

LTL Model Checking

Lecture #15 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

May 23, 2007

Overview Lecture #15

⇒ Repetition: LTL and GNBA

- From LTL to GNBA

Recall: Linear Temporal Logic

modal logic over infinite sequences [Pnueli 1977]

- **Propositional logic**

- $a \in AP$ atomic proposition
- $\neg\varphi$ and $\varphi \wedge \psi$ negation and conjunction

- **Temporal operators**

- $\bigcirc \varphi$ neXt state fulfills φ
- $\varphi U \psi$ φ holds Until a ψ -state is reached

- **Auxiliary temporal operators**

- $\diamond \varphi \equiv \text{true} U \varphi$ eventually φ
- $\square \varphi \equiv \neg \diamond \neg \varphi$ always φ

LTL model-checking problem

The following decision problem:

Given finite transition system TS and LTL-formula φ :
yields “yes” if $TS \models \varphi$, and “no” (plus a counterexample) if $TS \not\models \varphi$

NBA for LTL-formulae

A first attempt

$$TS \models \varphi \quad \text{if and only if} \quad \text{Traces}(TS) \subseteq \underbrace{\text{Words}(\varphi)}_{\mathcal{L}_\omega(\mathcal{A}_\varphi)}$$

$$\text{if and only if} \quad \text{Traces}(TS) \cap \mathcal{L}_\omega(\overline{\mathcal{A}_\varphi}) = \emptyset$$

*but complementation of NBA is quadratically exponential
if \mathcal{A} has n states, $\overline{\mathcal{A}}$ has c^{n^2} states in worst case*

use the fact that $\mathcal{L}_\omega(\overline{\mathcal{A}_\varphi}) = \mathcal{L}_\omega(\mathcal{A}_{\neg\varphi})$!

Observation

$TS \models \varphi$ if and only if $Traces(TS) \subseteq Words(\varphi)$

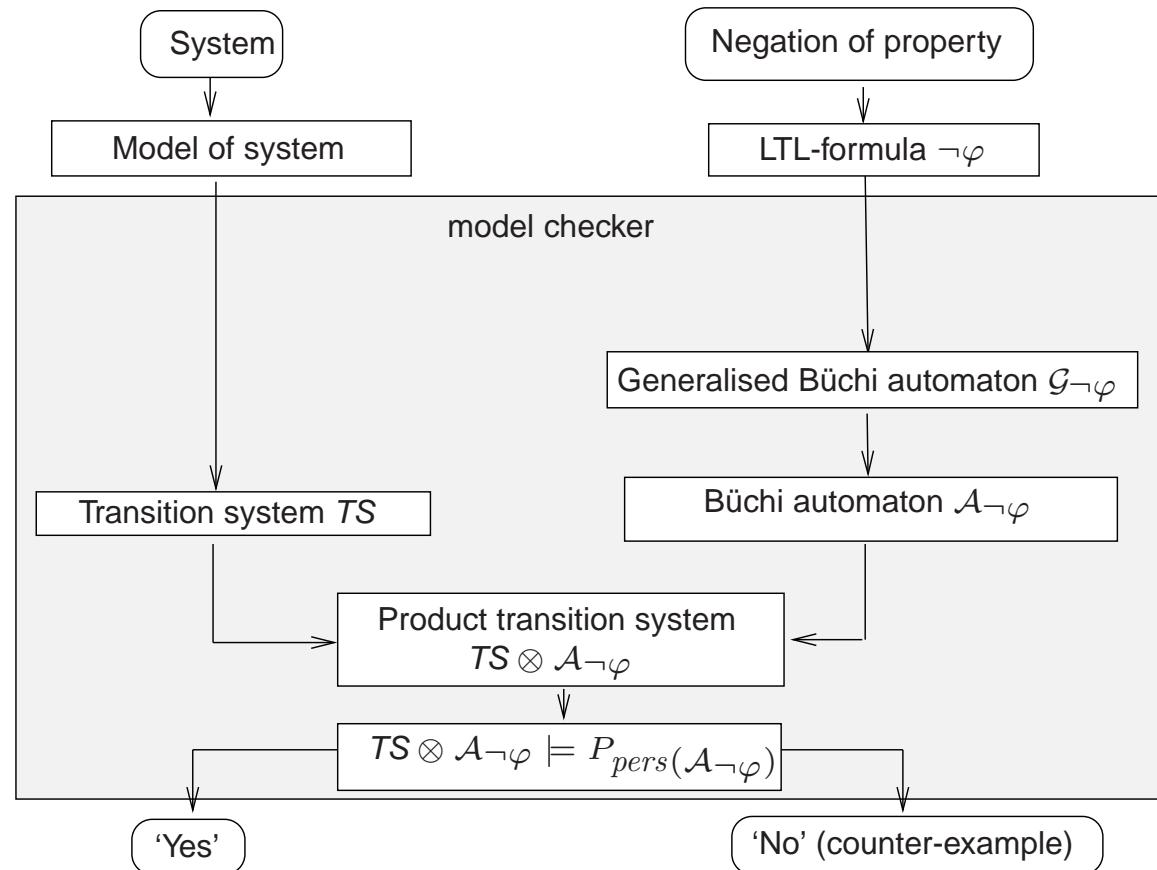
if and only if $Traces(TS) \cap ((2^{AP})^\omega \setminus Words(\varphi)) = \emptyset$

if and only if $Traces(TS) \cap \underbrace{Words(\neg\varphi)}_{\mathcal{L}_\omega(\mathcal{A}_{\neg\varphi})} = \emptyset$

if and only if $TS \otimes \mathcal{A}_{\neg\varphi} \models \diamond\Box\neg F$

LTL model checking is thus reduced to persistence checking!

Overview of LTL model checking



Recall: Generalized Büchi automata

For the purposes of this monograph, it suffices to consider a slight variant of nondeterministic Büchi automata, called *generalized* nondeterministic Büchi automata, GNBA for short. The difference between NBA and GNBA is that the acceptance condition for GNBA requires to visit several sets F_1, \dots, F_k infinitely often. Formally, the syntax of GNBA is as for NBA, except that the acceptance condition is a set \mathcal{F} consisting of *finitely many acceptance sets* F_1, \dots, F_k with $F_i \subseteq Q$. That is, if Q is the state space of the automaton then the acceptance condition of an GNBA is an element \mathcal{F} of 2^{2^Q} . Recall that for NBA, it is an element $F \in 2^Q$. The accepted language of a GNBA \mathcal{G} consists of all infinite words which have an infinite run in \mathcal{G} that visits *all* sets $F_i \in \mathcal{F}$ infinitely often. Thus, the acceptance criterion in a generalized Büchi automaton can be understood as the conjunction of a number of Büchi acceptance conditions.

Recall: Generalized Büchi automata

A *generalized NBA* (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an *alphabet*
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is a *transition function*
- $\mathcal{F} = \{ F_1, \dots, F_k \}$ is a (possibly empty) subset of 2^Q

The *size* of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Recall: Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \dots \in \Sigma^\omega$
- A *run* for σ in \mathcal{G} is an **infinite sequence** $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leq i$
- Run $q_0 q_1 \dots$ is *accepting* if **for all** $F \in \mathcal{F}$: $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^\omega$ is *accepted* by \mathcal{G} if there exists an accepting run for σ
- The *accepted language* of \mathcal{G} :

$$\mathcal{L}_\omega(\mathcal{G}) = \{ \sigma \in \Sigma^\omega \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{G} \}$$

Recall: From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$\mathcal{L}_\omega(\mathcal{G}) = \mathcal{L}_\omega(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where \mathcal{F} denotes the set of acceptance sets in \mathcal{G}

- Sketch of transformation GNBA (with k accept sets) into equivalent NBA:
 - make k copies of the automaton
 - initial states of NBA := the initial states in the first copy
 - final states of NBA := accept set F_1 in the first copy
 - on visiting in i -th copy a state in F_i , then move to the $(i+1)$ -st copy

Overview Lecture #15

- Repetition: LTL and GNBA

⇒ [From LTL to GNBA](#)

From LTL to GNBA

GNBA \mathcal{G}_φ over 2^{AP} for LTL-formula φ with $\mathcal{L}_\omega(\mathcal{G}_\varphi) = \text{Words}(\varphi)$:

- Assume φ only contains the operators \wedge, \neg, \bigcirc and \mathbf{U}
 - $\vee, \rightarrow, \diamond, \square, \mathbf{W}$, and so on, are expressed in terms of these basic operators
- States are *elementary sets* of sub-formulas in φ
 - for $\sigma = A_0 A_1 A_2 \dots \in \text{Words}(\varphi)$, expand $A_i \subseteq AP$ with sub-formulas of φ
 - \dots to obtain the infinite word $\bar{\sigma} = B_0 B_1 B_2 \dots$ such that

$$\psi \in B_i \quad \text{if and only if} \quad \sigma^i = A_i A_{i+1} A_{i+2} \dots \models \psi$$

- $\bar{\sigma}$ is intended to be a run in GNBA \mathcal{G}_φ for σ
- Transitions are derived from semantics \bigcirc and expansion law for \mathbf{U}
- Accept sets guarantee that: $\bar{\sigma}$ is an accepting run for σ iff $\sigma \models \varphi$

From LTL to GNBA: the states (example)

- Let $\varphi = a \cup (\neg a \wedge b)$ and $\sigma = \{a\} \{a, b\} \{b\} \dots$
 - B_i is a subset of $\{a, b, \neg a \wedge b, \varphi\} \cup \{\neg a, \neg b, \neg(\neg a \wedge b), \neg\varphi\}$
 - this set of formulas is also called the *closure* of φ
- Extend $A_0 = \{a\}$, $A_1 = \{a, b\}$, $A_2 = \{b\}$, \dots as follows:
 - extend A_0 with $\neg b$, $\neg(\neg a \wedge b)$, and φ as they hold in $\sigma^0 = \sigma$ (and no others)
 - extend A_1 with $\neg(\neg a \wedge b)$ and φ as they hold in σ^1 (and no others)
 - extend A_2 with $\neg a$, $\neg a \wedge b$ and φ as they hold in σ^2 (and no others)
 - \dots and so forth
 - this is not effective and is performed on the automaton (not on words)
- Result:
 - $\bar{\sigma} = \underbrace{\{a, \neg b, \neg(\neg a \wedge b), \varphi\}}_{B_0} \underbrace{\{a, b, \neg(\neg a \wedge b), \varphi\}}_{B_1} \underbrace{\{\neg a, b, \neg a \wedge b, \varphi\}}_{B_2} \dots$

Closure

For LTL-formula φ , the set $\text{closure}(\varphi)$
consists of all sub-formulas ψ of φ and their negation $\neg\psi$
(where ψ and $\neg\neg\psi$ are identified)

for $\varphi = a \cup (\neg a \wedge b)$, $\text{closure}(\varphi) = \{ a, b, \neg a, \neg b, \neg a \wedge b, \neg(\neg a \wedge b), \varphi, \neg\varphi \}$

can we take B_i as any subset of $\text{closure}(\varphi)$? no! they must be elementary

Elementary sets of formulae

$B \subseteq \text{closure}(\varphi)$ is *elementary* if:

1. B is *logically consistent* if for all $\varphi_1 \wedge \varphi_2, \psi \in \text{closure}(\varphi)$:

- $\varphi_1 \wedge \varphi_2 \in B \Leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
- $\psi \in B \Rightarrow \neg\psi \notin B$
- $\text{true} \in \text{closure}(\varphi) \Rightarrow \text{true} \in B$

2. B is *locally consistent* if for all $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:

- $\varphi_2 \in B \Rightarrow \varphi_1 \cup \varphi_2 \in B$
- $\varphi_1 \cup \varphi_2 \in B \text{ and } \varphi_2 \notin B \Rightarrow \varphi_1 \in B$

3. B is *maximal*, i.e., for all $\psi \in \text{closure}(\varphi)$:

- $\psi \notin B \Rightarrow \neg\psi \in B$

Examples

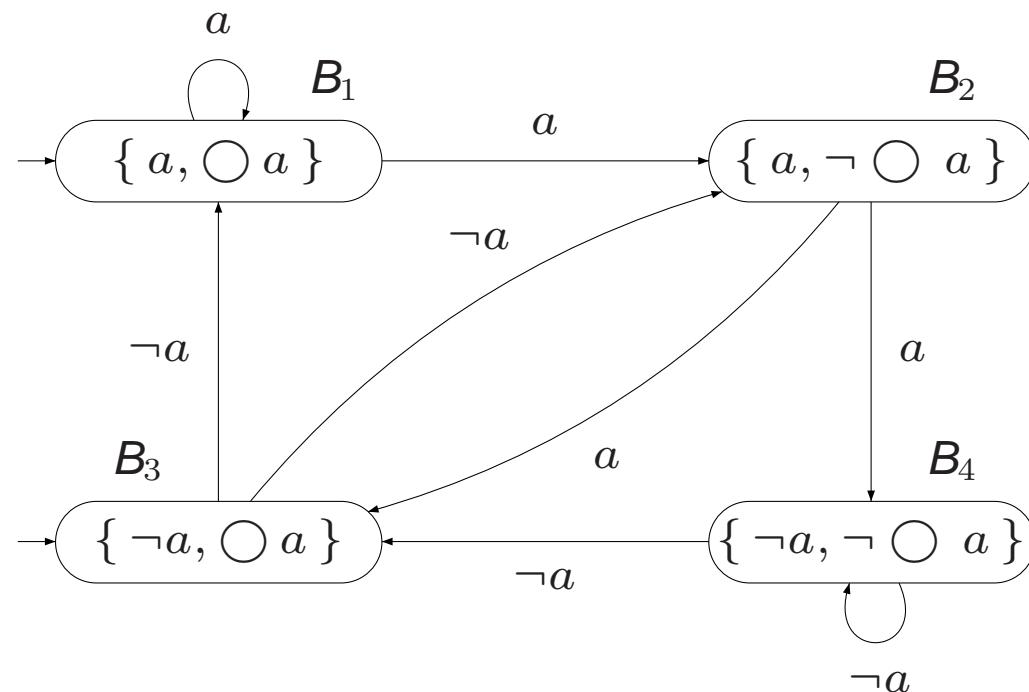
The GNBA of LTL-formula φ

For LTL-formula φ , let $\mathcal{G}_\varphi = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$ where

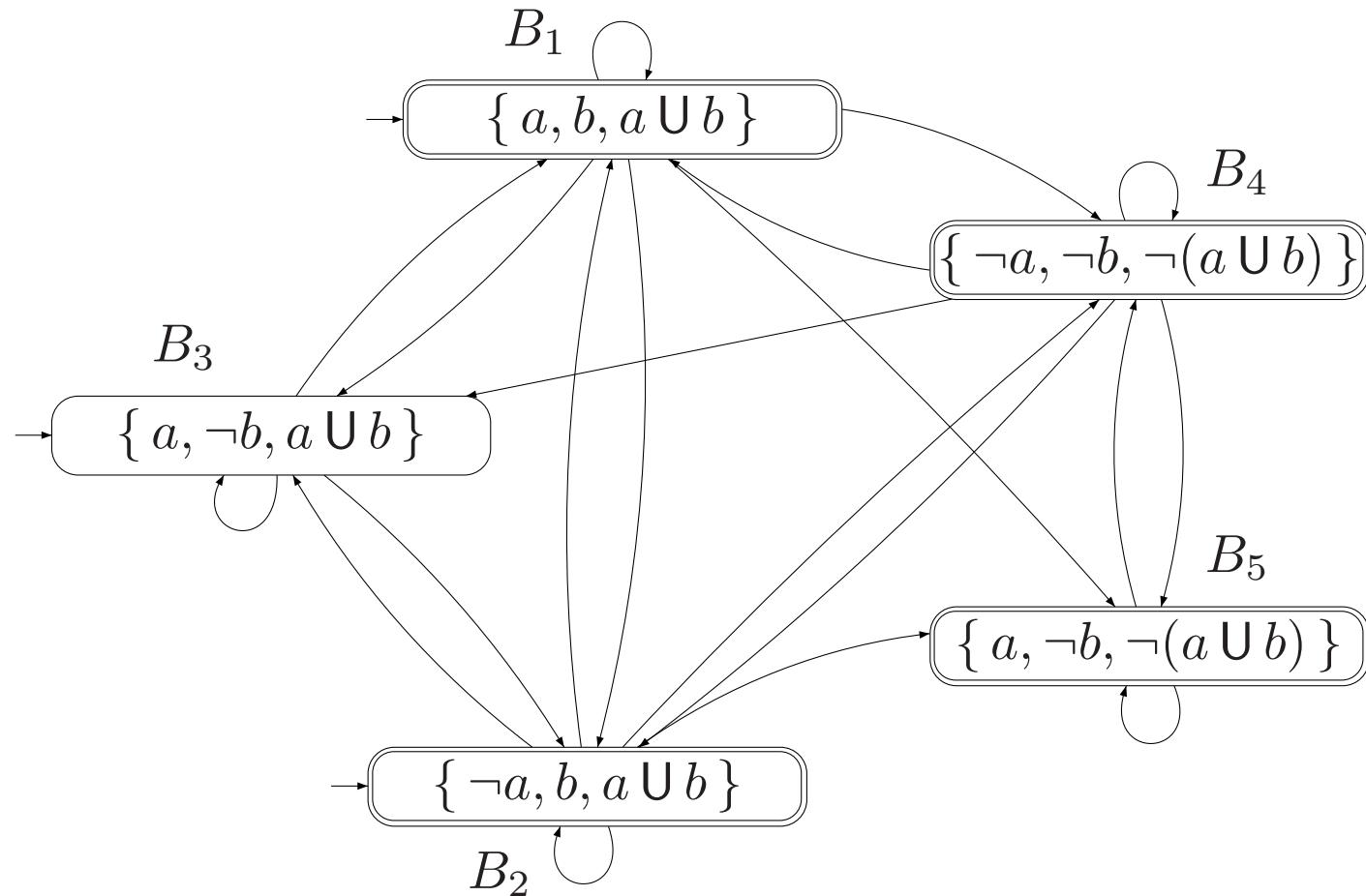
- Q is the set of all elementary sets of formulas $B \subseteq \text{closure}(\varphi)$
 - $Q_0 = \{ B \in Q \mid \varphi \in B \}$
- $\mathcal{F} = \{ \{ B \in Q \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \} \mid \varphi_1 \cup \varphi_2 \in \text{closure}(\varphi) \}$
- The transition relation $\delta : Q \times 2^{AP} \rightarrow 2^Q$ is given by:
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas \mathbf{B}' satisfying:
 - For every $\bigcirc \psi \in \text{closure}(\varphi)$: $\bigcirc \psi \in B \Leftrightarrow \psi \in \mathbf{B}'$, and
 - For every $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:

$$\varphi_1 \cup \varphi_2 \in B \Leftrightarrow (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \mathbf{B}'))$$

GNBA for LTL-formula $\bigcirc a$



GNBA for LTL-formula $a \mathbin{\textup{\texttt{U}}} b$



Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula φ (over AP) there exists a

GNBA \mathcal{G}_φ over 2^{AP} such that:

- (a) $Words(\varphi) = \mathcal{L}_\omega(\mathcal{G}_\varphi)$
- (b) \mathcal{G}_φ can be constructed in time and space $\mathcal{O}(2^{|\varphi|})$
- (c) #accepting sets of \mathcal{G}_φ is bounded above by $\mathcal{O}(|\varphi|)$

⇒ every LTL-formula expresses an ω -regular property!

Proof

NBA are more expressive than LTL

There is **no** LTL formula φ with $\text{Words}(\varphi) = \textcolor{blue}{P}$ for the LT-property:

$$\textcolor{blue}{P} = \left\{ A_0 A_1 A_2 \dots \in \left(2^{\{a\}}\right)^\omega \mid a \in A_{2i} \text{ for } i \geq 0 \right\}$$

But there exists an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \textcolor{blue}{P}$

\Rightarrow *there are ω -regular properties that cannot be expressed in LTL!*