorithm need to be
swapped while replacing E by T and T by E

pp. 354, l. Example 6.28, see the gray states in Figure 6.13(a). B cf. Figure 6.13(b).

pp. 354, l. Example 6.28, Figure 6.13(b), Figure 6.13(c) B Figure 6.13(c), Figure 6.13(d)

pp. 358, l. 11, B Note that the length of Φn ∈ O(n!).

pp. 361, l. Example 6.35, ⇒ in the formulas B →
pp. 371, l. -6, ifstatement B if statement

8

pp. 372, l. Algorithm 19, line 4, C ∩ Sat(bj) 6= ∅ B C ∩ Sat(bi) 6= ∅
pp. 374, l. 1, path formula of the form ∃ϕ B state formula of the form ∃ϕ
pp. 374, l. 6, counterxamples B counterexamples

pp. 378, l. -6, Eaxmple B Example

pp. 380, l. 12, (a ∧ a′)U (¬a ∧ ¬a′ ∧ afair) B (a ∧ ¬a′)U (¬a ∧ ¬a′ ∧ afair)

pp. 381, l. 9, �♦ (q ∧ r)→ �♦¬(q ∨ r) B �♦ (a ∧ b)→ �♦¬(a ∨ b)
pp. 381, l. 9 and 12, b = c B b↔ c

pp. 383, l. 12, 0 6 n 6 m 6 k B 1 6 n 6 m 6 k

pp. 383, l. 9 and 10, . . . zm B . . . , zm

pp. 386, l. 13, 15 (twice) and 19, s{y ← z} B s{z ← y}
pp. 387, l. 18, t{x̄/x̄′} B t{x̄′ ← x̄}
pp. 388, l. 7, x′ B x′1

pp. 388, l. 7,
∧
j<i6n(xj ↔ x′j) B

∧
i+1<j6n(xj ↔ x′j)

pp. 388, l. 7-8, B add conjunct ∧
(
¬x1 → x′1 ∧

∧
1<j6n(xj ↔ x′j)

)
pp. 388, l. 9, χB(x) = x1 B χB(x) = ¬x1

pp. 388, l. 14–17, B x and x′ should be swapped

pp. 388, l. Example 6.58 (four times), {x← x′} B {x′ ← x}
pp. 389, l. 9,

∧
16i6n ∆i(x i, x

′
i) B

∧
16i6m ∆i(x i, x

′
i)

pp. 389, l. 16,
∨

16i6m B
∨

16i6m

pp. 390, l. 8, ∃s′ ∈ Ss.t.s′ ∈ Post(s) B ∃s′ ∈ S. s′ ∈ Post(s)

pp. 390, l. Algorithm 20, line 4, fj+1(x̄) := fj+1(x̄) ∨ . . . B fj+1(x̄) := fj(x̄) ∨ . . .
pp. 391, l. Algorithm 21, line 4, fj+1(x̄) := fj+1(x̄) ∧ . . . B fj+1(x̄) := fj(x̄) ∧ . . .
pp. 391, l. Algorithm 21, line 4, return B return

pp. 391, l. 19, can be ruled as B can be ruled out as

pp. 393, l. Figure 6.21 (right), solid line between z3 and 0 B dashed line between z3 and
0

pp. 395, l. 5, or i = j B or zi = zj

pp. 396, l. -15, The semantics B The semantics of

pp. 396, l. -1, fsuccb(v)|z=c B fsuccb(v)|z=b

pp. 396, l. Def. 6.65, for node B for node v

pp. 398, l. 9, left subtree B right subtree

9

pp. 400, l. -9, 〈var(v), succ1(v), succ0(v)〉 = 〈var(w), succ1(w), succ0(w)〉 B var(v) =
var(w) and fsucc0(v) = fsucc0(w) and fsucc1(v) = fsucc1(w)

pp. 402, l. 6, fv = (¬z ∧ fsucc0(v)) ∧ (z ∧ fsucc1(v)) = (¬z ∧ fw) ∧ (z ∧ fw) = fw B
fv = (¬z ∧ fsucc0(v)) ∨ (z ∧ fsucc1(v)) = (¬z ∧ fw) ∨ (z ∧ fw) = fw

pp. 402, l. 8, fv = (¬z∧fsucc0(v))∧(z∧fsucc1(v)) = (¬z∧fsucc0(w))∧(z∧fsucc1(w)) = fw.
B fv = (¬z ∧ fsucc0(v)) ∨ (z ∧ fsucc1(v)) = (¬z ∧ fsucc0(w)) ∨ (z ∧ fsucc1(w)) = fw.

pp. 403, l. 10, ismorphism B isomorphism

pp. 405, l. 2, zm = am, zm = bm, . . . , zi = ai, zi = bi B zm = am, ym = bm, . . . , zi =
ai, yi = bi

pp. 405, l. 3, zm = am, zm = bm, . . . , zi+1 = ai+1, zi+1 = bi+1, zi = ai B zm = am, ym =
bm, . . . , zi+1 = ai+1, yi+1 = bi+1, zi = ai

pp. 405, l. -5, Ib = {i ∈ {1, . . . ,m} | bi = 1 B Ib = {i ∈ {1 . . . ,m} | bi = 1}
pp. 405, l. -4, As f b, c ∈ {0, 1}m B As b, c ∈ {0, 1}m

pp. 409, l. -12, info(v) = 〈var(v), succ0(v), succ0(v)〉B info(v) = 〈var(v), succ1(v), succ0(v)〉
pp. 412, l. 7, u B v

pp. 412, l. Algorithm 22, line -4, rule (?) B rule

pp. 413, l. 13, f2z1 = b1, . . . , zi = bi B f2|z1=b1,...,zi=bi

pp. 414, l. Algorithm 23, line -2, return node w B should be just before final fi

pp. 417, l. heading Algorithm 24, (v, x ← x ′) B (v, x ′ ← x)

pp. 417, l. Algorithm 24, B swap x and x ′

pp. 417, l. Algorithm 24, line 4, ist B is a

pp. 417, l. Algorithm 24, B replace z by x and u by v

pp. 418, l. -9, f{x ← x ′} B f{x ′ ← x}
pp. 418, l. -6, f |x=b B f |x=b

pp. 420, l. Algorithm 26, line 10 and 11, x̄, x̄′); B);

pp. 420, l. Algorithm 26, line 6,7,9,10, v|xi=0 and v|xi=1, respectively B v|x ′i=0 and v|x ′i=1,
respectively

pp. 420, l. Algorithm 26, line -5, w0 := RelProd(u|x ′i=0, v);w1 := RelProd(u|x ′i=1, v); B
w0 := RelProd(u|x ′i=0, v|x ′i=0);w1 := RelProd(u|x ′i=1, v|x ′i=1);

pp. 426, l. -1, ∃♦(a ∧ ∃♦b) ∧ ∃♦(b ∧ ∃♦a) B ∃♦(a ∧ ∃♦b) ∨ ∃♦(b ∧ ∃♦a)

10

Chapter 7: Equivalences and Abstraction

pp. 454, l. 3, Sssume B Assume

pp. 459, l. 7, [s]∼
τ−→ [s′]∼ B [s]∼

τ−→′ [s′]∼
pp. 464, l. Figure 7.9, arrows n1 c2 to w1w2 and c1n2 to w1w2 B should be omitted

pp. 466, l. 8, H = Act1 ∩Act2 B H = (Act1 ∩Act2) \ { τ }
pp. 467, l. 8, Act = 2AP ∪ { τ } B Act = 2AP

pp. 467, l. 10, s τ−→ act t B s
L(s)−−−→ act t

pp. 469, l. Remark 7.19, line 10, s2 |= ϕ, but s1 6|= ϕ B s2 6|= ¬ϕ, but s1 |= ¬ϕ
pp. 475, l. Corollary 7.27 (c), ≡CTL B ≡CTL∗

pp. 478, l. 11, fo B of

pp. 489, l. Algorithm 32, line 6+7, B these lines need to be swapped

pp. 489, l. Algorithm 32, Πold := Π B Πold := Πold \ {C ′ } ∪ {C,C ′ \ C }
pp. 512, l. Definition 7.65, 2nd clause, s α−−→ s′ and s α−−→ s′′ B s−→ s′ and s−→ s′′

pp. 513, l. 9, { a }∅ 6∈ Traces(TS1) B { a }∅ 6∈ Traces(TS2)

pp. 518, l. 8, ∀Φ ∈ ∀CTL∗ B ∀Φ ∈ ∀CTL

pp. 519, l. -10, fragment of CTL∗ B fragment of CTL

pp. 522, l. -4, |Post(s2)| B |Post(s2) ∩ Sim(s′1)

pp. 528, l. -9, s1 ∈ Pre(s′2) B s1 ∈ Pre(s′1)

pp. 532, l. -1, (TS)2 B TS2)

pp. 537, l. -5, 〈c2, n1〉 B 〈n1, c2〉
pp. 539, l. 2, R on (S1 × S2) ∪ (S1 × S2) B R on TS1 ⊕ TS2

pp. 541, l. Figure 7.36, transition from `3 to `4 B should be deleted

pp. 541, l. -2, { (s, s′) | s′ ∈ [s]R), s ∈ S } B { (s, [s]R) | s ∈ S }
pp. 542, l. 5, 〈c2, n1〉 B 〈n1, c2〉
pp. 544, l. 11, finer that B finer than

pp. 546, l. 13, s2 is ≈div
TS -divergent whereas s0 and s1 are not. B s2 is not ≈div

TS -divergent
whereas s0 and s1 are.

pp. 546, l. after Example 7.110, where the state labelling is indicated by the grey scale B

pp. 549, l. Definition 7.116, clause 2, π̂1 B π̂i

pp. 554, l. 8, amounts B amounts to

11

pp. 556, l. Figure 7.45, v1 and v2 B t1 and t2

pp. 556, l. Figure 7.45 (rechts), s1 B s2

pp. 557, l. -8, since s2 and u2 are R-equivalent B since s1 and u2 are R-equivalent

pp. 562, l. 1, and s1∃ϕ B and s1 |= ∃ϕ
pp. 563, l. 4, ΦB UΦC is a CTL\© formula B ∃(ΦB UΦC) is a CTL\© state-formula

pp. 564, l. Figure 7.46, the states (0, 1) and (1, 0) with self-loop B should be included in
the “chain”, and not be seperate deadlock states

pp. 566, l. 16, `2 : 〈if (free > 0) then i := 0; free−− fi〉 B `2 : 〈if (free > 0) then i :=
0; free−− fi〉 ; goto `0

pp. 566, l. -3, 〈`0, `′2, 2, 0, 0〉−→〈`0, `′0, 2, 0, 0〉 B 〈`1, `′2, 2, 0, 0〉−→〈`1, `′0, 2, 0, 0〉
pp. 568, l. Definition 7.134, condition 1., B ∩ Pre(C) 6= ∅ B B ∩ Pre∗Π(C) 6= ∅
pp. 569, l. Lemma 7.135 (ii), B ∩ Pre(C) 6= ∅ B B ∩ Pre∗Π(C) 6= ∅
pp. 569, l. 7, there are some states in B that cannot reach C by only visiting states in B.
For such states, the only possibility is to reach C via some other block D 6= B,C. B C
can only be reached via paths that entirely go through B.

pp. 572, l. 11, t ∈ Exit(B) B t ∈ Bottom(B)

pp. 577, l. -2, quotient space S/∼= B quotient space S/∼=div

pp. 578, l. 4, E = { (s, t) ∈ S × S | L(s) = L(t) } B E = { (s, t) ∈ S × S | L(s) =
L(t) ∧ s α−−→ t for some α ∈ Act }
pp. 578, l. item 3., self-loops [s]div → [s]div B self-loops [s]→ [s]

pp. 592, l. Exercise 7.29, item (B)(2), s1, s
′
1) 6∈ R B s′1, s2) 6∈ R

pp. 592, l. Exercise 7.29, item (c), TS1¬ETS2 B TS1 6 ETS2

Chapter 8: Partial-Order Reduction

pp. 596, l. 19, consists B consists of

pp. 597, l. 11, of state space B of the state space

pp. 601, l. -11, TS be action-deterministic B TS be an action-deterministic

pp. 602, l. 5, independent on B independent of

pp. 605, l. si = α(ti), ti = α(si) B pp.
, l. [, 1 B e

12

x] 609(A2)If α depends on ample(s)If α 6∈ α(s) depends on α(s) pp. 610, l. 3, all ample
actions B all actions

pp. 610, l. 4, Note that for n=0, condition (A2) is false, as the existential quantification
(over i) ranges over an empty domain. B Note that condition (A2) is false if there is
an execution fragment s α−−→ t such that α 6∈ ample(s) and α depends on ample(s). After
all, in that case n = 0 and the existential quantification (over i) ranges over an empty
domain. This observation will be formalized in Lemma 8.14.

pp. 610, l. 6, any finite execution in TS B any finite execution in TS ending after the first
ample action

pp. 610, l. 14, s1
β1−−→ s2

β2−−→ . . . with βi independent of ample(s) for 0 < i 6 n B

s β1−−→ s1
β2−−→ . . . with βi independent of ample(s) for 0 < i

pp. 611, l. (A2), If α depends on ample(s) B If α 6∈ α(s) depends on α(s)

pp. 611, l. 6, cycle s0s2s2 B cycle s2s2

pp. 612, l. -8 and -10, Reach(TS) B Reach(T̂S)

pp. 613, l. Lemma 8.15, then for all actions B then all actions

pp. 613, l. Lemma 8.15, adddition B addition

pp. 613, l. 8, constraints (A1) and (A2) B constraint (A2)

pp. 613, l. 10, Act(β(s0)) = Act(s1) B Act(β1(s0)) = Act(s1)

pp. 613, l. below Notation 8.16, necessary B almost sufficient

pp. 616, l. -9, ample(〈s0, ti〉) = {αi+1 }, for i=1, 2, 3 B ample(〈s0, ti〉) = {αi+1 }, for
i=0, 1, 2

pp. 623, l. -10 and -4, Section 5.2 B Section 4.4.2

pp. 624, l. 5, Section 5.2 B Section 4.4.2

pp. 625, l. Algorithm 39, line 3, TS |= �Φ B TS |= ♦�Φ

pp. 626, l. Algorithm 40, line 14, push(t, V) B delete this line

pp. 629, l. -5, % = s0 → . . .→ t α−−→ trap B % = s0 → ′ . . .→ ′ t α−−→′ trap

pp. 634, l. Algorithm 41, line 8, (∃j 6= i.Acti(s)×Actj(s)∩D = ∅) B (∀j 6= i.Acti(s)×
Actj) ∩D = ∅)

pp. 645, l. -4 and pp. 646, line 2, n1
x<N :x:=x+1
↪→̀1

b:=¬b
↪→ n1 B n1

x<N :x:=x+1
↪→

`1
b:=¬b
↪→ n1

pp. 646, l. Fig. 8.16 (right), edge label β2 from `2 to n2 B edge label γ2 from `2 to n2

pp. 647, l. Fig. 8.18 (right), edge label β2 from `2 to n2 B edge label γ2 from `2 to n2

13

pp. 648, l. Algorithm 42, line 8,
⋃

j<k6n
Actk B

⋃
i<k6n

Actk

pp. 650, l. -4, Figure 8.19 (left) B Figure 8.19 (top)

pp. 650, l. -1, Figure 8.19 (right) B Figure 8.19 (bottom)

pp. 651, l. 5, a-state in TS B a-state in T̂S

pp. 651, l. 12, Since T̂S does not contain s B Since T̂S does not contain s0

pp. 652, l. 10, Figure 8.19 (left) B Figure 8.19

pp. 653, l. (A2), If α depends on ample(s) B If α 6∈ α(s) depends on α(s)

pp. 654, l. -4, Natural ν2(. . .) B Natural number ν2(. . .)

pp. 666, l. Exercise 8.6, ample(s9) = {α, β, δ } B ample(s9) = { η, β, δ }

Chapter 9: Timed Automata

pp. 674, l. -12, is more an intuitive than B is more intuitive than

pp. 678, l. Definition 9.3, 5th bullet, is a transition relation B is a finite transition relation

pp. 680, l. -1, transition label true : x > 2, {x } B transition label x > 2 : τ, {x }
pp. 681, l. Figure 9.6, coming down and going up B comingdown and goingup

pp. 683, l. -9, . . . ||TAn B . . . ||HTAn

pp. 685, l. Figure 9.9, 〈far, 0, up)〉 → 〈near, 1, up〉, reset(x, y) B reset(z, y)

pp. 687, l. Definition 9.10, clause for ¬g B should be omitted

pp. 696, l. 2, η 6|= gj or Inv(`j) B η 6|= gj or η 6|= Inv(`j)

pp. 696, l. 12, ηi−1 B ηj−1 (this occurs twice!)

pp. 696, l. proof of Lemma 9.24, B The variables i, j and x depend on the cycle in π.
For the sake of simplicity, this dependency is not treated here.

pp. 696, l. -5, when going from location off to on B when going from location on to off

pp. 697, l. Notation 9.26, line 1, infinitely many actions are B infinitely many actions
from Act are

pp. 699, l. -4, more than 2 minutes B at least two minutes

pp. 699, l. -3, ∀♦>2¬on B ∀♦62¬on

pp. 702, l. Figure 9.16, x > 3 : reset(x) B x > 3 : reset(x)

pp. 702, l. -5, TCTLsemantics B TCTL semantics

14

pp. 705, l. -12, Remark 9.35 B Lemma 9.35

pp. 707, l. -1, π ∈ s0
d0⇒ s1

d1⇒ s2
d2⇒ B π ∈ s0

d0⇒ s1
d1⇒ s2

d2⇒ . . .

pp. 709, l. -10, of the form x 6 c or x < c B of the form x 6 c, x < c, x > c or x > c

pp. 710, l. -12, Figure 9.18) B Figure 9.18

pp. 711, l. -2, η1
∼=2 η2 iff η1

∼=1 η2 B η ∼=2 η
′ iff η ∼=1 η

′

pp. 713, l. Definition 9.42, line 3, if and only if either B if and only if either for all x ∈ C
(in the two bullets the universal quantification over x needs to be deleted)

pp. 716, l. -3, consraint (C) B constraint (C)

pp. 717, l. Proof of Theorem 9.46, open intervals like]0, 1[B (0, 1)

pp. 725, l. 4, delay transitions B action transitions

pp. 726, l. -3, B add: where I is the set of initial states of TS(TA)

pp. 730, l. 4, ∀♦ a B aU b

pp. 730, l. 19, ♦ a B aU b

pp. 730, l. 21, time-convergent B time-divergent

pp. 730, l. -4, for i 6 j B for all i 6 j

pp. 730, l. -4, π |=TCTL ♦ a B π |=TCTL aU b

pp. 731, l. Example 9.63, with η(x) > 1 B with η(x) = 2

pp. 732, l. 6, several state regions B several states

pp. 740, l. Exercise 9.1, edge label at location on, x > 2 : sw on, reset(x) B x > 2 :
switch on, reset(x)

Chapter 10: Probabilistic Systems

pp. 749, l. Example 10.2, senf off B sent off

pp. 753, l. Notation 10.6, l. 1, Post∗(s) B Post(s)

pp. 774, l. 3, any successor of t B any state reachable from t

pp. 776, l. -3, absorbing states B states

15

pp. 778, l. 4, P′(s, t) = . . . B

P′(s, t) =


1 if s = t and s ∈ B ∪ S \ (C ∪B)

0 if s 6= t and s ∈ B ∪ S \ (C ∪B)

P(s, t) otherwise.

pp. 778, l. -9, { 4, 5, 6,won } B {won }
pp. 780, l. 12, it can be shown that Pr(n |= ♦0) < 1 B it can be shown that Pr(n |= ♦0) > 0

pp. 782, l. -3, expresses in addition that almost surely the player will always win B ex-
presses that within five steps, the player reaches a state from which he will win almost
surely

pp. 821, l. 13, time complexity of the size B time complexity in the size

pp. 851, l. Theorem 10.100, B Add the following condition:
∑

s∈S xs is minimal.

pp. 857, l. 2,
∑

s∈S?\{s}

P(s, α, t) · xt B −
∑

s∈S?\{s}

P(s, α, t) · xt

pp. 863, l. Algorithm 46, return T B return S \ T
pp. 865, l. Lemma 10.113 + succeeding paragraph, B should be after Theorem 10.109

pp. 870, l. Lemma 10.119, any s ∈ S B any s ∈ T
pp. 876, l. 11, U�♦P B U�♦B

pp. 883, l. Theorem 10.129 and just before, is in 2EXPTIME B is 2EXPTIME-complete
(twice)

pp. 903, l. Exercise 10.14, ϕ = �♦ a B ϕ = ♦� a

pp. 903/904, l. Exercise 10.17, Markov chain M B Markov chain M where all states are
equally labeled

pp. 905, l. Exercise 10.22, B Compute also the values ys = Prmax(s |= C UB) with
C = S \ { s3 } and B = { s6 }
pp. 905, l. Exercise 10.23, (a), 1. and (b) B (a), (b), (c)

Appendix

pp. 912, l. footnote, σ = A1A2A3 . . . B σ = A0A1A2 . . .

pp. 918, l. 8, not to 1 B not to n

16

pp. 925, l. 1, they are composed of simple paths B they are composed of paths, at least
one of which is simple.

