

Introduction to Model Checking
 Summer term 2007

– Series 8 –

Hand in on June 8 before the exercise class.

Exercise 1

(2 + 2 points)

We consider the release operator R which is defined as $\varphi R \psi := \neg(\neg \varphi U \neg \psi)$.

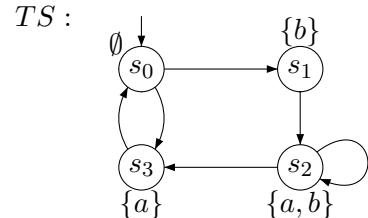
- Informally describe the meaning of the expansion law for the release operator R . Then prove its correctness formally.
- Prove the following two equivalence laws that express R by W and vice versa:

- $\varphi R \psi \equiv (\neg \varphi \wedge \psi) W (\varphi \wedge \psi)$
- $\varphi W \psi \equiv (\neg \varphi \vee \psi) R (\varphi \vee \psi)$

Exercise 2

(0.5 + 1.5 + 2 + 1 + 1 + 2 points)

We consider the LTL formula $\varphi = \square(a \rightarrow (\neg b U(a \wedge b)))$ over the set $AP = \{a, b\}$ of atomic propositions and want to check $TS \models \varphi$ wrt. the transition system outlined on the right.



- To check $TS \models \varphi$, convert $\neg \varphi$ into an equivalent LTL-formula ψ which is constructed according to the following grammar:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid b \mid \Phi \wedge \Phi \mid \neg \Phi \mid \bigcirc \Phi \mid \Phi U \Phi.$$

Then construct $\text{closure}(\psi)$.

- Give the elementary sets wrt. $\text{closure}(\psi)$!
- Construct the GNBA \mathcal{G}_ψ by providing its initial states, its acceptance set and its transition relation.
Use the algorithm given in the lecture.
Hint: It suffices to provide the transition relation as a table.
- Now, construct an NBA $\mathcal{A}_{\neg \varphi}$ directly from $\neg \varphi$, i.e. without relying on \mathcal{G}_ψ .
Hint: Four states suffice!
- Construct $TS \otimes \mathcal{A}_{\neg \varphi}$.
- Use the Nested DFS algorithm from the lecture to check $TS \models \varphi$. Therefore sketch the algorithm's main steps and interpret its outcome!

Exercise 3

(2 points)

Let φ be an LTL-formula over a set of atomic propositions AP . Prove the following property:
For all elementary sets $B \subseteq \text{closure}(\varphi)$ and for all $B' \in \delta(B, B \cap AP)$, it holds:

$$\neg \bigcirc \psi \in B \iff \psi \notin B'.$$