

Linear Temporal Logic (2)

Lecture #13 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 16, 2007

Overview Lecture #13

⇒ Repetition: LTL syntax and semantics

- LTL equivalence
- Expansion laws
- Positive normal form

Linear temporal logic

BNF grammar for LTL formulas over propositions AP with $a \in AP$:

$$\varphi ::= \text{true} \mid a \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \mathbf{U} \varphi_2$$

auxiliary temporal operators: $\diamond \phi \equiv \text{true} \mathbf{U} \phi$ and $\square \phi \equiv \neg \diamond \neg \phi$

LTL semantics

The LT-property induced by LTL formula φ over AP is:

$Words(\varphi) = \{\sigma \in (2^{AP})^\omega \mid \sigma \models \varphi\}$, where \models is the smallest relation satisfying:

$$\sigma \models \text{true}$$

$$\sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a)$$

$$\sigma \models \varphi_1 \wedge \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma[1..] = A_1 A_2 A_3 \dots \models \varphi$$

$$\sigma \models \varphi_1 \bigcup \varphi_2 \quad \text{iff} \quad \exists j \geq 0. \sigma[j..] \models \varphi_2 \text{ and } \sigma[i..] \models \varphi_1, \quad 0 \leq i < j$$

for $\sigma = A_0 A_1 A_2 \dots$ we have $\sigma[i..] = A_i A_{i+1} A_{i+2} \dots$ is the suffix of σ from index i on

Semantics of \Box , \Diamond , $\Box\Diamond$ and $\Diamond\Box$

$$\sigma \models \Diamond\varphi \quad \text{iff} \quad \exists j \geq 0. \sigma[j..] \models \varphi$$

$$\sigma \models \Box\varphi \quad \text{iff} \quad \forall j \geq 0. \sigma[j..] \models \varphi$$

$$\sigma \models \Box\Diamond\varphi \quad \text{iff} \quad \forall j \geq 0. \exists i \geq j. \sigma[i..] \models \varphi$$

$$\sigma \models \Diamond\Box\varphi \quad \text{iff} \quad \exists j \geq 0. \forall j \geq i. \sigma[j..] \models \varphi$$

LTL semantics

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP .

- For infinite path fragment π of TS :

$$\pi \models \varphi \quad \text{iff} \quad \text{trace}(\pi) \models \varphi$$

- For state $s \in S$:

$$s \models \varphi \quad \text{iff} \quad (\forall \pi \in \text{Paths}(s). \pi \models \varphi)$$

- TS satisfies φ , denoted $TS \models \varphi$, if $\text{Traces}(TS) \subseteq \text{Words}(\varphi)$

Overview Lecture #13

- Repetition: LTL syntax and semantics
 - ⇒ LTL equivalence
- Expansion laws
- Positive normal form

Equivalence

LTL formulas ϕ, ψ are **equivalent**, denoted $\phi \equiv \psi$, if:

$$\text{Words}(\phi) = \text{Words}(\psi)$$

Duality and idempotence laws

Duality:

$$\neg \Box \phi \equiv \Diamond \neg \phi$$

$$\neg \Diamond \phi \equiv \Box \neg \phi$$

$$\neg \bigcirc \phi \equiv \bigcirc \neg \phi$$

Idempotency:

$$\Box \Box \phi \equiv \Box \phi$$

$$\Diamond \Diamond \phi \equiv \Diamond \phi$$

$$\phi \mathbf{U} (\phi \mathbf{U} \psi) \equiv \phi \mathbf{U} \psi$$

$$(\phi \mathbf{U} \psi) \mathbf{U} \psi \equiv \phi \mathbf{U} \psi$$

Absorption and distributive laws

Absorption:

$$\begin{aligned}\diamond \square \diamond \phi &\equiv \square \diamond \phi \\ \square \diamond \square \phi &\equiv \diamond \square \phi\end{aligned}$$

Distribution:

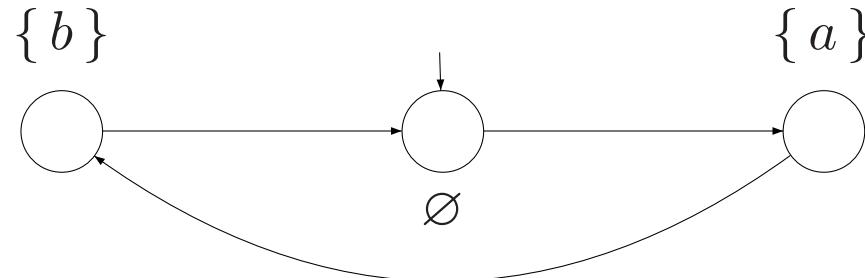
$$\begin{aligned}\bigcirc(\phi \mathsf{U} \psi) &\equiv (\bigcirc \phi) \mathsf{U} (\bigcirc \psi) \\ \diamond(\phi \vee \psi) &\equiv \diamond \phi \vee \diamond \psi \\ \square(\phi \wedge \psi) &\equiv \square \phi \wedge \square \psi\end{aligned}$$

but :

$$\begin{aligned}\diamond(\phi \mathsf{U} \psi) &\not\equiv (\diamond \phi) \mathsf{U} (\diamond \psi) \\ \diamond(\phi \wedge \psi) &\not\equiv \diamond \phi \wedge \diamond \psi \\ \square(\phi \vee \psi) &\not\equiv \square \phi \vee \square \psi\end{aligned}$$

Distributive laws

$$\diamond(a \wedge b) \not\equiv \diamond a \wedge \diamond b \quad \text{and} \quad \square(a \vee b) \not\equiv \square a \vee \square b$$



$TS \not\models \diamond(a \wedge b)$ and $TS \models \diamond a \wedge \diamond b$

Overview Lecture #13

- Repetition: LTL syntax and semantics
- LTL equivalence

⇒ Expansion laws

- Positive normal form

Expansion laws

Expansion: $\phi \mathbf{U} \psi \equiv \psi \vee (\phi \wedge \bigcirc (\phi \mathbf{U} \psi))$

$$\diamond \phi \equiv \phi \vee \bigcirc \diamond \phi$$

$$\square \phi \equiv \phi \wedge \bigcirc \square \phi$$

proof on the black board

Expansion for until

$P = \text{Words}(\varphi \cup \psi)$ satisfies:

$$P = \text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \}$$

and is the *smallest* LT-property such that:

$$\text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \} \subseteq P \quad (*)$$

smallest LT-property satisfying condition (*) means that:

$P = \text{Words}(\varphi \cup \psi)$ satisfies (*) and $\text{Words}(\varphi \cup \psi) \subseteq P$ for each P satisfying (*)

Proof

Weak until

- The *weak-until* (or: unless) operator: $\varphi W \psi \stackrel{\text{def}}{=} (\varphi U \psi) \vee \square \varphi$
 - as opposed to until, $\varphi W \psi$ does not require a ψ -state to be reached
- Until U and weak until W are *dual*:
$$\neg(\varphi U \psi) \equiv (\varphi \wedge \neg\psi) W (\neg\varphi \wedge \neg\psi)$$

$$\neg(\varphi W \psi) \equiv (\varphi \wedge \neg\psi) U (\neg\varphi \wedge \neg\psi)$$
- Until and weak until are *equally expressive*:
 - $\square \psi \equiv \psi W \text{false}$ and $\varphi U \psi \equiv (\varphi W \psi) \wedge \neg \square \neg \psi$
- Until and weak until satisfy the *same expansion law*
 - but until is the smallest, and weak until the largest solution!

Expansion for weak until

$P = \text{Words}(\varphi \text{ W } \psi)$ satisfies:

$$P = \text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \}$$

and is the *largest* LT-property such that:

$$\text{Words}(\psi) \cup \{ A_0 A_1 A_2 \dots \in \text{Words}(\varphi) \mid A_1 A_2 \dots \in P \} \supseteq P \quad (**)$$

largest LT-property satisfying condition $(**)$ means that:

$P \supseteq \text{Words}(\varphi \text{ W } \psi)$ satisfies $(**)$ and $\text{Words}(\varphi \text{ W } \psi) \supseteq P$ for each P satisfying $(**)$

Overview Lecture #13

- Repetition: LTL syntax and semantics
- LTL equivalence
- Expansion laws

⇒ Positive normal form

(Weak-until) positive normal form

- Canonical form for LTL-formulas
 - negations only occur adjacent to atomic propositions
 - disjunctive and conjunctive normal form is a special case of PNF
 - for each LTL-operator, a dual operator is needed
 - e.g., $\neg(\varphi \mathbf{U} \psi) \equiv ((\varphi \wedge \neg\psi) \mathbf{U} (\neg\varphi \wedge \neg\psi)) \vee \square(\varphi \wedge \neg\psi)$
 - that is: $\neg(\varphi \mathbf{U} \psi) \equiv (\varphi \wedge \neg\psi) \mathbf{W} (\neg\varphi \wedge \neg\psi)$
- For $a \in AP$, the set of LTL formulas in PNF is given by:

$$\varphi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathbf{U} \varphi_2 \mid \varphi_1 \mathbf{W} \varphi_2$$

- \square and \diamond are also permitted: $\square\varphi \equiv \varphi \mathbf{W} \text{false}$ and $\diamond\varphi = \text{true} \mathbf{U} \varphi$

(Weak until) PNF is always possible

For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

$\neg \text{true}$	\rightsquigarrow	false
$\neg \neg \varphi$	\rightsquigarrow	φ
$\neg(\varphi \wedge \psi)$	\rightsquigarrow	$\neg \varphi \vee \neg \psi$
$\neg(\varphi \vee \psi)$	\rightsquigarrow	$\neg \varphi \wedge \neg \psi$
$\neg \bigcirc \varphi$	\rightsquigarrow	$\bigcirc \neg \varphi$
$\neg(\varphi \mathbf{U} \psi)$	\rightsquigarrow	$(\varphi \wedge \neg \psi) \mathbf{W} (\neg \varphi \wedge \neg \psi)$
$\neg \diamond \varphi$	\rightsquigarrow	$\square \neg \varphi$
$\neg \square \varphi$	\rightsquigarrow	$\diamond \neg \varphi$

but an exponential growth in size is possible

Example

Consider the LTL-formula $\neg \square ((a \mathbf{U} b) \vee \mathbf{O} c)$

This formula is not in PNF, but can be transformed into PNF as follows:

$$\begin{aligned} & \neg \square ((a \mathbf{U} b) \vee \mathbf{O} c) \\ \equiv & \diamond \neg ((a \mathbf{U} b) \vee \mathbf{O} c) \\ \equiv & \diamond (\neg (a \mathbf{U} b) \wedge \neg \mathbf{O} c) \\ \equiv & \diamond ((a \wedge \neg b) \mathbf{W} (\neg a \wedge \neg b) \wedge \mathbf{O} \neg c) \end{aligned}$$

can the exponential growth in size be avoided?

The release operator

- The *release* operator: $\varphi R \psi \stackrel{\text{def}}{=} \neg(\neg\varphi U \neg\psi)$
 - ψ always holds, a requirement that is released as soon as φ holds
- Until U and release R are *dual*:

$$\varphi U \psi \equiv \neg\varphi R \neg\psi$$

$$\varphi R \psi \equiv \neg(\neg\varphi U \neg\psi)$$

- Until and release are *equally expressive*:
 - $\square\psi \equiv \text{false} R \psi$ and $\varphi U \psi \equiv \neg\varphi R \neg\psi$
- Release satisfies the *expansion law*: $\varphi R \psi \equiv \psi \wedge (\varphi \vee \bigcirc(\varphi R \psi))$

Semantics of release

$$\begin{aligned}
 \sigma \models \varphi R \psi & \\
 \text{iff} & \neg \exists j \geq 0. (\sigma[j..] \models \neg \psi \wedge \forall i < j. \sigma[i..] \models \neg \varphi) & (* \text{ definition of } R *) \\
 \text{iff} & \neg \exists j \geq 0. (\sigma[j..] \not\models \psi \wedge \forall i < j. \sigma[i..] \not\models \varphi) & (* \text{ semantics of negation } *) \\
 \text{iff} & \forall j \geq 0. \neg (\sigma[j..] \not\models \psi \wedge \forall i < j. \sigma[i..] \not\models \varphi) & (* \text{ duality of } \exists \text{ and } \forall *) \\
 \text{iff} & \forall j \geq 0. (\neg (\sigma[j..] \not\models \psi) \vee \neg \forall i < j. \sigma[i..] \not\models \varphi) & (* \text{ de Morgan's law } *) \\
 \text{iff} & \forall j \geq 0. (\sigma[j..] \models \psi \vee \exists i < j. \sigma[i..] \models \varphi) & (* \text{ semantics of negation } *) \\
 \text{iff} & \forall j \geq 0. \sigma[j..] \models \psi \text{ or } \exists i \geq 0. (\sigma[i..] \models \varphi) \wedge \forall k \leq i. \sigma[k..] \models \psi
 \end{aligned}$$

Positive normal form (revisited)

For $a \in AP$, LTL formulas in PNF are given by:

$$\varphi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$$

PNF in linear size

For any LTL-formula φ there exists
an equivalent LTL-formula ψ in PNF with $|\psi| = \mathcal{O}(|\varphi|)$

Transformations:

$\neg \text{true}$	\rightsquigarrow	false
$\neg \neg \varphi$	\rightsquigarrow	φ
$\neg(\varphi \wedge \psi)$	\rightsquigarrow	$\neg \varphi \vee \neg \psi$
$\neg(\varphi \vee \psi)$	\rightsquigarrow	$\neg \varphi \wedge \neg \psi$
$\neg \bigcirc \varphi$	\rightsquigarrow	$\bigcirc \neg \varphi$
$\neg(\varphi \mathbf{U} \psi)$	\rightsquigarrow	$\neg \varphi \mathbf{R} \neg \psi$
$\neg \diamond \varphi$	\rightsquigarrow	$\square \neg \varphi$
$\neg \Box \varphi$	\rightsquigarrow	$\diamond \neg \varphi$