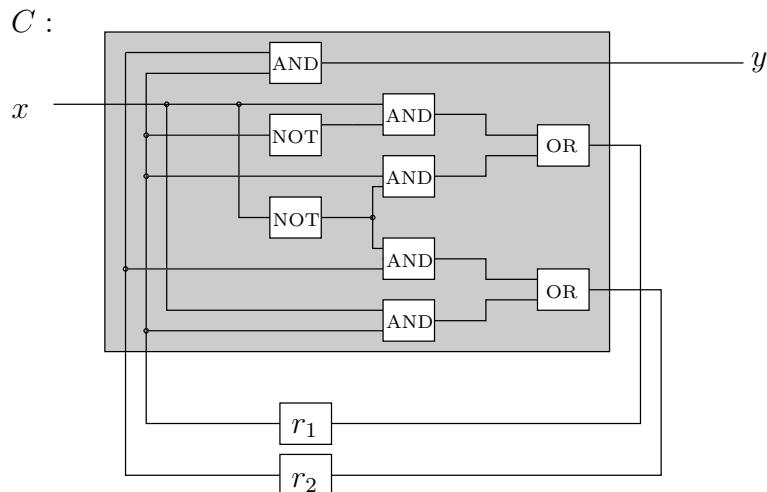


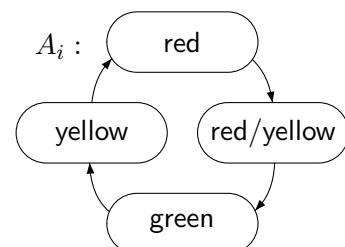
Introduction to Model Checking
 Summer term 2007


– Series 1 –

Hand in on April 13 before the exercise class.

Exercise 1

(2 points)


Consider the following sequential hardware circuit:

 Give the transition system representation T of the circuit C .

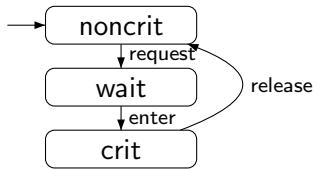
Exercise 2

(1 + 1 + 2 points)

Consider the following street junction with the specification of a traffic light as outlined on the right.

- Choose appropriate actions and label the transitions of the traffic light transition system accordingly.
- Give the transition system representation of a (reasonable) controller C that switches the green signal lamps in the following order: $A_1, A_2, A_3, A_1, A_2, A_3, \dots$
(Hint: Choose an appropriate communication mechanism)
- Outline the transition system $A_1 \parallel A_2 \parallel A_3 \parallel C$.

Exercise 3


(1 + 3 points)

A concurrent system comprises P_1, \dots, P_n competing processes (without shared memory) that access common resources within their critical sections. We assume that the resources may only be accessed exclusively and that k equivalent instances are available.

Further, let $n, k \in \mathbb{N}$ with $2 \leq k \leq n$.

Process P_i can be described by a transition system \mathcal{T}_i with three states and the actions *request*, *enter* and *release* as indicated on the right.

\mathcal{T}_i :

- Develop a transition system representation of an arbiter that communicates with the processes using actions *request* and *release*. The arbiter should assure that there are no more than k processes within their critical section at the same time.
- Sketch the transition system of the parallel composition

$$(\mathcal{T}_1 \parallel \mathcal{T}_2 \parallel \mathcal{T}_3) \parallel_{Syn} \text{Arbiter}$$

with $Syn = \{request, release\}$ for $k = 2$. You need not consider the states $wait_i$.