
Introduction
Lecture #1 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Softwaremodeling and Verification

E-mail: katoen@cs.rwth-aachen.de

April 3, 2007

c© JPK



#1: Quest for correctness Model Checking

Overview

⇒ On the role of system verification

• Formal verification techniques

– model-based testing
– simulation
– deductive approaches

• Model checking

• Course objectives and planning

c© JPK 1



#1: Quest for correctness Model Checking

The quest for software verification

It is fair to state, that in this digital era
correct systems for information processing

are more valuable than gold.

Henk Barendregt (1996)

c© JPK 2



#1: Quest for correctness Model Checking

The importance of software correctness

• Rapidly increasing integration of ICT in different applications:

– embedded systems
– communication protocols
– transportation systems

• Reliability increasingly depends on hard- and software integrity

• Defects can be fatal and extremely costly

– products subject to mass-production
– safety-critical systems

c© JPK 3



#1: Quest for correctness Model Checking

A famous example

The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch due to a
conversion of a 64-bit floating point into a 16-bit integer value

c© JPK 4



#1: Quest for correctness Model Checking

What is system verification?

System verification amounts to check whether a system fulfills

the qualitative requirements that have been identified

Verification 6= validation:

Verification = “check that we are building the thing right”

Validation = “check that we are building the right thing”

c© JPK 5



#1: Quest for correctness Model Checking

Software verification techniques

• Peer reviewing

– static technique: manual code inspection, no software execution
– detects between 31 and 93% of defects with median of about 60%
– subtle errors (concurrency and algorithm defects) hard to catch

• Testing

– dynamic technique in which software is executed

• Some figures

– 30% to 50% of software project costs devoted to testing
– more time and effort is spent on validation than on construction
– accepted defect density: about 1 defects per 1,000 code lines

c© JPK 6



#1: Quest for correctness Model Checking

Catching software bugs: the sooner, the better

Analysis Conceptual
Design

Programming Unit Testing Operation

0

Time (non-linear)

errors errors
detected

cost of
correction
per error

50%

40%

30%

20%

10%

0%

2.5

5

7.5

10

12.5

(in %)
introduced

(in %)

System Testing

(in 1,000 US $)

c© JPK 7



#1: Quest for correctness Model Checking

Overview

• On the role of system verification

⇒ Formal verification techniques

– model-based testing
– simulation
– deductive approaches

• Model checking

• Course objectives and planning

c© JPK 8



#1: Quest for correctness Model Checking

Formal methods

Formal methods are the

“applied mathematics for modelling and analysing ICT systems”

They offer a large potential for

• obtaining an early integration of verification in the design process

• providing more effective verification techniques (higher coverage)

• reducing the verification time

Highly recommended by IEC, ESA, FAA and NASA for safety-critical software

c© JPK 9



#1: Quest for correctness Model Checking

Model-based formal verification

• Starting-point of is a model of the system under consideration

• Modelling – a piece of art – already reveals several inconsistencies
and ambiguities

• Accompanied with efficient algorithms for realistic systems

– improvements in data structures and algorithms + better computers

Any verification using model-based techniques is only
as good as the model of the system.

c© JPK 10



#1: Quest for correctness Model Checking

Formal verification techniques for property φ

• deductive methods

– method: provide a formal proof that φ holds
– tool: theorem prover/proof assistant or proof checker
– applicable if: system has form of a mathematical theory

• model checking

– method: systematic check on φ in all states
– tool: model checker (SPIN, NUSMV, UPPAAL, ...)
– applicable if: system generates (finite) behavioural model

• model-based simulation or testing

– method: test for φ by exploring possible behaviours
– tool: simulator/tester
– applicable if: system defines an executable model

c© JPK 11



#1: Quest for correctness Model Checking

Simulation and testing

• Basic procedure:

– take a model (simulation) or a realisation (testing)
– stimulate it with certain inputs, i.e., the tests
– observe reaction and check whether this is “desired”

• Important drawbacks:

– number of possible behaviours is very large (or even infinite)
– unexplored behaviours may contain the fatal bug

=⇒ testing/simulation can show the presence of errors, not their absence

c© JPK 12



#1: Quest for correctness Model Checking

Model-based testing

system

Test Generation

system model

Modeling

product or
prototype

test suiteTest Execution

pass fail

As model checking verifies models and not realisations, testing is an essential
complementary technique

c© JPK 13



#1: Quest for correctness Model Checking

Overview

• On the role of system verification

• Formal verification techniques

– model-based testing
– simulation
– deductive approaches

⇒ Model checking

• Course objectives and planning

c© JPK 14



#1: Quest for correctness Model Checking

Milestones in formal verification

• Mathematical approach towards program correctness (Turing, 1949)

• Syntax-based technique for sequential programs (Hoare, 1969)

– for a given input, does a computer program generate the correct output?
– based on compositional proof rules expressed in predicate logic

• Syntax-based technique for concurrent programs (Pnueli, 1977)

– can handle properties referring to situations during the computation
– based on proof rules expressed in temporal logic

• Automated verification of concurrent programs (Emerson & Clarke, 1981)

– model-based instead of proof-rule based approach
– does the concurrent program satisfy a given (logical) property?

these formal techniques are not biased towards the most probable scenarios

c© JPK 15



#1: Quest for correctness Model Checking

Model checking overview

most probable scenarios’’

‘‘not biased towards the

satisfied

insufficient
memory

counterexample
Simulation location

error

system

violated +

Model Checking

requirements

Formalizing Modeling

system model
property

specification

c© JPK 16



#1: Quest for correctness Model Checking

What is model checking?

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,

systematically checks whether this property holds
for (a given state in) that model.

c© JPK 17



#1: Quest for correctness Model Checking

Typical model-check properties

• Is the generated result ok?

• Can the system reach a deadlock situation, e.g., when two
concurrent programs are mutually waiting for each other and thus
halt the entire system?

• Can a deadlock occur within 1 hour after a system reset?

• Is a response always received within 8 minutes?

Model checking requires a precise and unambiguous statement of the

properties to be examined; this is typically done in temporal logic

c© JPK 18



#1: Quest for correctness Model Checking

Deep Space-1 Spacecraft

modules of NASA’s Deep Space 1 space-craft (launched in October 1998) have been
thoroughly examined using model checking

c© JPK 19



#1: Quest for correctness Model Checking

A simple concurrent program

process Inc = while true do if x < 200 then x := x + 1 od

process Dec = while true do if x > 0 then x := x − 1 od

process Reset = while true do if x = 200 then x := 0 od

is x always between (and including) 0 and 200?

c© JPK 20



#1: Quest for correctness Model Checking

A small example
int x = 0;

proctype Inc() {
do :: true -> if :: (x < 200) -> x = x + 1 fi od

}

proctype Dec() {
do :: true -> if :: (x > 0) -> x = x - 1 fi od

}

proctype Reset() {
do :: true -> if :: (x == 200) -> x = 0 fi od

}

init {
atomic{ run Inc() ; run Dec() ; run Reset() }

}

c© JPK 21



#1: Quest for correctness Model Checking

How to check for the values of x?
Extend the model with a “monitor” process that checks 0 6 x 6 200:

proctype Check() {
assert (x >= 0 && x <= 200)

}

init {
atomic{ run Inc() ; run Dec() ; run Reset() ; run Check() }

}

And let the model checker verify whether the assertion holds in every
state of the concurrent system....

pan: assertion violated ((x >= 0) && (x <= 200)) (at depth 1802)
pan: wrote pan_in.trail
...................
State-vector 32 byte, depth reached 3598, errors: 1

12609 states, stored

c© JPK 22



#1: Quest for correctness Model Checking

The counter-example

..............
605: proc 1 (Inc) line 9 "pan_in" (state 2) [((x<200))]
606: proc 1 (Inc) line 9 "pan_in" (state 3) [x = (x+1)]
607: proc 3 (Dec) line 5 "pan_in" (state 2) [((x > 0))]
608: proc 1 (Inc) line 9 "pan_in" (state 1) [(1)]
609: proc 3 (Reset) line 13 "pan_in" (state 2) [((x==200))]
610: proc 3 (Reset) line 13 "pan_in" (state 3) [x = 0]
611: proc 3 (Reset) line 13 "pan_in" (state 1) [(1)]
612: proc 2 (Dec) line 5 "pan_in" (state 3) [x = (x-1)]
613: proc 2 (Dec) line 5 "pan_in" (state 1) [(1)]
spin: line 17 "pan_in", Error: assertion violated
spin: text of failed assertion: assert(((x>=0)&&(x<=200)))

c© JPK 23



#1: Quest for correctness Model Checking

Breaking the error
int x = 0;

proctype Inc() {
do :: true -> atomic{ if :: x < 200 -> x = x + 1 fi } od

}

proctype Dec() {
do :: true -> atomic{ if :: x > 0 -> x = x - 1 fi } od

}

proctype Reset() {
do :: true -> atomic{ if :: x == 200 -> x = 0 fi } od

}

init {
atomic{ run Inc() ; run Dec() ; run Reset() }

}

c© JPK 24



#1: Quest for correctness Model Checking

The model checking process

• Modeling phase

– model the system under consideration
– as a first sanity check, perform some simulations
– formalise the property to be checked

• Running phase

– run the model checker to check the validity of the property in the model

• Analysis phase

– property satisfied? → check next property (if any)
– property violated? →

1. analyse generated counterexample by simulation
2. refine the model, design, or property . . . and repeat the entire procedure

– out of memory? → try to reduce the model and try again

c© JPK 25



#1: Quest for correctness Model Checking

The pros of model checking

• widely applicable (hardware, software, protocol systems, ...)

• allows for partial verification (only most relevant properties)

• potential “push-button” technology (software-tools)

• rapidly increasing industrial interest

• in case of property violation, a counter-example is provided

• sound and interesting mathematical foundations

• not biased to the most possible scenarios (such as testing)

c© JPK 26



#1: Quest for correctness Model Checking

The cons of model checking

• mainly focused on control-intensive applications (less data-oriented)

• any validation model checking is only as “good” as the system model

• no guarantee about completeness of results

• impossible to check generalisations (in general)

Nevertheless:

Model checking is a effective technique
to expose potential design errors

c© JPK 27



#1: Quest for correctness Model Checking

Striking model-checking examples
• Security: Needham-Schroeder encryption protocol

– error that remained undiscovered for 17 years unrevealed

• Transportation systems

– train model containing 10
476 states

• Model checkers for C, Java and C++

– used (and developed) by Microsoft, Digital, NASA
– successful application area: device drivers

• Dutch storm surge barrier in Nieuwe Waterweg

• Software in the current/next generation of space missiles

– NASA’s Mars Pathfinder, Deep Space-1, JPL LARS group

c© JPK 28



#1: Quest for correctness Model Checking

Overview

• On the role of system verification

• Formal verification techniques

– model-based testing
– simulation
– deductive approaches

• Model checking

⇒ Course objectives and planning

c© JPK 29



#1: Quest for correctness Model Checking

Course topics

• Modeling hard- and software systems

– transition systems, parallelism, nanoPromela, state-space explosion problem

• Linear-time properties

– deadlock, reachability, safety, invariants, liveness and fairness

• Regular properties

– finite-state automata and safety, Büchi automata and persistence

• Spin and Promela

– hands-on experience with some small examples

c© JPK 30



#1: Quest for correctness Model Checking

Course topics

• Linear-time temporal logic

– syntax, semantics, model-checking algorithms

• Computation tree logic

– . . . as above . . .

– counterexample generation, expressiveness LTL vs CTL,
– symbolic model checking, CTL∗, fairness

• Equivalences and abstraction

– trace and (bi)simulation, logical characterization
– minimization algorithms

c© JPK 31



#1: Quest for correctness Model Checking

Course organization (1)

• Prerequisites

– automata theory, complexity theory (a bit), algorithms and data structures

• Lectures: twice per week (AH1+6, Tue+Wed)

– check regularly course web-page for possible “no shows”
– slides (with gaps) are made available on web page

• Exercises: once per week (AH3, Fri)

– marked exercises
– master students: 50% of points needed
– assistent: Martin Neuhäusser
– student assistants: Denise Nimmerrichter und Ulrich Schmidt-Görtz

c© JPK 32



#1: Quest for correctness Model Checking

Course organization (2)

• Course material:

– draft book “Principles of Model Checking” (Baier & Katoen)
– hard copy available at secretary Lehrstuhl i2
– find flaws? please report them (katoen@cs.rwth-aachen.de)

– one set of exercises waived if you find serious flaw

• Exam:

– written exam Friday July 13, 2007
– copy of lecture notes allowed at exam

• Outlook

– Model Checking Lab (WS 07/08), Advanced Model Checking

c© JPK 33


