© JPK

Computation Tree Logic
Lecture #17 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

June 06, 2007

#17: Computation tree logic Model checking

Overview Lecture #17

= Summary of LTL model checking
e Branching temporal logic

e Syntax and semantics of CTL

© JPK

#17: Computation tree logic Model checking

Summary of LTL model checking (1)

e LTL is a logic for formalizing path-based properties

e Expansion law allows for rewriting until into local conditions and next

o LTL-formula ¢ can be transformed algorithmically into NBA A,

— this may cause an exponential blow up
— algorithm: first construct a GNBA for ¢; then transform it into an equivalent NBA

e LTL-formulae describe w-regular LT-properties

— but do not have the same expressivity as w-regular languages

© JPK 2

#17: Computation tree logic Model checking

Summary of LTL model checking (2)

e TS |= ¢ can be solved by a nested depth-first searchin TS ® A,

— time complexity of the LTL model-checking algorithm is linear in TS and
exponential in ||

e Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible
to the standard LTL model-checking problem

e The LTL-model checking problem is PSPACE-complete
e Satisfiability and validity of LTL amounts to NBA emptiness-check

e The satisfiability and valditiy problem for LTL are PSPACE-complete

© JPK 3

#17: Computation tree logic Model checking

Overview Lecture #17

e Summary of LTL model checking
= Branching temporal logic

e Syntax and semantics of CTL

© JPK

#17: Computation tree logic Model checking

Linear and branching temporal logic

e Linear temporal logic:
“statements about (all) paths starting in a state”

— s |= O(x < 20) iff for all possible paths starting in s always = < 20

e Branching temporal logic:

“statements about all or some paths starting in a state”

— s = VO(x < 20) iff for all paths starting in s always = < 20
— s = 30(x < 20) iff for some path starting in s always « < 20
— nesting of path quantifiers is allowed

e Checking dy In LTL can be done using V-

— ... but this does not work for nested formulas such as YO3<$a

© JPK

#17: Computation tree logic Model checking

Linear versus branching temporal logic

e Semantics is based on a branching notion of time

— an infinite tree of states obtained by unfolding transition system
— one “time instant” may have several possible successor “time instants”

e Incomparable expressiveness

— there are properties that can be expressed in LTL, but not in CTL
— there are properties that can be expressed in most branching, but not in LTL

e Distinct model-checking algorithms, and their time complexities

e Distinct treatment of fairness assumptions

e Distinct equivalences (pre-orders) on transition systems

— that correspond to logical equivalence in LTL and branching temporal logics

© JPK

#17: Computation tree logic Model checking

Transition systems and trees

(50,0)

& '
(s1,1)
s1){z=0} L T
{x#0} (52,2) (s3,2)
TN
o0y (s3,3) (s2,3) (s3,3)
{z=1x2#0} ¢ /\

—~
»
N
e~
~—
—~

s3,4) (s3,4)(s2,4) (83 4)

© JPK

#17: Computation tree logic

Model checking

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s
temporal LTL: path formulas ¢ CTL: state formulas
logic s = ¢ iff existential path quantification d¢

V7 € Paths(s). 7 = ¢

universal path quantification: V¢

complexity of the
model checking

problems

PSPACE-complete

0, (|TS| . 2|s@|)

PTIME

O (TS| - [®])

implementation-
relation

trace inclusion and the like
(proof is PSPACE-complete)

simulation and bisimulation
(proof in polynomial time)

fairness

no special techniques

special technigues needed

© JPK

#17: Computation tree logic Model checking

Branching temporal logics

There are various branching temporal logics:

e Hennessy-Milner logic

e Computation Tree Logic (CTL)

e Extended Computation Tree Logic (CTL*)

— combines LTL and CTL into a single framework

e Alternation-free modal p-calculus
e Modal p-calculus

e Propositional dynamic logic

© JPK

#17: Computation tree logic

Model checking

Overview Lecture #17

e Summary of LTL model checking
e Branching temporal logic

= Syntax and semantics of CTL

© JPK

10

#17: Computation tree logic Model checking

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

e Statements over states

— a € AP atomic proposition
— mdPand P AW negation and conjunction
— do there exists a path fulfilling ¢
— Vo all paths fulfill

e Statements over paths

- Od the next state fulfills ®
— dPUWT $ holds until a W-state is reached

= note that () and U alternate with V and 4

~ VOO @ and V30O @ ¢ CTL, but YOVO @ and YOI @ € CTL

© JPK 11

#17: Computation tree logic

Model checking

Derived operators

potentially &: FOP
Inevitably &: Vo P

potentially always ¢: JO®

iInvariantly &: VYO
weak until: (P W)
V(OW W)

(true U ¢)
V(true U @)

VO
=3O

V(@ A=T)U (=P A-T))
—J(@A-T)U (=D A -T))

the boolean connectives are derived as usual

© JPK

12

#17: Computation tree logic Model checking

Visualization of semantics

Adel dedel el

\
€6 &0 0

3<¢red 30red 3(yellow U red)

$o il dedes X%

0 ¢ o O

v<ored vOred V(yellow U red)

© JPK 13

#17: Computation tree logic

Model checking

Example properties in CTL

© JPK

14

#17: Computation tree logic Model checking

Semantics of CTL state -formulas

Defined by a relation |= such that

s = @ if and only if formula ® holds in state s

s E=a iff ae L(s)
skE d iff —(s = ®)
sEPAY ff (sEP)A(s =)

s = dp Iff m = o for some path 7 that starts in s

s E Vo Iff 7 = ¢ for all paths 7 that start in s

© JPK

15

#17: Computation tree logic Model checking

Semantics of CTL path-formulas

Define a relation = such that

7 = @ if and only if path 7 satisfies ¢

mE Od iff 7[1] &= @
rEOUY iff(3j>07[jlEY AN VOLEk<jrwlklED)

where 7[¢] denotes the state s, in the path =

© JPK 16

#17: Computation tree logic Model checking

Transition system semantics

e For CTL-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {seS|sE=?}

e TS satisfies CTL-formula ® iff & holds in all its initial states:
TS=® ifandonlyif Vsygel.sqg=®

— thisis equivalentto I C Sat(®)

e Point of attention: TS = ® and TS (= —® is possible!

— because of several initial states, e.g. so = 30® and s;, [~ I0P

© JPK 17

#17: Computation tree logic

Model checking

A triple modular redundant system

© JPK

18

#17: Computation tree logic Model checking

Infinitely often

s =VOVOa ifandonly if Vr € Paths(s) an a-state is visited infinitely often

© JPK 19

