

Prof. Dr. Ir. J.-P. Katoen

M. Neuhäuser

Introduction to Model Checking

Summer term 2007

– Series 3 –

Hand in on April 27 before the exercise class.

Exercise 1

(3 points)

Give an algorithm (in pseudo-code) for invariant checking such that in case the invariant is refuted, a *minimal* counterexample, i.e. a counterexample of minimal length, is provided as error indication.

Exercise 2

(4 + 1 points)

- a) Let P be an LT property. Prove that $\text{pref}(\text{closure}(P)) = \text{pref}(P)$.
- b) Consider LT-properties P and P' to be equivalent (denoted by $P \simeq P'$) if and only if $\text{pref}(P) = \text{pref}(P')$. Prove or disprove

$$P \simeq P' \quad \text{if and only if} \quad \text{closure}(P) = \text{closure}(P').$$

Exercise 3

(3 points)

Let $AP = \{a, b\}$ and let P be the LT property of all infinite words $\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega$ such that there exists $n \geq 0$ with $a \in A_i$ for $0 \leq i < n$, $\{a, b\} = A_n$ and $b \in A_j$ for infinitely many $j \geq 0$. Provide a decomposition $P = P_{\text{safe}} \cap P_{\text{live}}$ into a safety and into a liveness property.

Exercise 4

(3 + 3 points)

In the lecture it was shown that every LT-property P over a set AP of atomic propositions can be split into a safety property P_{safe} and a liveness property P_{live} such that

$$P = P_{\text{safe}} \cap P_{\text{live}}.$$

Prove the proposition of Lemma 3.38 which states that the decomposition

$$P = \text{closure}(P) \cap \left(P \cup \left((2^{AP})^\omega \setminus \text{closure}(P) \right) \right)$$

is the “sharpest” one for P , i.e. for any decomposition $P = P_{\text{safe}} \cap P_{\text{live}}$ we have

- a) $\text{closure}(P) \subseteq P_{\text{safe}}$
- b) $P_{\text{live}} \subseteq P \cup ((2^{AP})^\omega \setminus \text{closure}(P))$