

Introduction to Model Checking

Summer term 2007

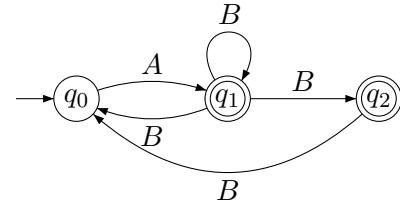
– Series 6 –

Hand in on May 18 before the exercise class.

Exercise 1

(2 points)

Consider the GNBA outlined on the right with acceptance sets $F_1 = \{q_1\}$ and $F_2 = \{q_2\}$. Construct an equivalent NBA using the transformation introduced in the lecture.



Exercise 2

(3 points)

Provide NBA \mathcal{A}_1 and \mathcal{A}_2 for the languages given by the expressions $(AC + B)^*B^\omega$ and $(B^*AC)^\omega$ and apply the product construction (using GNBA) to obtain an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}_1) \cap \mathcal{L}_\omega(\mathcal{A}_2)$. Justify, why $\mathcal{L}_\omega(\mathcal{G}) = \emptyset$ where \mathcal{G} denotes the GNBA accepting the intersection.

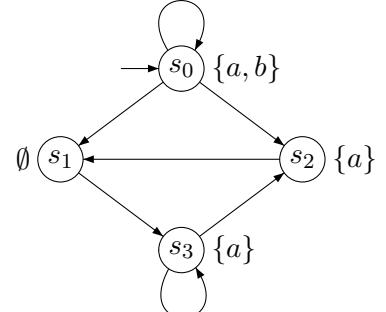
Exercise 3

(1 + 2 + 2 + 1 points)

We consider model checking of ω -regular LT properties which are defined by LTL formulas. Therefore let φ_1 and φ_2 be as follows:

$$\begin{aligned}\varphi_1 &= \square \diamond a \rightarrow \square \diamond b \quad \text{and} \\ \varphi_2 &= \diamond(a \wedge \bigcirc a).\end{aligned}$$

Further, our model is represented by the transition system TS over $AP = \{a, b\}$ which is given as outlined on the right. We check whether $TS \models \varphi_i$ for $i = 1, 2$ using the nested depth-first search algorithm from the lecture. Therefore proceed as follows:

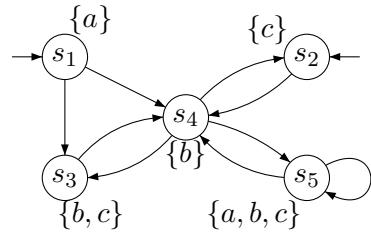


- Derive an NBA \mathcal{A}_i for the LTL formula $\neg\varphi_i$ (for $i = 1, 2$).
More precisely, for \mathcal{A}_i it must hold $\mathcal{L}_\omega(\mathcal{A}_i) = \mathcal{L}_\omega(\neg\varphi_i)$.
Hint: Four, respectively three states suffice.
- Outline the reachable fragment of the product transition system $TS \otimes \mathcal{A}_i$.
- Sketch the main steps of the nested depth-first search algorithm for the persistency check on $TS \otimes \mathcal{A}_i$.
- Provide the counterexample computed by the algorithm if $TS \not\models \varphi_i$.

Exercise 4

(3 points)

Consider the transition system TS over the set of atomic propositions $AP = \{a, b, c\}$:



Decide for each of the LTL formulas φ_i below, whether $TS \models \varphi_i$ holds. Justify your answers!
 If $TS \not\models \varphi_i$, provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

$$\varphi_1 = \Diamond \Box c$$

$$\varphi_4 = \Box a$$

$$\varphi_2 = \Box \Diamond c$$

$$\varphi_5 = a \mathsf{U} \Box(b \vee c)$$

$$\varphi_3 = \bigcirc \neg c \rightarrow \bigcirc \bigcirc c$$

$$\varphi_6 = (\bigcirc \bigcirc b) \mathsf{U}(b \vee c)$$