

Prof. Dr. Ir. J.-P. Katoen

M. Neuhäuser

Introduction to Model Checking

Summer term 2007

– Series 9 –

Hand in on June 15 before the exercise class.

Exercise 1

(4 points)

Express the following properties as CTL formulas over $AP = \{a, b, c\}$ and provide a justification. For more complicated formulas, also comment on their subformulas!

- There exists a path on which for every state s it holds: there exists a path which starts in s and on which eventually a holds and in the next state, $\neg a$ holds.
- There exists a state s for which it holds: a is true and on all paths starting from s , c holds as long as b does not hold.
- On every path it holds for every state: a is valid if and only if b is valid and in the previous state, c is valid. *Hint:* Note that this excludes the case where a is valid at the beginning.

Exercise 2

(2 points)

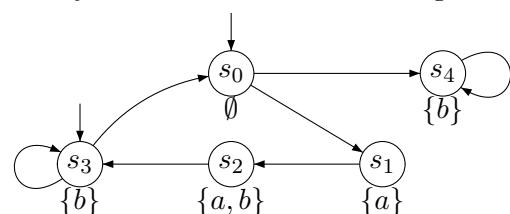
Provide two finite transition systems TS_1 and TS_2 (without terminal states, and over the same set of atomic propositions) and a CTL formula Φ such that $Traces(TS_1) = Traces(TS_2)$ and $TS_1 \models \Phi$, but $TS_2 \not\models \Phi$.

Exercise 3

(4 points)

Consider the following CTL formulas and the transition system TS outlined on the right:

$$\begin{aligned}\Phi_1 &= \forall(aUb) \vee \exists\bigcirc(\forall\Box b) \\ \Phi_2 &= \forall\Box\forall(aUb) \\ \Phi_3 &= (a \wedge b) \rightarrow \exists\Box\exists\bigcirc\forall(bWa) \\ \Phi_4 &= (\forall\Box\exists\Diamond\Phi_3)\end{aligned}$$



Give the satisfaction sets $Sat(\Phi_i)$ and decide whether $TS \models \Phi_i$ holds ($1 \leq i \leq 4$).

Exercise 4

(2 + 2 points)

Prove or disprove the following implications:

- Let $\Phi_1 = \forall\Diamond a \vee \forall\Diamond b$ and $\Phi_2 = \forall\Diamond(a \vee b)$.
Prove or disprove the following implications: $\Phi_1 \Rightarrow \Phi_2$ and $\Phi_2 \Rightarrow \Phi_1$.
- Now consider $\Psi_1 = \exists(aU\exists(bUc))$ and $\Psi_2 = \exists(\exists(aUb)Uc)$.
Again, prove or disprove $\Psi_1 \Rightarrow \Psi_2$ and $\Psi_2 \Rightarrow \Psi_1$.