

Verifying ω -Regular Properties

Lecture #11 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 9, 2007

Overview Lecture #11

⇒ Checking Regular Safety Properties

- Checking ω -Regular Properties
 - persistence properties
 - reduction to checking persistence properties
 - checking persistence properties
- Nested depth-first search
- Summary of regular properties

Regular safety properties

Safety property P_{safe} over AP is *regular*
if its set of bad prefixes is a regular language over 2^{AP}

Basic idea of the algorithm

$TS \not\models P_{safe}$ if and only if $Traces_{fin}(TS) \cap \underbrace{BadPref(P_{safe})}_{\overline{P_{safe}}} \neq \emptyset$

if and only if $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) \neq \emptyset$

if and only if $TS \otimes \mathcal{A} \not\models \underbrace{\text{“always” } \neg F}_{\text{invariant property}}$

\Rightarrow *checking regular safety properties is reduced to invariant checking!*

Verifying regular safety properties

Let TS over AP and NFA \mathcal{A} with alphabet 2^{AP} as before, regular safety property P_{safe} over AP such that $\mathcal{L}(\mathcal{A})$ is the set of bad prefixes of P_{safe}

The following statements are equivalent:

- (a) $TS \models P_{safe}$
- (b) $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
- (c) $TS \otimes \mathcal{A} \models P_{inv(A)}$

where $P_{inv(A)} = \text{"always"} \neg F$

Overview Lecture #11

- Checking Regular Safety Properties

⇒ Checking ω -Regular Properties

- persistence properties
- reduction to checking persistence properties
- checking persistence properties

- Nested depth-first search
- Summary of regular properties

ω -regular properties

LT property P over AP is ω -regular
if P is an ω -regular language over 2^{AP}

Basic idea of the algorithm

$TS \not\models P$ if and only if $Traces(TS) \not\subseteq P$

if and only if $Traces(TS) \cap (2^{AP})^\omega \setminus P \neq \emptyset$

if and only if $Traces(TS) \cap \overline{P} \neq \emptyset$

if and only if $Traces(TS) \cap \mathcal{L}_\omega(\mathcal{A}) \neq \emptyset$

if and only if $TS \otimes \mathcal{A} \models \underbrace{\text{"eventually for ever" } \neg F}_{\text{persistence property}}$

where \mathcal{A} is an NBA accepting the complement property $\overline{P} = (2^{AP})^\omega \setminus P$

Persistence property

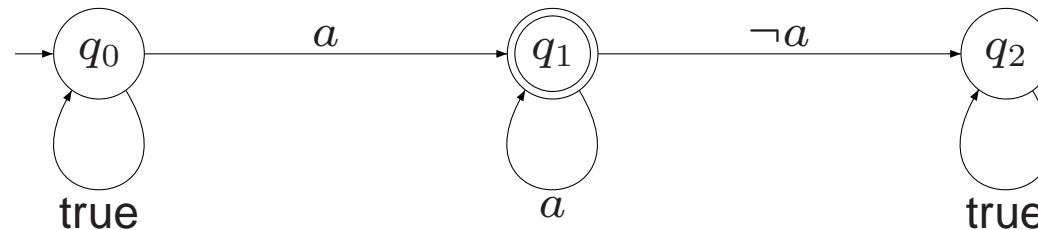
A *persistence property* over AP is an LT property $P_{pers} \subseteq (2^{AP})^\omega$ “eventually for ever Φ ” for some propositional logic formula Φ over AP :

$$P_{pers} = \left\{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega \mid \exists i \geq 0. \forall j \geq i. A_j \models \Phi \right\}$$

Φ is called a persistence (or state) condition of P_{pers}

“ Φ is an invariant after a while”

Example persistence property



let $\{ a \} = AP$, i.e., $2^{AP} = \{A, B\}$ where $A = \{ \}$ and $B = \{a\}$

"eventually for ever a " equals $(A + B)^* B^\omega = (\{ \} + \{a\})^* \{a\}^\omega$

Recall synchronous product

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ a non-blocking NBA with $\Sigma = 2^{AP}$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L') \quad \text{where}$$

- $S' = S \times Q$, $AP' = Q$ and $L'(\langle s, q \rangle) = \{ q \}$
- \rightarrow' is the smallest relation defined by:
$$\frac{s \xrightarrow{\alpha} \textcolor{red}{t} \wedge q \xrightarrow{L(\textcolor{red}{t})} p}{\langle s, q \rangle \xrightarrow{\alpha}' \langle \textcolor{red}{t}, p \rangle}$$
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \wedge \exists q_0 \in Q_0. q_0 \xrightarrow{L(s_0)} q \}$

Verifying ω -regular properties

Let:

- TS be a transition system over AP
- P be an ω -regular property over AP , and
- \mathcal{A} a non-blocking NBA such that $\mathcal{L}_\omega(\mathcal{A}) = \overline{P}$.

The following statements are equivalent:

(a) $TS \models P$

(b) $Traces(TS) \cap \mathcal{L}_\omega(\mathcal{A}) = \emptyset$

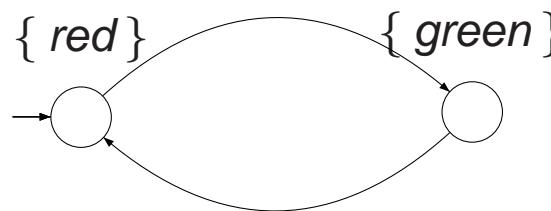
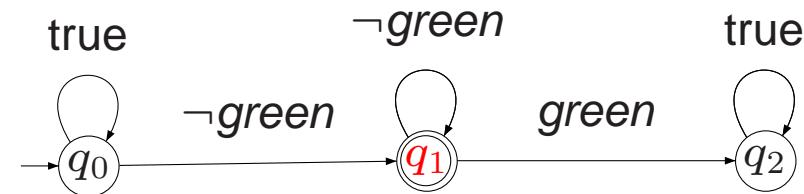
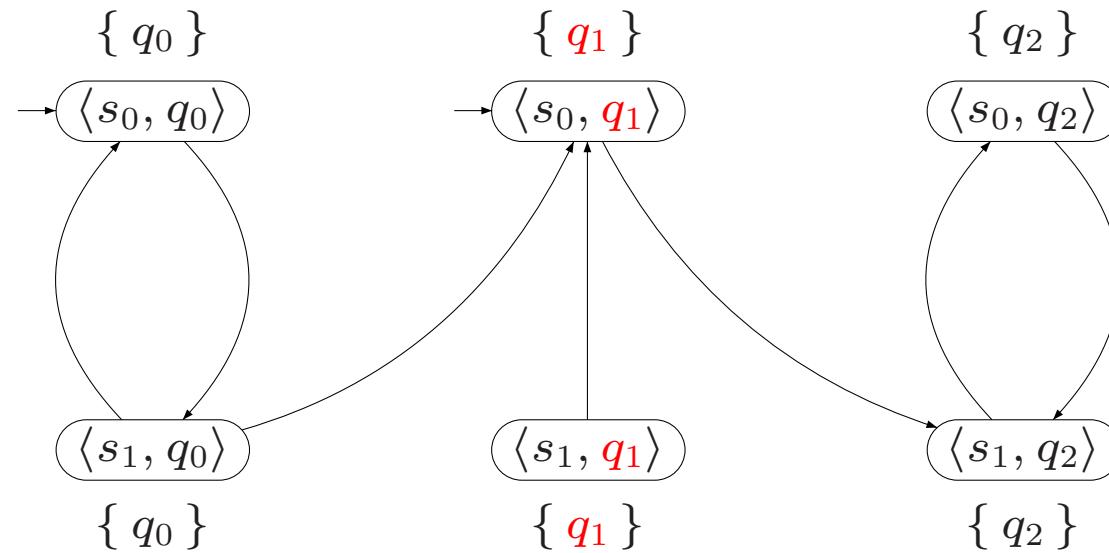
(c) $TS \otimes \mathcal{A} \models P_{pers(\mathcal{A})}$

where $P_{pers(\mathcal{A})}$ = “eventually for ever $\neg F$ ”

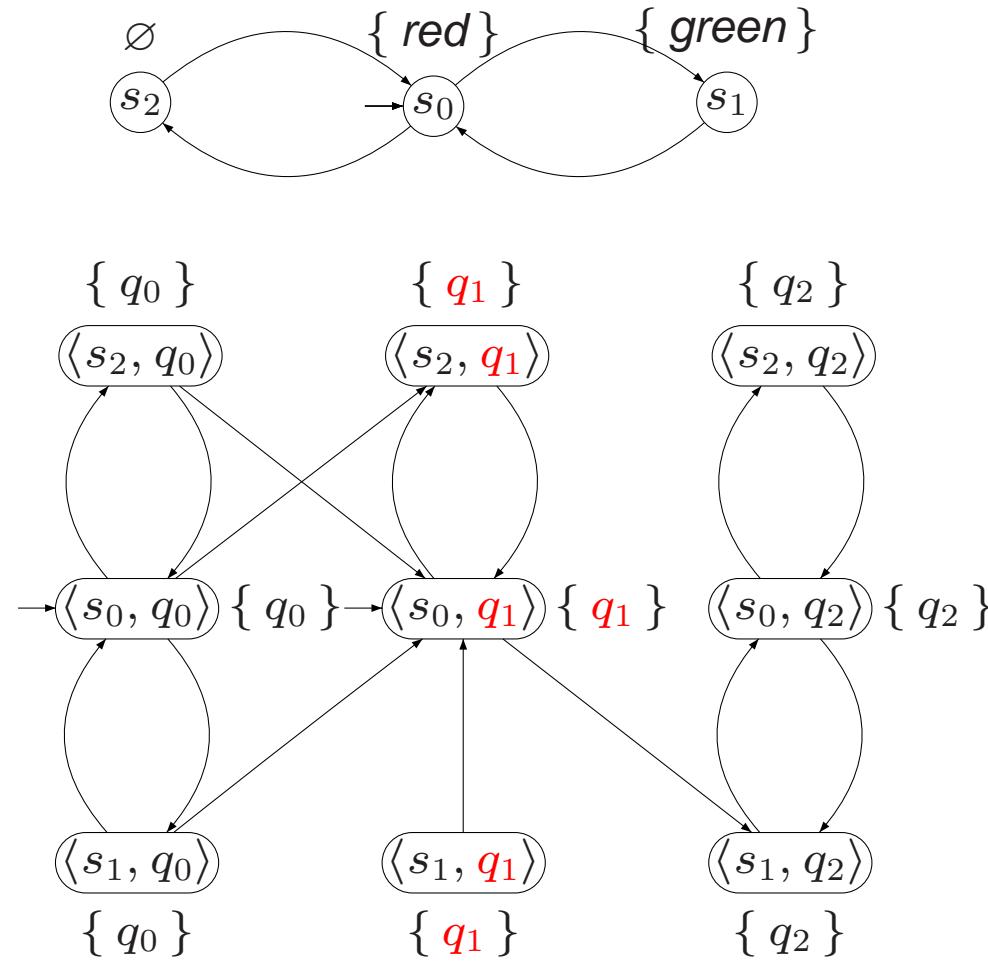
⇒ checking ω -regular properties is reduced to persistence checking!

Proof

Infinitely often green?



Infinitely often green?



Persistence checking

- Aim: establish whether $TS \not\models P_{pers}$ = “eventually for ever Φ ”
- Let state s be reachable in TS and $s \not\models \Phi$
 - TS has an initial path fragment that ends in s
- If s is on a *cycle*
 - this path fragment can be continued by an infinite path
 - by traversing the cycle containing s infinitely often

$\Rightarrow TS$ may visit the $\neg\Phi$ -state s infinitely often and so: $TS \not\models P_{pers}$

- If not such s is found then: $TS \models P_{pers}$

In picture

Persistence checking and cycle detection

Let

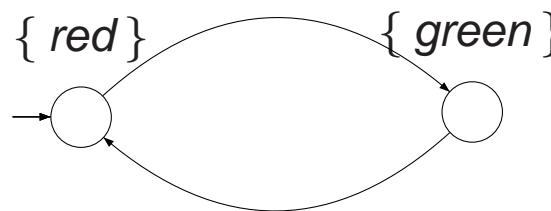
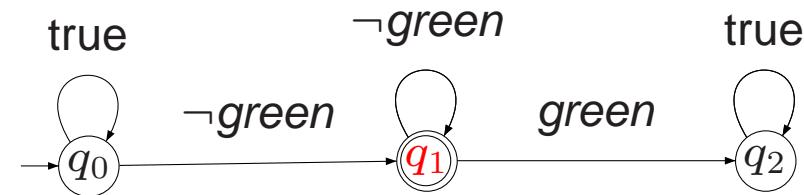
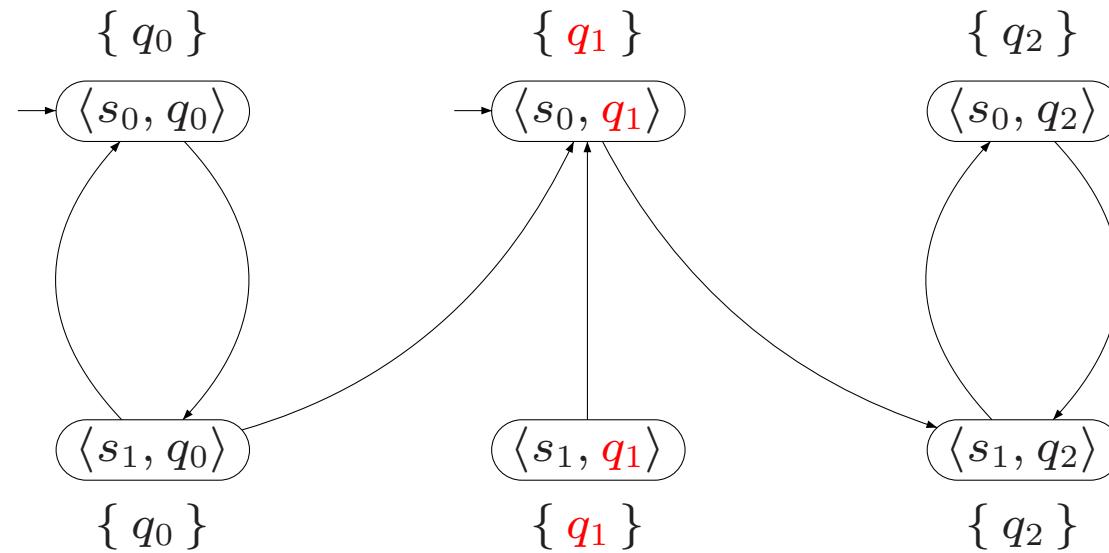
- TS be a finite transition system without terminal states over AP
- Φ a propositional formula over AP , and
- P_{pers} the persistence property "eventually for ever Φ "

$TS \not\models P_{pers}$

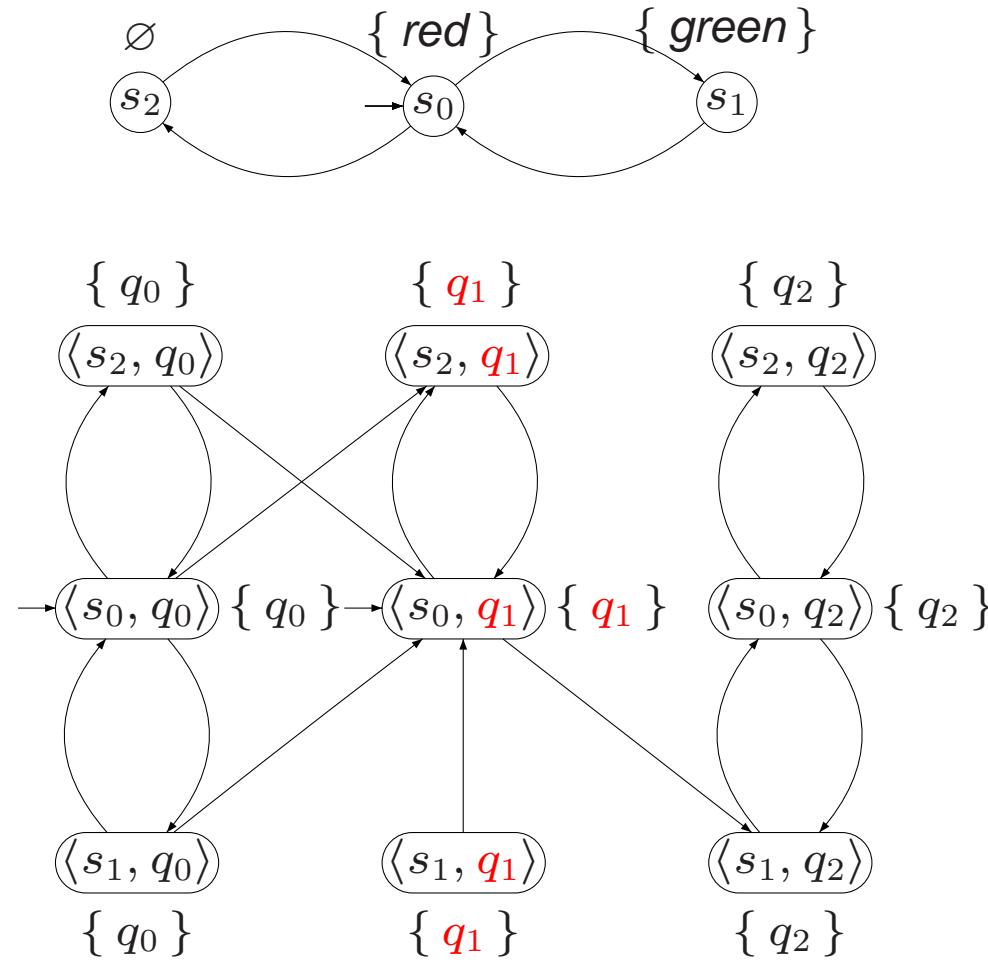
if and only if

$\exists s \in \text{Reach}(TS). s \not\models \Phi \wedge s \text{ is on a cycle in } G(TS)$

Infinitely often green?



Infinitely often green?



Overview Lecture #11

- Checking Regular Safety Properties
- Checking ω -Regular Properties
 - persistence properties
 - reduction to checking persistence properties
 - checking persistence properties

⇒ Nested Depth-First Search

- Summary of Regular Properties

Cycle detection

How to check for a reachable cycles containing a $\neg\Phi$ -state?

- Alternative 1:

- compute the strongly connected components (SCCs) in $G(TS)$
- check whether one such SCC is reachable from an initial state
- . . . that contains a $\neg\Phi$ -state
- “eventually for ever Φ ” is refuted if and only if such SCC is found

- Alternative 2:

- *use a nested depth-first search*
⇒ more adequate for an on-the-fly verification algorithm
⇒ easier for generating counterexamples

let's have a closer look into this by first dealing with two-phase DFS

A two-phase depth first-search

1. Determine all $\neg\Phi$ -states that are reachable from some initial state
this is performed by a standard depth-first search
2. For each reachable $\neg\Phi$ -state, check whether it belongs to a cycle
 - start a depth-first search in s
 - check for all states reachable from s whether there is an “backward” edge to s

- Time complexity: $\Theta(N \cdot |\Phi| \cdot (N+M))$
 - where N is the number of states and M the number of transitions
 - fragments reachable via K $\neg\Phi$ -states are searched K times

Two-phase depth first-search

Input: finite transition system TS without terminal states, and proposition Φ

Output: "yes" if $TS \models$ "eventually for ever Φ ", otherwise "no".

```

set of states  $R := \emptyset$ ;  $R_{\neg\Phi} := \emptyset$ ;      (* set of reachable states resp.  $\neg\Phi$ -states *)
stack of states  $U := \varepsilon$ ;                      (* DFS-stack for first DFS, initial empty *)
set of states  $T := \emptyset$ ;                      (* set of visited states for the cycle check *)
stack of states  $V := \varepsilon$ ;                      (* DFS-stack for the cycle check *)

for all  $s \in I \setminus R$  do visit( $s$ ); od                                (* phase one *)
for all  $s \in R_{\neg\Phi}$  do
   $T := \emptyset$ ;  $V := \varepsilon$ ;                      (* phase two *)
  if cycle_check( $s$ ) then return "no"          (*  $s$  belongs to a cycle *)
od
return "yes"                                     (* none of the  $\neg\Phi$ -states belongs to a cycle *)

```

Find $\neg\Phi$ -states

```

procedure visit (state  $s$ )
   $push(s, U)$ ;                                     (* push  $s$  on the stack *)
   $R := R \cup \{ s \}$ ;                           (* mark  $s$  as reachable *)
  repeat
     $s' := top(U)$ ;
    if  $Post(s') \subseteq R$  then
       $pop(U)$ ;
      if  $s' \not\models \Phi$  then  $R_{\neg\Phi} := R_{\neg\Phi} \cup \{ s' \}$ ; fi
    else
      let  $s'' \in Post(s') \setminus R$ 
       $push(s'', U)$ ;
       $R := R \cup \{ s'' \}$ ;                         (* state  $s''$  is a new reachable state *)
    fi
  until ( $U = \varepsilon$ )
endproc

```

this is a standard DFS checking for $\neg\Phi$ -states

Cycle detection

```

procedure boolean cycle_check(state s)
  boolean cycle_found := false;                                (* no cycle found yet *)
  push(s, V); T := T ∪ { s };                                (* push s on the stack *)
  repeat
    s' := top(V);                                            (* take top element of V *)
    if s ∈ Post(s') then
      cycle_found := true;                                    (* if s ∈ Post(s'), a cycle is found *)
      push(s, V);                                           (* push s on the stack *)
    else
      if Post(s') \ T ≠ ∅ then
        let s'' ∈ Post(s') \ T;
        push(s'', V); T := T ∪ { s'' };                      (* push an unvisited successor of s' *)
        else pop(V);                                         (* unsuccessful cycle search for s' *)
      fi
    fi
  until ((V = ε) ∨ cycle_found)
  return cycle_found
endproc

```

Nested depth-first search

- Idea: perform the two depth-first searches in an *interleaved* way
 - the outer DFS serves to encounter all reachable $\neg\Phi$ -states
 - the inner DFS seeks for backward edges leading to a $\neg\Phi$ -state
- *Nested DFS*
 - on full expansion of $\neg\Phi$ -state s in the outer DFS, start inner DFS
 - in inner DFS, visit all states reachable from s *not visited* in the inner DFS yet
 - no backward edge found to s ? continue the outer DFS (look for next $\neg\Phi$ state)
- *Counterexample generation*: DFS stack concatenation
 - stack U for the outer DFS = path fragment from $s_0 \in I$ to s (in reversed order)
 - stack V for the inner DFS = a cycle from state s to s (in reversed order)

The outer DFS (1)

Input: transition system TS without terminal states, and proposition Φ

Output: "yes" if $TS \models \text{"eventually for ever } \Phi\text{"}$, otherwise "no" plus counterexample

```

set of states  $R := \emptyset$ ;                                (* set of visited states in the outer DFS *)
stack of states  $U := \varepsilon$ ;                                (* stack for the outer DFS *)
set of states  $T := \emptyset$ ;                                (* set of visited states in the inner DFS *)
stack of states  $V := \varepsilon$ ;                                (* stack for the inner DFS *)
boolean  $cycle\_found := \text{false}$ ;
```

while $(I \setminus R \neq \emptyset \wedge \neg cycle_found)$ **do**

let $s \in I \setminus R$; (* explore the reachable *)

reachable_cycle(s); (* fragment with outer DFS *)

od

if $\neg cycle_found$ **then**

return ("yes") (* $TS \models \text{"eventually for ever } \Phi\text{"}$ *)

else

return ("no", **reverse**($V.U$)) (* stack contents yield a counterexample *)

fi

The outer DFS (2)

```

procedure reachable_cycle (state  $s$ )
  push( $s, U$ );                                     (* push  $s$  on the stack *)
   $R := R \cup \{ s \}$ ;
  repeat
     $s' := \text{top}(U)$ ;
    if  $\text{Post}(s') \setminus R \neq \emptyset$  then
      let  $s'' \in \text{Post}(s') \setminus R$ ;
      push( $s'', U$ );                                (* push the unvisited successor of  $s'$  *)
       $R := R \cup \{ s'' \}$ ;                          (* and mark it reachable *)
    else
      pop( $U$ );                                    (* outer DFS finished for  $s'$  *)
      if  $s' \not\models \Phi$  then
        cycle_found := cycle_check( $s'$ );        (* proceed with the inner *)
                                                (* DFS in state  $s'$  *)
      fi
    fi
  until  $((U = \varepsilon) \vee \text{cycle\_found})$           (* stop when stack for the outer *)
                                                (* DFS is empty or cycle found *)
endproc

```

Example

The order of cycle detection

Correctness of nested DFS

Let:

- TS be a finite transition system over AP without terminal states and
- P_{pers} a persistence property

The nested DFS algorithm yields "no" if and only if $TS \not\models P_{pers}$

Time complexity

The worst-case time complexity of nested DFS is in

$$\mathcal{O}((N+M) + N \cdot |\Phi|)$$

where N is # reachable states in TS , and M is # transitions in TS

Overview Lecture #11

- Checking Regular Safety Properties
- Checking ω -Regular Properties
 - persistence properties
 - reduction to checking persistence properties
 - checking persistence properties
- Nested Depth-First Search

⇒ [Summary of Regular Properties](#)

Summary of regular properties (1)

- Languages recognized by NFA/DFA = regular languages
 - serve to represent the bad prefixes of regular safety properties
- Checking a regular safety property = invariant checking on a product
 - “never visit an accept state” in the NFA for the bad prefixes
 - amounts to solving a (DFS) reachability problem
- ω -regular languages are languages of infinite words
 - can be described by ω -regular expressions
- Languages recognized by NBA = ω -regular languages
 - serve to represent ω -regular properties

Summary of regular properties (2)

- DBA are less powerful than NBA
 - fail, e.g., to represent the persistence property "eventually for ever a "
- Generalized NBA require repeated visits for several acceptance sets
 - the languages recognized by GNBA = ω -regular languages
- Checking an ω -regular property = checking persistency on a product
 - "eventually for ever no accept state" in the NBA for the complement property
- Persistence checking is solvable in linear time by a nested DFS
- Nested DFS = a DFS for reachable $\neg\Phi$ -states + a DFS for cycle detection