

Introduction to Model Checking

Summer term 2007

– Series 2 –

Hand in on April 20 before the exercise class.

Exercise 1

(1 + 1 + 2 points)

Consider a system consisting of n processes P_0, \dots, P_{n-1} and a central moderator M in a fully connected network. Each process P_i (for $0 \leq i < n$) executes the same algorithm and stores a unique identifier $id_i \in \mathbb{N}$. Further, we assume that n is known a priori.

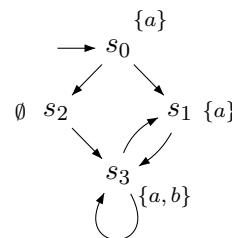
In order to elect a leader, the system is supposed to determine the process with the highest id and communicate it to every process.

- Informally describe how to solve the leader election problem in the above setting.
- Write nanoPromela models for the algorithm of the process and the moderator. Add comments!
- Formally derive the program graphs for a process and the moderator.

Exercise 2

(1 points)

Consider the transition system given below. Formally define its traces!



Exercise 3

(3 + 2 points)

Consider the set AP of atomic propositions defined by $AP = \{x = 0, x > 1\}$ and consider a non-terminating sequential computer program P that manipulates the variable x over the domain \mathbb{N} .

- Formulate the following informally stated properties as LT properties:

<ul style="list-style-type: none"> • false and true • initially x is equal to zero • initially x differs from zero 	<ul style="list-style-type: none"> • x exceeds one only finitely many times • the value of x alternates between zero and one • initially x is equal to zero, but at some point x exceeds one
---	---
- Determine for each LT property whether it is a safety or a liveness property. Justify your answers!

Exercise 4

(2 + 1 + 4 points)

Consider the following generalization of Peterson's mutual exclusion algorithm that is aimed for an arbitrary number $n \geq 2$ of processes. The basic concept of the algorithm is that each process passes through n "levels" before acquiring access to the critical section.

The concurrent processes share two bounded integer arrays:

- $y[0..n-1]$ with $y[k] \in \{1, \dots, n\}$. $y[j] = i$ means that process i has the lowest priority at level j .
- $p[1..n]$ with $p[k] \in \{0, \dots, n-1\}$. $p[i] = j$ expresses that process i is currently at level j .

Each process starts at level 0; before entering the critical section, it has to pass through levels 1 to $n-1$. Process i waits at level j until either all other processes are at lower levels (i.e. $p[k] < j$ for all $k \neq i$) or another process enters level j , thereby enabling process i to move to the next level (i.e. $y[j] \neq i$). The behaviour of process i is given by the following algorithm:

```
while true do
    ... non-critical section ...
    for j := 1 to n - 1 do
        p[i] := j;
        y[j] := i;
        wait until (y[j] ≠ i) ∨ (Λk≠i p[k] < j)
    od
    ... critical section ...
    p[i] := 0;
od
```

- Formally define the program graph for process i and outline it.
- Determine the cardinality of the set of states of the parallel composition $TS(P_1 ||| P_2 ||| \dots ||| P_n)$.
- Prove, that this algorithm indeed ensures mutual exclusion for n processes.