© JPK

Introduction
Lecture #1 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Softwaremodeling and Verification

E-malil: kat oen@s. r wt h- aachen. de

April 3, 2007

#1. Quest for correctness

Model Checking

Overview

= On the role of system verification

e Formal verification techniques

— model-based testing
— simulation
— deductive approaches

e Model checking

e Course objectives and planning

© JPK

#1: Quest for correctness Model Checking

The quest for software verification

It is fair to state, that in this digital era
correct systems for information processing
are more valuable than gold.

. . -
e L
- ™ LZ
- Y % .
an
f ’
\ g P
R T2

Henk Barendregt (1996)

© JPK 2

#1: Quest for correctness Model Checking

The importance of software correctness

e Rapidly increasing integration of ICT in different applications:

— embedded systems
— communication protocols
— transportation systems

e Reliability increasingly depends on hard- and software integrity

e Defects can be fatal and extremely costly

— products subject to mass-production
— safety-critical systems

© JPK 3

#1:. Quest for correctness Model Checking

A famous example

The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch due to a
conversion of a 64-bit floating point into a 16-bit integer value

© JPK 4

#1: Quest for correctness Model Checking

What is system verification?

System verification amounts to check whether a system fulfills
the qualitative requirements that have been identified

Verification # validation:
Verification = “check that we are building the thing right”

Validation = “check that we are building the right thing”

© JPK 5

#1: Quest for correctness Model Checking

Software verification technigues

e Peer reviewing

— static technique: manual code inspection, no software execution
— detects between 31 and 93% of defects with median of about 60%
— subtle errors (concurrency and algorithm defects) hard to catch

e Testing

— dynamic technigue in which software is executed

e Some figures

— 30% to 50% of software project costs devoted to testing
— more time and effort is spent on validation than on construction
— accepted defect density: about 1 defects per 1,000 code lines

© JPK 6

#1: Quest for correctness Model Checking

Catching software bugs: the sooner, the better

Analysis Cgr;gg;ual Programming Unit Testing | System Testing | Operation
50% = 125
: detected
|rrltrro dul(r:]eg errors (in %) cost of
40% —+ errors (in %) correction |~ 10
per error
(in 1,000 US %)
30% | +75
20% —+ -5
10% T2
0% | | | | | 0

Time (non-linear)

© JPK -

#1. Quest for correctness

Model Checking

Overview

e On the role of system verification

= Formal verification techniques

— model-based testing
— simulation
— deductive approaches

e Model checking

e Course objectives and planning

© JPK

#1: Quest for correctness Model Checking

Formal methods

Formal methods are the

“applied mathematics for modelling and analysing ICT systems”

They offer a large potential for
e Obtaining an early integration of verification in the design process
e providing more effective verification technigues (higher coverage)

e reducing the verification time

Highly recommended by IEC, ESA, FAA and NASA for safety-critical software

© JPK 9

#1: Quest for correctness Model Checking

Model-based formal verification

e Starting-point of is a model of the system under consideration

e Modelling — a piece of art — already reveals several inconsistencies
and ambiguities

e Accompanied with efficient algorithms for realistic systems

— improvements in data structures and algorithms + better computers

Any verifi cation using model-based techniques is only
as good as the model of the system.

© JPK 10

#1: Quest for correctness Model Checking

Formal verification techniques for property ¢

e deductive methods

— method: provide a formal proof that ¢ holds
— tool: theorem prover/proof assistant or proof checker
— applicable if: system has form of a mathematical theory

e model checking

— method: systematic check on ¢ in all states
— tool: model checker (SPIN, NUSMV, UPPAAL, ...)
— applicable if: system generates (finite) behavioural model

e model-based simulation or testing

— method: test for ¢ by exploring possible behaviours
— tool: simulator/tester

— applicable if: system defines an executable model

© JPK 11

#1: Quest for correctness Model Checking

Simulation and testing

e Basic procedure:

— take a model (simulation) or a realisation (testing)
— stimulate it with certain inputs, i.e., the tests
— observe reaction and check whether this is “desired”

e Important drawbacks:

— number of possible behaviours is very large (or even infinite)
— unexplored behaviours may contain the fatal bug

—> testing/simulation can show the presence of errors, not their absence

© JPK 12

#1: Quest for correctness Model Checking

Model-based testing

product or
prototype

0

Modeling

system model

A

Test Generation

Test Execution

As model checking verifies models and not realisations, testing is an essential
complementary technique

W

© JPK 13

#1. Quest for correctness

Model Checking

Overview

e On the role of system verification

e Formal verification techniques

— model-based testing
— simulation
— deductive approaches

= Model checking

e Course objectives and planning

© JPK

14

#1: Quest for correctness Model Checking

Milestones in formal verification

e Mathematical approach towards program correctness (Turing, 1949)

e Syntax-based technique for sequential programs (Hoare, 1969)

— for a given input, does a computer program generate the correct output?
— based on compositional proof rules expressed in predicate logic

e Syntax-based technique for concurrent programs (Pnueli, 1977)

— can handle properties referring to situations during the computation
— based on proof rules expressed in temporal logic

e Automated verification of concurrent programs (Emerson & Clarke, 1981)

— model-based instead of proof-rule based approach
— does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios

© JPK 15

#1: Quest for correctness Model Checking

Model checking overview

requirements
© @ “*not biased towards the

most probable scenarios

Y Y
Formalizing Modeling

Y Y

property
ot Comemmore y—

™ Model Checking =
Y

@ violated +
counterexample

insuffi cient
memory

N
- . location
Simulation —= error

© JPK 16

#1. Quest for correctness

Model Checking

What is model checking?

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds
for (a given state in) that model.

© JPK

17

#1. Quest for correctness

Model Checking

Typical model-check properties

e |Is the generated result ok?

e Can the system reach a deadlock situation, e.g., when two
concurrent programs are mutually waiting for each other and thus

halt the entire system?

e Can a deadlock occur within 1 hour after a system reset?

e IS a response always received within 8 minutes?

Model checking requires a precise and unambiguous statement of the

properties to be examined; this is typically done in

temporal logic

© JPK

18

#1. Quest for correctness

Model Checking

Deep Space-1 Spacecraft

Miniature Integrated
MICAS Sun shade Camera Spectrometer

+z low gain antenna

Sun
Iy
I
3 r el ectronics Waveguide transfer
e witch (2)

Battery“// |
i
L

Ton propulsion system

digital contral interface unit T
& Heleed system panel

modules of NASA's Deep Space 1 space-craft (launched in October 1998) have been

thoroughly examined using model checking

© JPK

19

#1. Quest for correctness

Model Checking

A simple concurrent program

process Inc = while true do if x < 200 then x := z + 1 od
process Dec = while truedo if x > 0then z:=2 —1 od

process Reset = while true do if x = 200 then z := 0 od

IS « always between (and including) 0 and 2007

© JPK

20

#1: Quest for correctness Model Checking

A small example
int x = 0;

proctype Inc() {

do :: true ->if :: (x <200) ->x =x +1fi od
}
proctype Dec() {

do :: true ->if :: (x >0) ->x =x - 1fi od

}

proctype Reset() {
do :: true -> if :: (x == 200) ->x =0 fi od
}

init {
atomc{ run Inc() ; run Dec() ; run Reset() }

}

© JPK 21

#1: Quest for correctness Model Checking

How to check for the values of £?

Extend the model with a “monitor” process that checks 0 < x < 200:

proctype Check() {
assert (x >= 0 && x <= 200)

}

init {
atomc{ run Inc() ; run Dec() ; run Reset() ; run Check() }

}

And let the model checker verify whether the assertion holds in every
state of the concurrent system....

pan: assertion violated ((x >= 0) && (x <= 200)) (at depth 1802)
pan. wote pan_in.trail
State-vector 32 byte, depth reached 3598, errors: 1

12609 states, stored

© JPK 22

#1. Quest for correctness

Model Checking

The counter-example

605: proc 1 (Inc)
606: proc 1 (Inc)
607: proc 3 (Dec)
608: proc 1 (Inc)
609: proc 3 (Reset)
610 proc 3 (Reset)
611 proc 3 (Reset)
612 proc 2 (Dec)
613: proc 2 (Dec)
spin: line 17 "pan_in",

spin: text of failed assertion:

| i ne 9 "pan_in"
| i ne 9 "pan_in"
line 5 "pan_in" (s
| i ne 9 "pan_in"
line 13 "pan_in"
line 13 "pan_in"
line 13 "pan_in"
| i ne 5 "pan_in"
i ne 5 "pan_in"
Error: asserti

(state
(state

tate 2)

(state
(state
(state
(state
(state
(state

2)
3)

1)
2)
3)
1)
3)
1)

on vi ol at ed

[((x<200))]
[x = (x+1)]
[((x > 0))]
[(1)]

[((x==200))]
[x = 0]
[(1)]

[x = (x-1)]
[(1)]

assert (((x>=0) &&(x<=200)))

© JPK

23

#1. Quest for correctness

Model Checking

Breaking the error

Int x = 0;

proctype Inc() {

X <200 ->x =x +1fi } od

X >0->x=x-1fi } od

Xx == 200 ->x =0 fi } od

atomc{ run Inc() ; run Dec() ; run Reset() }

do :: true -> atomc{ if
}
proctype Dec() {

do :: true -> atomc{ if
}
proctype Reset() {

do :: true -> atomc{ if
}
init {
}

© JPK

24

#1: Quest for correctness Model Checking

The model checking process
e Modeling phase

— model the system under consideration
— as a first sanity check, perform some simulations
— formalise the property to be checked

e Running phase

— run the model checker to check the validity of the property in the model

e Analysis phase

— property satisfied? — check next property (if any)
— property violated? —

1. analyse generated counterexample by simulation

2. refine the model, design, or property . .. and repeat the entire procedure
— out of memory? — try to reduce the model and try again

© JPK 25

#1: Quest for correctness Model Checking

The pros of model checking
e widely applicable (hardware, software, protocol systems, ...)
e allows for partial verification (only most relevant properties)
e potential “push-button” technology (software-tools)
e rapidly increasing industrial interest
e In case of property violation, a counter-example is provided
e sound and interesting mathematical foundations

e Not biased to the most possible scenarios (such as testing)

© JPK 26

#1: Quest for correctness Model Checking

The cons of model checking

e mainly focused on control-intensive applications (less data-oriented)
e any validation model checking is only as “good” as the system model
e NO guarantee about completeness of results

e Impossible to check generalisations (in general)

Nevertheless:

Model checking is a effective technique
to expose potential design errors

© JPK 27

#1: Quest for correctness Model Checking

Striking model-checking examples
e Security: Needham-Schroeder encryption protocol

— error that remained undiscovered for 17 years unrevealed

e Transportation systems

0476

— train model containing 1 states

e Model checkers for C, Java and C++

— used (and developed) by Microsoft, Digital, NASA
— successful application area: device drivers

e Dutch storm surge barrier in Nieuwe Waterweg

e Software in the current/next generation of space missiles
— NASA's Mars Pathfinder, Deep Space-1, JPL LARS group

© JPK 28

#1. Quest for correctness

Model Checking

Overview

e On the role of system verification

e Formal verification techniques

— model-based testing
— simulation
— deductive approaches

e Model checking

= Course objectives and planning

© JPK

29

#1: Quest for correctness Model Checking

Course topics

e Modeling hard- and software systems

— transition systems, parallelism, nanoPromela, state-space explosion problem

e Linear-time properties

— deadlock, reachability, safety, invariants, liveness and fairness

e Regular properties

— finite-state automata and safety, Blichi automata and persistence

e Spin and Promela

— hands-on experience with some small examples

© JPK 30

#1: Quest for correctness Model Checking

Course topics

e Linear-time temporal logic

— syntax, semantics, model-checking algorithms

e Computation tree logic

— ...asabove...
— counterexample generation, expressiveness LTL vs CTL,
— symbolic model checking, CTL", fairness

e Equivalences and abstraction

— trace and (bi)simulation, logical characterization
— minimization algorithms

© JPK 31

#1: Quest for correctness Model Checking

Course organization (1)

e Prerequisites

— automata theory, complexity theory (a bit), algorithms and data structures

e Lectures: twice per week (AH1+6, Tue+Wed)

— check regularly course web-page for possible “no shows”
— slides (with gaps) are made available on web page

e EXercises: once per week (AH3, Fri)

— marked exercises

— master students: 50% of points needed

— assistent: Martin Neuhausser

— student assistants: Denise Nimmerrichter und Ulrich Schmidt-Gortz

© JPK 32

#1: Quest for correctness Model Checking

Course organization (2)

e Course material:

— draft book “Principles of Model Checking” (Baier & Katoen)

— hard copy available at secretary Lehrstuhl i2

— find flaws? please report them (katoen@cs.rwth-aachen.de)
— one set of exercises waived if you find serious flaw

e Exam:

— written exam Friday July 13, 2007
— copy of lecture notes allowed at exam

e Outlook

— Model Checking Lab (WS 07/08), Advanced Model Checking

© JPK 33

