

# Büchi Automata (2)

## Lecture #10 of Model Checking

*Joost-Pieter Katoen*

Lehrstuhl 2: Software Modeling & Verification

E-mail: [katoen@cs.rwth-aachen.de](mailto:katoen@cs.rwth-aachen.de)

May 8, 2007

## Overview Lecture #10

⇒ Checking Non-Emptiness

- Deterministic Büchi Automata (DBA)
- Generalized Nondeterministic Büchi Automata (GNBA)

## Büchi automata

A *nondeterministic Büchi automaton* (NBA)  $\mathcal{A}$  is a tuple  $(Q, \Sigma, \delta, Q_0, F)$  where:

- $Q$  is a finite set of states with  $Q_0 \subseteq Q$  a set of initial states
- $\Sigma$  is an **alphabet**
- $\delta : Q \times \Sigma \rightarrow 2^Q$  is a **transition function**
- $F \subseteq Q$  is a set of **accept** (or: final) states

The **size** of  $\mathcal{A}$ , denoted  $|\mathcal{A}|$ , is the number of states and transitions in  $\mathcal{A}$ :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

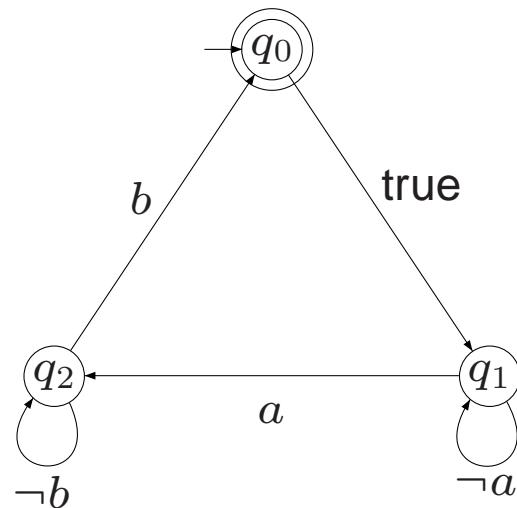
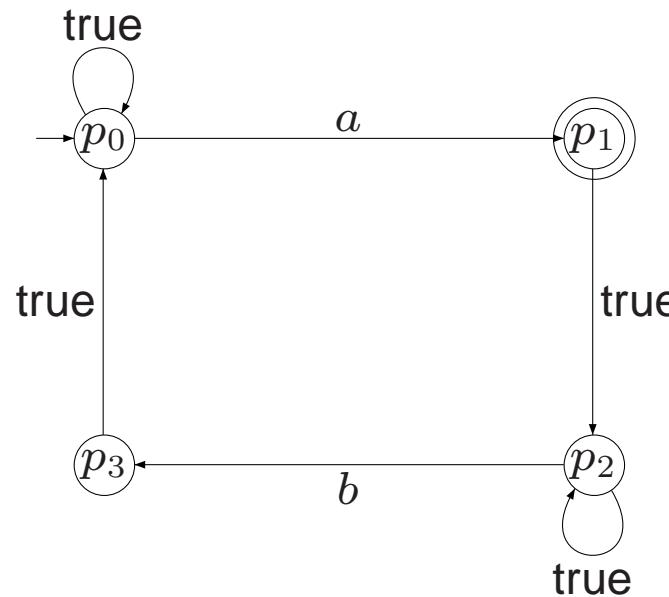
## Language of an NBA

- NBA  $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$  and word  $\sigma = A_0 A_1 A_2 \dots \in \Sigma^\omega$
- A *run* for  $\sigma$  in  $\mathcal{A}$  is an **infinite sequence**  $q_0 q_1 q_2 \dots$  such that:
  - $q_0 \in Q_0$  and  $q_i \xrightarrow{A_i} q_{i+1}$  for all  $0 \leq i$
- Run  $q_0 q_1 q_2 \dots$  is **accepting** if  $q_i \in F$  for infinitely many  $i$
- $\sigma \in \Sigma^\omega$  is **accepted** by  $\mathcal{A}$  if there exists an accepting run for  $\sigma$
- The **accepted language** of  $\mathcal{A}$ :

$$\mathcal{L}_\omega(\mathcal{A}) = \{ \sigma \in \Sigma^\omega \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}$$

- NBA  $\mathcal{A}$  and  $\mathcal{A}'$  are **equivalent** if  $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}')$

## Equivalent NBA



infinitely often  $a$  and infinitely often  $b$

## NBA and $\omega$ -regular languages

The class of languages accepted by NBA  
agrees with the class of  $\omega$ -regular languages

- (1) any  $\omega$ -regular language is recognized by an NBA
- (2) for any NBA  $\mathcal{A}$ , the language  $\mathcal{L}_\omega(\mathcal{A})$  is  $\omega$ -regular

## Extended transition function

Extend the transition function  $\delta$  to  $\delta^* : Q \times \Sigma^* \rightarrow 2^Q$  by:

$$\delta^*(q, \varepsilon) = \{ q \} \quad \text{and} \quad \delta^*(q, A) = \delta(q, A)$$

$$\delta^*(q, A_1 A_2 \dots A_n) = \bigcup_{p \in \delta(q, A_1)} \delta^*(p, A_2 \dots A_n)$$

$\delta^*(q, w)$  = set of states reachable from  $q$  for the word  $w$

## Checking non-emptiness

$\mathcal{L}_\omega(\mathcal{A}) \neq \emptyset$  if and only if

$\exists q_0 \in Q_0. \exists q \in F. \exists w \in \Sigma^*. \exists v \in \Sigma^+. \underbrace{q \in \delta^*(q_0, w) \wedge q \in \delta^*(q, v)}$   
there is a reachable accept state on a cycle

The emptiness problem for NBA  $\mathcal{A}$  can be solved in time  $\mathcal{O}(|\mathcal{A}|)$

## Non-blocking NBA

- NBA  $\mathcal{A}$  is *non-blocking* if  $\delta(q, A) \neq \emptyset$  for all  $q$  and  $A \in \Sigma$ 
  - for each input word there exists an infinite run
- For each NBA  $\mathcal{A}$  there exists a non-blocking NBA  $\text{trap}(\mathcal{A})$  with:
  - $|\text{trap}(\mathcal{A})| = \mathcal{O}(|\mathcal{A}|)$  and  $\mathcal{A} \equiv \text{trap}(\mathcal{A})$
- For  $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$  let  $\text{trap}(\mathcal{A}) = (Q', \Sigma, \delta', Q_0, F)$  with:
  - $Q' = Q \cup \{ q_{\text{trap}} \}$  where  $\{ q_{\text{trap}} \} \notin Q$
  - $$\delta'(q, A) = \begin{cases} \delta(q, A) & : \text{if } q \in Q \text{ and } \delta(q, A) \neq \emptyset \\ \{q_{\text{trap}}\} & : \text{otherwise} \end{cases}$$

## Overview Lecture #10

- Checking Non-Emptiness

⇒ Deterministic Büchi Automata (DBA)

- Generalized Nondeterministic Büchi Automata (GNBA)

## Deterministic BA

Büchi automaton  $\mathcal{A}$  is called *deterministic* if

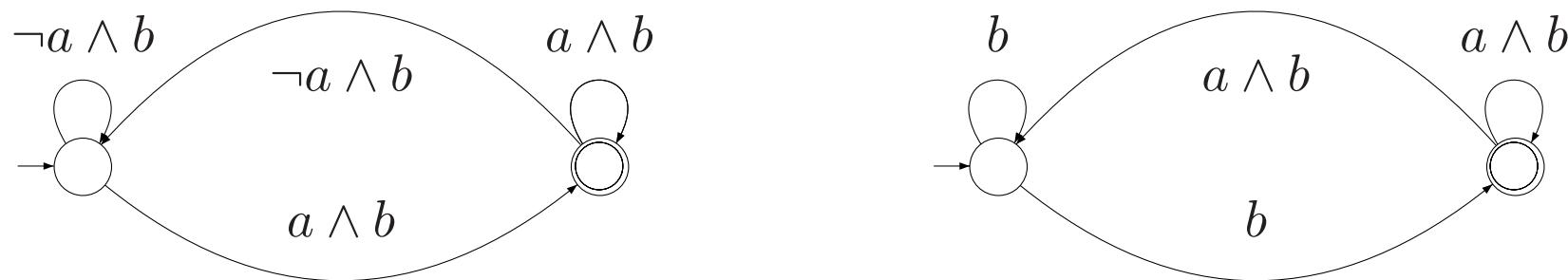
$$|Q_0| \leq 1 \quad \text{and} \quad |\delta(q, A)| \leq 1 \quad \text{for all } q \in Q \text{ and } A \in \Sigma$$

DBA  $\mathcal{A}$  is called *total* if

$$|Q_0| = 1 \quad \text{and} \quad |\delta(q, A)| = 1 \quad \text{for all } q \in Q \text{ and } A \in \Sigma$$

*total DBA provide unique runs for each input word*

## Example DBA for LT property



These NBA both represent the LT property "always  $b$  and infinitely often  $a$ "

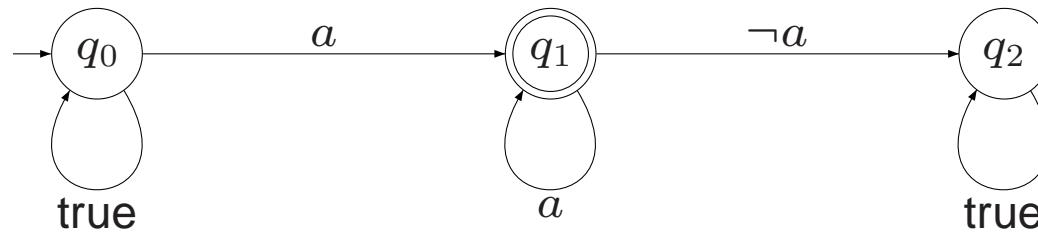
## NBA are more expressive than DBA

NFA and DFA are equally expressive but NBA and DBA are **not!**

There is no DBA that accepts  $\mathcal{L}_\omega((A + B)^* B^\omega)$

# Proof

## The need for nondeterminism



let  $\{ a \} = AP$ , i.e.,  $2^{AP} = \{A, B\}$  where  $A = \{ \}$  and  $B = \{a\}$

"eventually for ever  $a$ " equals  $(A + B)^* B^\omega = (\{ \} + \{a\})^* \{a\}^\omega$

## Overview Lecture #10

- Checking Non-Emptiness
- Deterministic Büchi Automata (DBA)

⇒ **Generalized Nondeterministic Büchi Automata (GNBA)**

## Generalized Büchi automata

- NBA are as expressive as  $\omega$ -regular languages
- Variants of NBA exist that are equally expressive
  - Muller, Rabin, and Streett automata
  - *generalized Büchi automata* (GNBA)
- GNBA are like NBA, but have a distinct *acceptance criterion*
  - a GNBA requires to visit several sets  $F_1, \dots, F_k$  ( $k \geq 0$ ) infinitely often
  - for  $k=0$ , all runs are accepting
  - for  $k=1$  this boils down to an NBA
- GNBA are useful to relate temporal logic and automata
  - but they are equally expressive as NBA

## Generalized Büchi automata

A *generalized NBA* (GNBA)  $\mathcal{G}$  is a tuple  $(Q, \Sigma, \delta, Q_0, \mathcal{F})$  where:

- $Q$  is a finite set of states with  $Q_0 \subseteq Q$  a set of initial states
- $\Sigma$  is an *alphabet*
- $\delta : Q \times \Sigma \rightarrow 2^Q$  is a *transition function*
- $\mathcal{F} = \{ F_1, \dots, F_k \}$  is a (possibly empty) subset of  $2^Q$

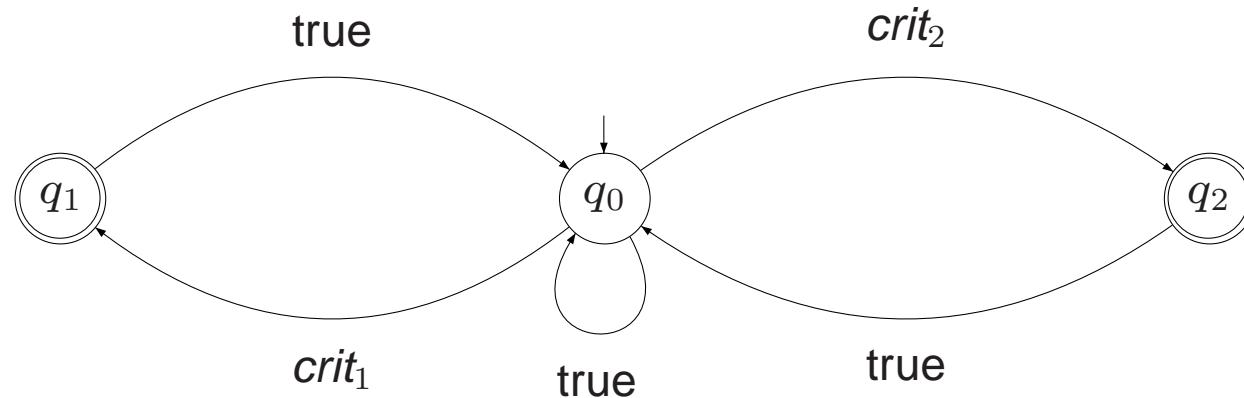
The *size* of  $\mathcal{G}$ , denoted  $|\mathcal{G}|$ , is the number of states and transitions in  $\mathcal{G}$ :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

## Language of a GNBA

- GNBA  $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$  and word  $\sigma = A_0 A_1 A_2 \dots \in \Sigma^\omega$
- A *run* for  $\sigma$  in  $\mathcal{G}$  is an **infinite sequence**  $q_0 q_1 q_2 \dots$  such that:
  - $q_0 \in Q_0$  and  $q_i \xrightarrow{A_{i+1}} q_{i+1}$  for all  $0 \leq i$
- Run  $q_0 q_1 \dots$  is *accepting* if **for all**  $F \in \mathcal{F}$ :  $q_i \in F$  for infinitely many  $i$
- $\sigma \in \Sigma^\omega$  is *accepted* by  $\mathcal{G}$  if there exists an accepting run for  $\sigma$
- The *accepted language* of  $\mathcal{G}$ :
  - $\mathcal{L}_\omega(\mathcal{G}) = \left\{ \sigma \in \Sigma^\omega \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{G} \right\}$
- GNBA  $\mathcal{G}$  and  $\mathcal{G}'$  are *equivalent* if  $\mathcal{L}_\omega(\mathcal{G}) = \mathcal{L}_\omega(\mathcal{G}')$

## Example



A GNBA for the property "both processes are infinitely often in their critical section"

## From GNBA to NBA

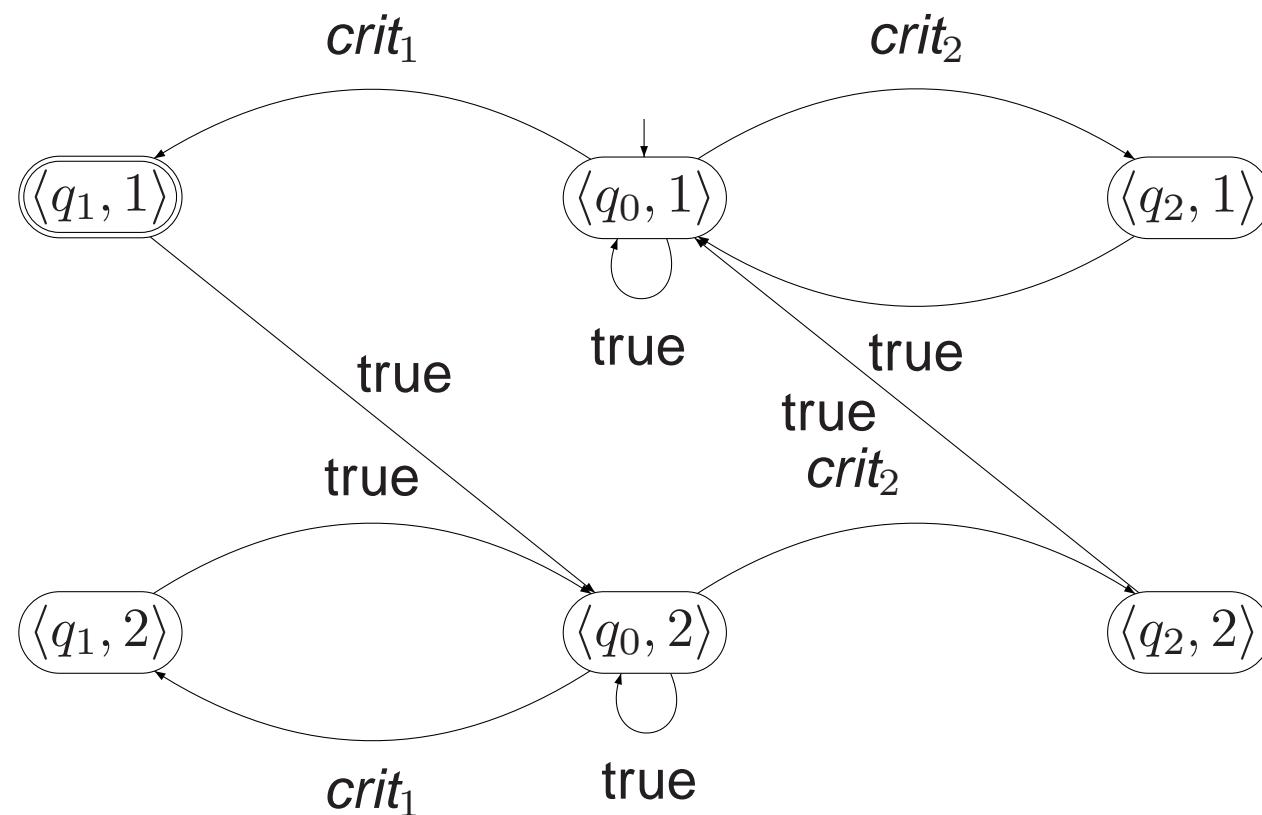
For any GNBA  $\mathcal{G}$  there exists an NBA  $\mathcal{A}$  with:

$$\mathcal{L}_\omega(\mathcal{G}) = \mathcal{L}_\omega(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where  $\mathcal{F}$  denotes the set of acceptance sets in  $\mathcal{G}$

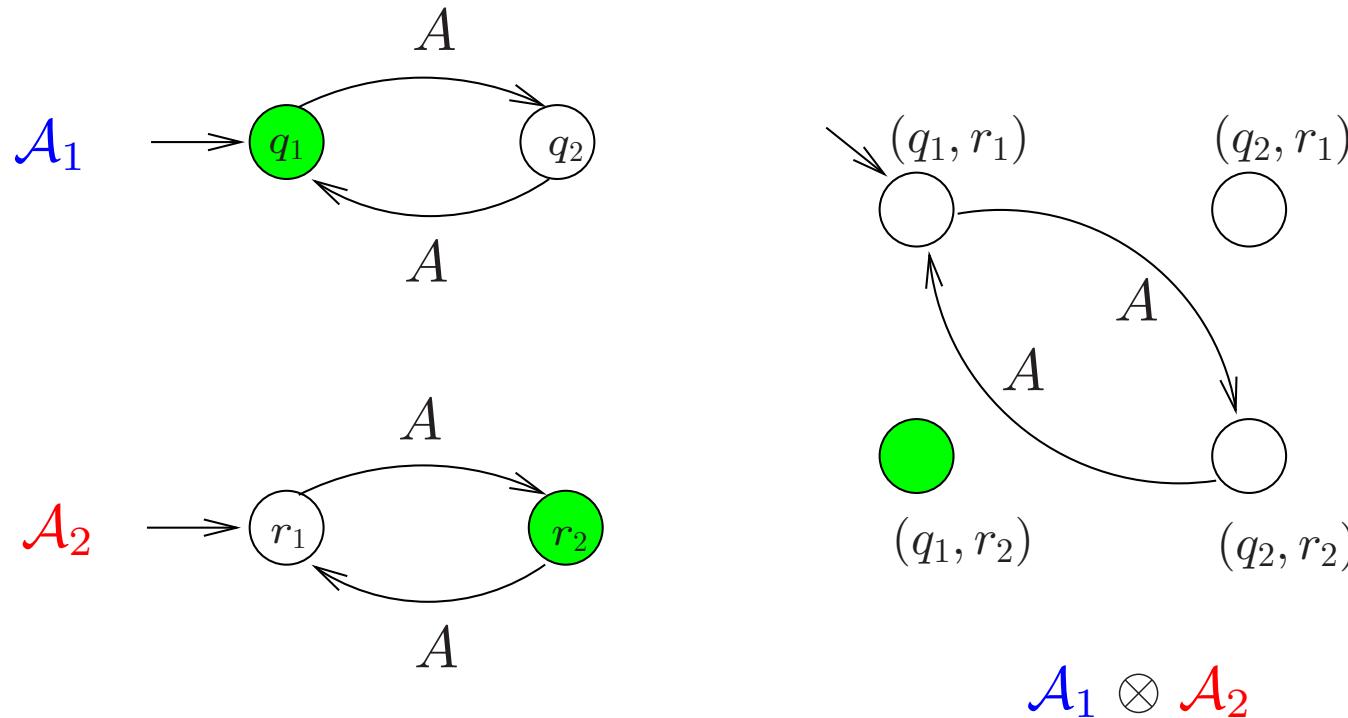
# Proof

## Example



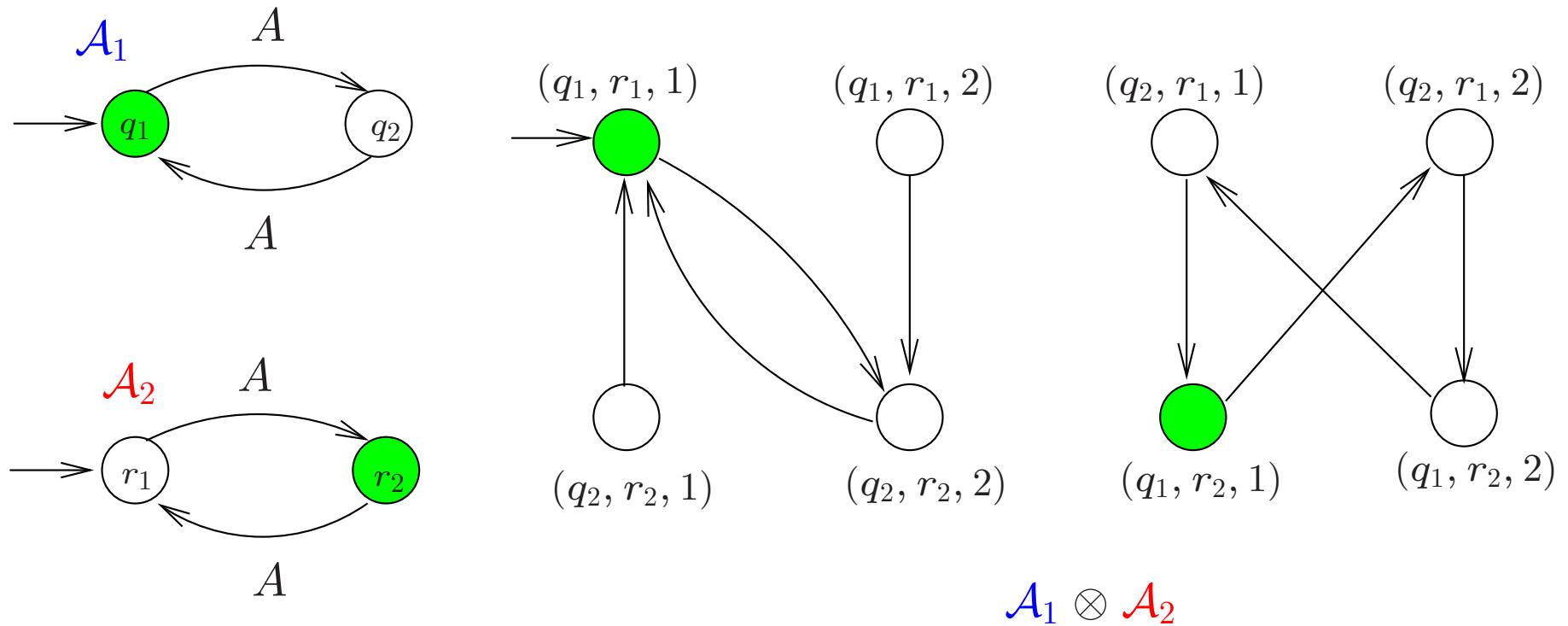
## Product of Büchi automata

The product construction for finite automata does *not* work:



$$\mathcal{L}_\omega(\mathcal{A}_1) = \mathcal{L}_\omega(\mathcal{A}_2) = \{ A^\omega \}, \text{ but } \mathcal{L}_\omega(\mathcal{A}_1 \otimes \mathcal{A}_2) = \emptyset$$

## Product of Büchi automata



## Intersection

For GNBA  $\mathcal{G}_1$  and  $\mathcal{G}_2$  there exists a GNBA  $\mathcal{G}$  with

$$\mathcal{L}_\omega(\mathcal{G}) = \mathcal{L}_\omega(\mathcal{G}_1) \cap \mathcal{L}_\omega(\mathcal{G}_2) \quad \text{and} \quad |\mathcal{G}| = \mathcal{O}(|\mathcal{G}_1| + |\mathcal{G}_2|)$$

# Proof

## Facts about Büchi automata

- They are as expressive as  $\omega$ -regular languages
- They are closed under various operations and also under  $\cap$ 
  - deterministic automaton –  $\mathcal{A}$  accepts  $-\mathcal{L}_\omega(\mathcal{A})$
- Nondeterministic BA are more expressive than deterministic BA
- Emptiness check = check for reachable recurrent accept state
  - this can be done in  $\mathcal{O}(|\mathcal{A}|)$