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Overview

⇒ On the role of system verification

• Formal verification techniques

– model-based testing
– simulation
– deductive approaches

• Model checking

• Course objectives and planning
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The quest for software verification

It is fair to state, that in this digital era
correct systems for information processing

are more valuable than gold.

Henk Barendregt (1996)
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The importance of software correctness

• Rapidly increasing integration of ICT in different applications:

– embedded systems
– communication protocols
– transportation systems

• Reliability increasingly depends on hard- and software integrity

• Defects can be fatal and extremely costly

– products subject to mass-production
– safety-critical systems
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A famous example

The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch due to a
conversion of a 64-bit floating point into a 16-bit integer value
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What is system verification?

System verification amounts to check whether a system fulfills

the qualitative requirements that have been identified

Verification 6= validation:

Verification = “check that we are building the thing right”

Validation = “check that we are building the right thing”
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Software verification techniques

• Peer reviewing

– static technique: manual code inspection, no software execution
– detects between 31 and 93% of defects with median of about 60%
– subtle errors (concurrency and algorithm defects) hard to catch

• Testing

– dynamic technique in which software is executed

• Some figures

– 30% to 50% of software project costs devoted to testing
– more time and effort is spent on validation than on construction
– accepted defect density: about 1 defects per 1,000 code lines
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Catching software bugs: the sooner, the better
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Overview

• On the role of system verification

⇒ Formal verification techniques

– model-based testing
– simulation
– deductive approaches

• Model checking

• Course objectives and planning
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Formal methods

Formal methods are the

“applied mathematics for modelling and analysing ICT systems”

They offer a large potential for

• obtaining an early integration of verification in the design process

• providing more effective verification techniques (higher coverage)

• reducing the verification time

Highly recommended by IEC, ESA, FAA and NASA for safety-critical software
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Model-based formal verification

• Starting-point of is a model of the system under consideration

• Modelling – a piece of art – already reveals several inconsistencies
and ambiguities

• Accompanied with efficient algorithms for realistic systems

– improvements in data structures and algorithms + better computers

Any verification using model-based techniques is only
as good as the model of the system.
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Formal verification techniques for property φ

• deductive methods

– method: provide a formal proof that φ holds
– tool: theorem prover/proof assistant or proof checker
– applicable if: system has form of a mathematical theory

• model checking

– method: systematic check on φ in all states
– tool: model checker (SPIN, NUSMV, UPPAAL, ...)
– applicable if: system generates (finite) behavioural model

• model-based simulation or testing

– method: test for φ by exploring possible behaviours
– tool: simulator/tester
– applicable if: system defines an executable model
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Simulation and testing

• Basic procedure:

– take a model (simulation) or a realisation (testing)
– stimulate it with certain inputs, i.e., the tests
– observe reaction and check whether this is “desired”

• Important drawbacks:

– number of possible behaviours is very large (or even infinite)
– unexplored behaviours may contain the fatal bug

=⇒ testing/simulation can show the presence of errors, not their absence
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Model-based testing

system

Test Generation

system model

Modeling

product or
prototype

test suiteTest Execution

pass fail

As model checking verifies models and not realisations, testing is an essential
complementary technique
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Overview

• On the role of system verification

• Formal verification techniques

– model-based testing
– simulation
– deductive approaches

⇒ Model checking

• Course objectives and planning
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Milestones in formal verification

• Mathematical approach towards program correctness (Turing, 1949)

• Syntax-based technique for sequential programs (Hoare, 1969)

– for a given input, does a computer program generate the correct output?
– based on compositional proof rules expressed in predicate logic

• Syntax-based technique for concurrent programs (Pnueli, 1977)

– can handle properties referring to situations during the computation
– based on proof rules expressed in temporal logic

• Automated verification of concurrent programs (Emerson & Clarke, 1981)

– model-based instead of proof-rule based approach
– does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios
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Model checking overview
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What is model checking?

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,

systematically checks whether this property holds
for (a given state in) that model.
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Typical model-check properties

• Is the generated result ok?

• Can the system reach a deadlock situation, e.g., when two
concurrent programs are mutually waiting for each other and thus
halt the entire system?

• Can a deadlock occur within 1 hour after a system reset?

• Is a response always received within 8 minutes?

Model checking requires a precise and unambiguous statement of the

properties to be examined; this is typically done in temporal logic
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Deep Space-1 Spacecraft

modules of NASA’s Deep Space 1 space-craft (launched in October 1998) have been
thoroughly examined using model checking
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A simple concurrent program

process Inc = while true do if x < 200 then x := x + 1 od

process Dec = while true do if x > 0 then x := x − 1 od

process Reset = while true do if x = 200 then x := 0 od

is x always between (and including) 0 and 200?

c© JPK 20



#1: Quest for correctness Model Checking

A small example
int x = 0;

proctype Inc() {
do :: true -> if :: (x < 200) -> x = x + 1 fi od

}

proctype Dec() {
do :: true -> if :: (x > 0) -> x = x - 1 fi od

}

proctype Reset() {
do :: true -> if :: (x == 200) -> x = 0 fi od

}

init {
atomic{ run Inc() ; run Dec() ; run Reset() }

}
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How to check for the values of x?
Extend the model with a “monitor” process that checks 0 6 x 6 200:

proctype Check() {
assert (x >= 0 && x <= 200)

}

init {
atomic{ run Inc() ; run Dec() ; run Reset() ; run Check() }

}

And let the model checker verify whether the assertion holds in every
state of the concurrent system....

pan: assertion violated ((x >= 0) && (x <= 200)) (at depth 1802)
pan: wrote pan_in.trail
...................
State-vector 32 byte, depth reached 3598, errors: 1

12609 states, stored
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The counter-example

..............
605: proc 1 (Inc) line 9 "pan_in" (state 2) [((x<200))]
606: proc 1 (Inc) line 9 "pan_in" (state 3) [x = (x+1)]
607: proc 3 (Dec) line 5 "pan_in" (state 2) [((x > 0))]
608: proc 1 (Inc) line 9 "pan_in" (state 1) [(1)]
609: proc 3 (Reset) line 13 "pan_in" (state 2) [((x==200))]
610: proc 3 (Reset) line 13 "pan_in" (state 3) [x = 0]
611: proc 3 (Reset) line 13 "pan_in" (state 1) [(1)]
612: proc 2 (Dec) line 5 "pan_in" (state 3) [x = (x-1)]
613: proc 2 (Dec) line 5 "pan_in" (state 1) [(1)]
spin: line 17 "pan_in", Error: assertion violated
spin: text of failed assertion: assert(((x>=0)&&(x<=200)))
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Breaking the error
int x = 0;

proctype Inc() {
do :: true -> atomic{ if :: x < 200 -> x = x + 1 fi } od

}

proctype Dec() {
do :: true -> atomic{ if :: x > 0 -> x = x - 1 fi } od

}

proctype Reset() {
do :: true -> atomic{ if :: x == 200 -> x = 0 fi } od

}

init {
atomic{ run Inc() ; run Dec() ; run Reset() }

}
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The model checking process

• Modeling phase

– model the system under consideration
– as a first sanity check, perform some simulations
– formalise the property to be checked

• Running phase

– run the model checker to check the validity of the property in the model

• Analysis phase

– property satisfied? → check next property (if any)
– property violated? →

1. analyse generated counterexample by simulation
2. refine the model, design, or property . . . and repeat the entire procedure

– out of memory? → try to reduce the model and try again
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The pros of model checking

• widely applicable (hardware, software, protocol systems, ...)

• allows for partial verification (only most relevant properties)

• potential “push-button” technology (software-tools)

• rapidly increasing industrial interest

• in case of property violation, a counter-example is provided

• sound and interesting mathematical foundations

• not biased to the most possible scenarios (such as testing)
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The cons of model checking

• mainly focused on control-intensive applications (less data-oriented)

• any validation model checking is only as “good” as the system model

• no guarantee about completeness of results

• impossible to check generalisations (in general)

Nevertheless:

Model checking is a effective technique
to expose potential design errors
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Striking model-checking examples
• Security: Needham-Schroeder encryption protocol

– error that remained undiscovered for 17 years unrevealed

• Transportation systems

– train model containing 10
476 states

• Model checkers for C, Java and C++

– used (and developed) by Microsoft, Digital, NASA
– successful application area: device drivers

• Dutch storm surge barrier in Nieuwe Waterweg

• Software in the current/next generation of space missiles

– NASA’s Mars Pathfinder, Deep Space-1, JPL LARS group
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Overview

• On the role of system verification

• Formal verification techniques

– model-based testing
– simulation
– deductive approaches

• Model checking

⇒ Course objectives and planning

c© JPK 29



#1: Quest for correctness Model Checking

Course topics

• Modeling hard- and software systems

– transition systems, parallelism, nanoPromela, state-space explosion problem

• Linear-time properties

– deadlock, reachability, safety, invariants, liveness and fairness

• Regular properties

– finite-state automata and safety, Büchi automata and persistence

• Spin and Promela

– hands-on experience with some small examples
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Course topics

• Linear-time temporal logic

– syntax, semantics, model-checking algorithms

• Computation tree logic

– . . . as above . . .

– counterexample generation, expressiveness LTL vs CTL,
– symbolic model checking, CTL∗, fairness

• Equivalences and abstraction

– trace and (bi)simulation, logical characterization
– minimization algorithms
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Course organization (1)

• Prerequisites

– automata theory, complexity theory (a bit), algorithms and data structures

• Lectures: twice per week (AH1+6, Tue+Wed)

– check regularly course web-page for possible “no shows”
– slides (with gaps) are made available on web page

• Exercises: once per week (AH3, Fri)

– marked exercises
– master students: 50% of points needed
– assistent: Martin Neuhäusser
– student assistants: Denise Nimmerrichter und Ulrich Schmidt-Görtz
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Course organization (2)

• Course material:

– draft book “Principles of Model Checking” (Baier & Katoen)
– hard copy available at secretary Lehrstuhl i2
– find flaws? please report them (katoen@cs.rwth-aachen.de)

– one set of exercises waived if you find serious flaw

• Exam:

– written exam Friday July 13, 2007
– copy of lecture notes allowed at exam

• Outlook

– Model Checking Lab (WS 07/08), Advanced Model Checking
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