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#16: Complexity and correctness Model checking

Overview Lecture #16

= Repetition: from LTL to GNBA

e Correctness proof

e Complexity results

— LTL model checking is coNP-hard and PSPACE-complete
— Satisfiability and validity are PSPACE-hard

e Summary of LTL model checking
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#16: Complexity and correctness Model checking

Reduction to persistence checking

TS| ¢ ifandonlyif Traces(TS) C Words(yp)

if and only if ~ Traces(TS) N ((2%F)~ \ Words(y)) = @

ifand only if ~ Traces(TS) N Words(—yp) = &
Lo(Ay)

ifandonlyif TS® A, = COF

LTL model checking is thus reduced to persistence checking!

© JPK 2



#16: Complexity and correctness

Model checking

Overview of LTL model checking

[ Negation of property j

Model of system

I

LTL-formula —¢

model checker

Generalised Blchi automaton G-

Transition system TS |

Buchi automaton A-¢

-

Product transition system
TS ® A-p

v

TS® A-p = Ppers(.A—'gp)

\l/

(‘No’ (counter-example) )
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#16: Complexity and correctness Model checking

From LTL to GNBA
GNBA G, over 2°F for LTL-formula ¢ with £,,(G,,) = Words(y):

e Assume ¢ only contains the operators A, =, () and U

-V, —, <, 0, W, and so on, are expressed in terms of these basic operators

e States are elementary sets of sub-formulas in ¢

— foro = AgA1As ... € Words(yp), expand A; C AP with sub-formulas of ¢
— ... to obtain the infinite word ¢ = BgB1B> ... such that

QP € B; if and OnIy if O'i = AiAi+1Ai+2 ce |: "(b
— o isintended to be a run in GNBA G, for o
e Transitions are derived from semantics () and expansion law for U

e Accept sets guarantee that: & is an accepting run for o iff o |= ¢
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#16: Complexity and correctness Model checking

Elementary sets of formulae

B C closure(y) is elementary if:
1. B is logically consistent if for all o1 A @9, € closure(y):
e p 1 N2 €B & ;€ Band s € B
e e B = ¢Y&B
e true € closure(y) = true € B
2. B is locally consistent if for all ¢, U 5 € closure(yp):
e po € B = p1Upy € B
° @1U¢2€Band@2€B = @1 € B
3. Bis maximal, i.e., for all ¢ € closure(y):

e ¢ B = —ERB
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#16: Complexity and correctness Model checking

The GNBA of LTL-formula ¢

For LTL-formula ¢, let G, = (Q, 27, 5, Qo, F) where

e () = all elementary sets B C closure(y) , Qo ={Bec Q| ¢ c B}

o F = {{BecQlpUps¢Boryp, e B} |pUg, € closure(y)}

e The transition relation § : Q x 27 — 2% is given by:

— IfA# BNAPthen§(B,A) = O
— §(B, B N AP) is the set of all elementary sets of formulas B’ satisfying:

(i) Forevery O € closure(p): Oy € B < ¢ € B’,and
(i) For every @1 U py € closure(yp):

p1Ups € B & (90263 V (p1 € B A 901U902€B'))
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#16: Complexity and correctness Model checking

GNBA for LTL-formula O a

m B1 . B2
~( {a,0a} ) {{a,~Oa})

—a

Bs a B4
N QeI S Cerereyy)

@

—Qa

Qo = {B1,Bsg }since Oa €Bjand Oa € B
0(B2,{a}) ={Bs,Bg}tasBasn{a}={a},-O a=O —a € Bo,and —a € B3, By
5(B1,{a}) ={Bi,Bs}asBiN{a}l={a},OaeBianda € B1,By
(B4, {a}) =osinceByN{a}=a9#{a}

The set F is empty, since ¢ = () a does not contain an until-operator
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#16: Complexity and correctness Model checking

GNBA for LTL-formula aUb

By

{ {a,b,aUb} j

oL

{—a,=b,~(aUD) }]

{ {a,—-b,aUb} ]
)

{ {—-a,b,alUb} )
By ()

justification: on the black board
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#16: Complexity and correctness Model checking

Overview Lecture #16

e Repetition: from LTL to GNBA

= Correctness proof

e Complexity results

— LTL model checking is coNP-hard and PSPACE-complete
— Satisfiability and validity are PSPACE-hard

e Summary of LTL model checking
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#16: Complexity and correctness

Model checking

Correctness theorem

Words () = £.(G,)

Proof: on the black board
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#16: Complexity and correctness Model checking

NBA are more expressive than LTL

Corollary: every LTL-formula expresses an w-regular property

But: there exist w-regular properties that cannot be expressed in LTL

Example: there is no LTL formula ¢ with Words(y) = P for the LT-property:
P = {AOAlAQ. .. & (Q{G})w ‘ a © AQZ' forz > 0}

But there exists an NBA A with £,(A) = P

= there are w-regular properties that cannot be expressed in LTL!
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#16: Complexity and correctness Model checking

Overview Lecture #16

e Repetition: from LTL to GNBA

e Correctness proof

= Complexity results

— LTL model checking is coNP-hard and PSPACE-complete
— Satisfiability and validity are PSPACE-hard

e Summary of LTL model checking
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#16: Complexity and correctness

Model checking

Complexity for LTL to NBA

For any LTL-formula ¢ (over AP) there exists an NBA A,
with Words(y) = £,(A,) and

which can be constructed in time and space in 2°U¢l-1og ll)

Justification complexity: next slide
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#16: Complexity and correctness Model checking

Time and space complexity in 20(¢l-log|l)

e States GNBA G, are elementary sets of formulae in closure(y)

— sets B can be represented by bit vectors with single bit per subformula 1 of ¢

e The number of states in G, is bounded by 2/sUb(¥)

— where subf(y) denotes the set of all subformulae of ¢
— |subf(e)| < 2-]¢[; so, the number of states in G, is bounded by 2°(#)

e The number of accepting sets of G, is bounded above by O(|y|)
e The number of states in NBA A,, is thus bounded by 2°U#)1 . O(|yp|)

o 20U¢D) . O(lp]) = 20Uwllogle]) ged
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#16: Complexity and correctness

Model checking

Lower bound

There exists a family of LTL formulas ¢,, with |¢,,| = O(poly(n))

such that every NBA A, for ¢,, has at least 2" states

© JPK

15



#16: Complexity and correctness Model checking

Proof (1)

Let AP be non-empty, that is, |2AP| > 2 and:

L, = {Al...AnAl...Ana\AigAP/\JE(QAP) } forn > 0

It follows £,, = Words(p,,) where o, = A\ (O'a—— O""a)

acAP 0<i<n
©n IS an LTL formula of polynomial length: |p,| € O (|AP| : n)

However, any NBA A with £,(.A) = L, has at least 2" states
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#16: Complexity and correctness Model checking

Proof (2)

Claim: any NBA Afor A\ /\ (O'a «— Q" a) has at least 2" states

Words of the form A; .. . A, A, ... A, @ ... are accepted by A

A thus has for every word A; . . . A, of length n, a state q(A; . .. A,), say,
which can be reached from an initial state by consuming A; ... A,

From q(A; ... A,), itis possible to visit an accept state infinitely often
by accepting the suffix A, .. . A, 02T ...

IfA;...A, # Al...A then

A AA LA 003...¢ L, = L,(A)

Therefore, the states q(A; . . . A,,) are all pairwise different

Given |2AP| possible sequences A; . .. A,,, NBA A has > (|2AP|) > 2" states
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#16: Complexity and correctness

Model checking

Complexity for LTL model checking

The time and space complexity of LTL model checking is in © (|TS| -2"”)
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#16: Complexity and correctness Model checking

On-the-fly LTL model checking

e |ldea: find a counter-example during the generation of Reach(TS)
and A-,

— exploit the fact that Reach(TS) and A, can be generated in parallel

= Generate Reach(TS ® A-,,) “on demand”

— consider a new vertex only if no accepting cycle has been found yet
— only consider the successors of a state in A, that match current state in TS

= Possible to find an accepting cycle without generating A-,, entirely

e This on-the-fly scheme is adopted in e.g. the model checker SPIN
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#16: Complexity and correctness

Model checking

In fact, the LTL model-checking problem is PSPACE-complete

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to

the complement of the LTL model-checking problem

[Sistla & Clarke 1985]
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#16: Complexity and correctness Model checking

LTL satisfiability and validity checking

e Satisfiability problem: Words(y) # @ for LTL-formula ¢?

— does there exist a transition system for which ¢ holds?

e Solution: construct an NBA A, and check for emptiness

— nested depth-first search for checking persistence properties

e Validity problem: is ¢ = true, i.e., Words(yp) = (27)"?

— does ¢ hold for every transition system?

e Solution: as for satisfiability, as ¢ is valid iff 4 is satisfiable

run time is exponential, a more efficient algorithm most probably does not exist!
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#16: Complexity and correctness

Model checking

LTL satisfiability and validity checking

The satisfiability and validity problem for LTL are PSPACE-complete

Black board: show the fact that these problems are PSPACE-hard
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#16: Complexity and correctness Model checking

Overview Lecture #16

e Repetition: from LTL to GNBA

e Correctness proof

e Complexity results

— LTL model checking is coNP-hard and PSPACE-complete
— Satisfiability and validity are PSPACE-hard

= Summary of LTL model checking
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#16: Complexity and correctness Model checking

Summary of LTL model checking (1)

e LTL is a logic for formalizing path-based properties

e Expansion law allows for rewriting until into local conditions and next

o LTL-formula ¢ can be transformed algorithmically into NBA A,

— this may cause an exponential blow up
— algorithm: first construct a GNBA for ¢; then transform it into an equivalent NBA

e LTL-formulae describe w-regular LT-properties

— but do not have the same expressivity as w-regular languages
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#16: Complexity and correctness Model checking

Summary of LTL model checking (2)

e TS |= ¢ can be solved by a nested depth-first searchin TS ® A,

— time complexity of the LTL model-checking algorithm is linear in TS and
exponential in ||

e Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible
to the standard LTL model-checking problem

e The LTL-model checking problem is PSPACE-complete
e Satisfiability and validity of LTL amounts to NBA emptiness-check

e The satisfiability and valditiy problem for LTL are PSPACE-complete
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