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Overview Lecture #15

⇒ Repetition: LTL and GNBA

• From LTL to GNBA
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Recall: Linear Temporal Logic

modal logic over infinite sequences [Pnueli 1977]

• Propositional logic

– a ∈ AP atomic proposition
– ¬ϕ and ϕ ∧ ψ negation and conjunction

• Temporal operators

– ©ϕ neXt state fulfills ϕ
– ϕUψ ϕ holds Until a ψ-state is reached

• Auxiliary temporal operators

– �ϕ ≡ true Uϕ eventually ϕ
– �ϕ ≡ ¬� ¬ϕ always ϕ
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LTL model-checking problem

The following decision problem:

Given finite transition system TS and LTL-formula ϕ:

yields “yes” if TS |= ϕ, and “no” (plus a counterexample) if TS �|= ϕ
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NBA for LTL-formulae
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A first attempt

TS |= ϕ if and only if Traces(TS) ⊆ Words(ϕ)︸ ︷︷ ︸
Lω(Aϕ)

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅

but complementation of NBA is quadratically exponential
if A has n states, A has cn

2
states in worst case

use the fact that Lω(Aϕ) = Lω(A¬ϕ)!
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Observation

TS |= ϕ if and only if Traces(TS) ⊆ Words(ϕ)

if and only if Traces(TS) ∩ (
(2AP)ω \ Words(ϕ)

)
= ∅

if and only if Traces(TS) ∩ Words(¬ϕ)︸ ︷︷ ︸
Lω(A¬ϕ)

= ∅

if and only if TS ⊗A¬ϕ |= ��¬F

LTL model checking is thus reduced to persistence checking!
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Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system
TS ⊗ A¬ϕ

TS ⊗ A¬ϕ |= Ppers(A¬ϕ)

LTL-formula ¬ϕ

Büchi automaton A¬ϕ

Generalised Büchi automaton G¬ϕ

System

‘Yes’
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Recall: Generalized Büchi automata

For the purposes of this monograph, it suffices to consider a
slight variant of nondeterministic Büchi automata, called generalized
nondeterministic Büchi automata, GNBA for short. The difference
between NBA and GNBA is that the acceptance condition for GNBA
requires to visit several sets F1, . . . , Fk infinitely often. Formally, the
syntax of GNBA is as for NBA, except that the acceptance condition is a
set F consisting of finitely many acceptance sets F1, . . . , Fk with Fi ⊆ Q.
That is, if Q is the state space of the automaton then the acceptance
condition of an GNBA is an element F of 22Q. Recall that for NBA, it is
an element F ∈ 2Q. The accepted language of a GNBA G consists of all
infinite words which have an infinite run in G that visits all sets Fi ∈ F
infinitely often. Thus, the acceptence criterion in a generalized Büchi
automaton can be understood as the conjunction of a number of Büchi
acceptance conditions.
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Recall: Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q,Σ, δ, Q0,F) where:

• Q is a finite set of states with Q0 ⊆ Q a set of initial states

• Σ is an alphabet

• δ : Q× Σ → 2Q is a transition function

• F = {F1, . . . , Fk } is a (possibly empty) subset of 2Q

The size of G, denoted |G|, is the number of states and transitions in G:

|G| = |Q| +
X
q∈Q

X
A∈Σ

| δ(q,A) |
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Recall: Language of a GNBA

• GNBA G = (Q,Σ, δ,Q0,F) and word σ = A0A1A2 . . . ∈ Σω

• A run for σ in G is an infinite sequence q0 q1 q2 . . . such that:

– q0 ∈ Q0 and qi
Ai−−→ qi+1 for all 0 � i

• Run q0 q1 . . . is accepting if for all F ∈ F : qi ∈ F for infinitely many i

• σ ∈ Σω is accepted by G if there exists an accepting run for σ

• The accepted language of G:

Lω(G) =
{
σ ∈ Σω | there exists an accepting run for σ in G }
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Recall: From GNBA to NBA

For any GNBA G there exists an NBA A with:

Lω(G) = Lω(A) and |A| = O(|G| · |F|)
where F denotes the set of acceptance sets in G

• Sketch of transformation GNBA (with k accept sets) into equivalent
NBA:

– make k copies of the automaton
– initial states of NBA := the initial states in the first copy
– final states of NBA := accept set F1 in the first copy
– on visiting in i-th copy a state in Fi, then move to the (i+1)-st copy
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Overview Lecture #15

• Repetition: LTL and GNBA

⇒ From LTL to GNBA
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From LTL to GNBA
GNBA Gϕ over 2AP for LTL-formula ϕ with Lω(Gϕ) = Words(ϕ):

• Assume ϕ only contains the operators ∧, ¬, © and U

– ∨, →, �, �, W , and so on, are expressed in terms of these basic operators

• States are elementary sets of sub-formulas in ϕ

– for σ = A0A1A2 . . . ∈ Words(ϕ), expand Ai ⊆ AP with sub-formulas of ϕ
– . . . to obtain the infinite word σ̄ = B0B1B2 . . . such that

ψ ∈ Bi if and only if σ
i
= AiAi+1Ai+2 . . . |= ψ

– σ̄ is intended to be a run in GNBA Gϕ for σ

• Transitions are derived from semantics © and expansion law for U

• Accept sets guarantee that: σ̄ is an accepting run for σ iff σ |= ϕ
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From LTL to GNBA: the states (example)
• Let ϕ = a U (¬a∧ b) and σ = { a } { a, b } { b } . . .

– Bi is a subset of { a, b,¬a ∧ b, ϕ } ∪ {¬a,¬b,¬(¬a ∧ b),¬ϕ }
– this set of formulas is also called the closure of ϕ

• Extend A0 = { a } , A1 = { a, b }, A2 = { b }, . . . as follows:

– extend A0 with ¬b, ¬(¬a ∧ b), and ϕ as they hold in σ0 = σ (and no others)
– extend A1 with ¬(¬a ∧ b) and ϕ as they hold in σ1 (and no others)
– extend A2 with ¬a, ¬a ∧ b and ϕ as they hold in σ2 (and no others)
– . . . and so forth
– this is not effective and is performed on the automaton (not on words)

• Result:

– σ̄ = { a,¬b,¬(¬a ∧ b), ϕ }| {z }
B0

{ a, b,¬(¬a ∧ b), ϕ }| {z }
B1

{¬a, b,¬a ∧ b, ϕ }| {z }
B2

. . .
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Closure

For LTL-formula ϕ, the set closure(ϕ)

consists of all sub-formulas ψ of ϕ and their negation ¬ψ
(where ψ and ¬¬ψ are identified)

for ϕ = aU (¬a∧ b), closure(ϕ) = { a, b,¬a,¬b,¬a ∧ b,¬(¬a ∧ b), ϕ,¬ϕ }

can we take Bi as any subset of closure(ϕ)? no! they must be elementary
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Elementary sets of formulae

B ⊆ closure(ϕ) is elementary if:

1. B is logically consistent if for all ϕ1∧ϕ2, ψ ∈ closure(ϕ):

• ϕ1 ∧ ϕ2 ∈ B ⇔ ϕ1 ∈ B and ϕ2 ∈ B

• ψ ∈ B ⇒ ¬ψ �∈ B

• true ∈ closure(ϕ) ⇒ true ∈ B

2. B is locally consistent if for all ϕ1 Uϕ2 ∈ closure(ϕ):

• ϕ2 ∈ B ⇒ ϕ1 Uϕ2 ∈ B

• ϕ1 Uϕ2 ∈ B and ϕ2 �∈ B ⇒ ϕ1 ∈ B

3. B is maximal , i.e., for all ψ ∈ closure(ϕ):

• ψ /∈ B ⇒ ¬ψ ∈ B

c© JPK 16



#15: LTL model checking Model checking

Examples
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The GNBA of LTL-formula ϕ

For LTL-formula ϕ, let Gϕ = (Q, 2AP, δ,Q0,F) where

• Q is the set of all elementary sets of formulas B ⊆ closure(ϕ)

– Q0 =
n
B ∈ Q | ϕ ∈ B

o

• F =
{{

B ∈ Q | ϕ1 Uϕ2 	∈ B or ϕ2 ∈ B
} | ϕ1 Uϕ2 ∈ closure(ϕ)

}

• The transition relation δ : Q× 2AP → 2Q is given by:

– δ(B,B ∩ AP) is the set of all elementary sets of formulas B ′ satisfying:
(i) For every ©ψ ∈ closure(ϕ): ©ψ ∈ B ⇔ ψ ∈ B ′, and
(ii) For every ϕ1 Uϕ2 ∈ closure(ϕ):

ϕ1 Uϕ2 ∈ B ⇔
“
ϕ2 ∈ B ∨ (ϕ1 ∈ B ∧ ϕ1 Uϕ2 ∈ B′)

”
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GNBA for LTL-formula © a

{ a,© a }
B1

{ a,¬ © a }
B2

{¬a,© a }
B3

{¬a,¬ © a }
B4

a

¬a

a

a

¬a

¬a

¬a

a
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GNBA for LTL-formula aU b

{ a, b, aU b }
B1

{¬a,¬b,¬(aU b) }
B4

{ a,¬b,¬(aU b) }
B5

{¬a, b, aU b }
B2

{ a,¬b, aU b }
B3
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Main result

[Vardi, Wolper & Sistla 1986]

For any LTL-formula ϕ (over AP) there exists a

GNBA Gϕ over 2AP such that:

(a) Words(ϕ) = Lω(Gϕ)
(b) Gϕ can be constructed in time and space O

“
2|ϕ|

”

(c) #accepting sets of Gϕ is bounded above by O(|ϕ|)

⇒ every LTL-formula expresses an ω-regular property!
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Proof
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NBA are more expressive than LTL

There is no LTL formula ϕ with Words(ϕ) = P for the LT-property:

P =
{
A0A1A2 . . . ∈

(
2{ a }

)ω
| a ∈ A2i for i � 0

}

But there exists an NBA A with Lω(A) = P

⇒ there are ω-regular properties that cannot be expressed in LTL!
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