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#17: Computation tree logic Model checking

Overview Lecture #17

⇒ Summary of LTL model checking

• Branching temporal logic

• Syntax and semantics of CTL
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Summary of LTL model checking (1)

• LTL is a logic for formalizing path-based properties

• Expansion law allows for rewriting until into local conditions and next

• LTL-formula ϕ can be transformed algorithmically into NBA Aϕ

– this may cause an exponential blow up
– algorithm: first construct a GNBA for ϕ; then transform it into an equivalent NBA

• LTL-formulae describe ω-regular LT-properties

– but do not have the same expressivity as ω-regular languages
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Summary of LTL model checking (2)

• TS |= ϕ can be solved by a nested depth-first search in TS ⊗A¬ϕ

– time complexity of the LTL model-checking algorithm is linear in TS and
exponential in |ϕ|

• Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible
to the standard LTL model-checking problem

• The LTL-model checking problem is PSPACE-complete

• Satisfiability and validity of LTL amounts to NBA emptiness-check

• The satisfiability and valditiy problem for LTL are PSPACE-complete
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Overview Lecture #17

• Summary of LTL model checking

⇒ Branching temporal logic

• Syntax and semantics of CTL
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Linear and branching temporal logic

• Linear temporal logic:

“statements about (all) paths starting in a state”

– s |= 2(x 6 20) iff for all possible paths starting in s always x 6 20

• Branching temporal logic:

“statements about all or some paths starting in a state”

– s |= ∀2(x 6 20) iff for all paths starting in s always x 6 20

– s |= ∃2(x 6 20) iff for some path starting in s always x 6 20

– nesting of path quantifiers is allowed

• Checking ∃ϕ in LTL can be done using ∀¬ϕ

– . . . but this does not work for nested formulas such as ∀2∃3a
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Linear versus branching temporal logic
• Semantics is based on a branching notion of time

– an infinite tree of states obtained by unfolding transition system
– one “time instant” may have several possible successor “time instants”

• Incomparable expressiveness

– there are properties that can be expressed in LTL, but not in CTL
– there are properties that can be expressed in most branching, but not in LTL

• Distinct model-checking algorithms, and their time complexities

• Distinct treatment of fairness assumptions

• Distinct equivalences (pre-orders) on transition systems

– that correspond to logical equivalence in LTL and branching temporal logics
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Transition systems and trees
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“behavior” path-based: state-based:
in a state s trace(s) computation tree of s

temporal LTL: path formulas ϕ CTL: state formulas
logic s |= ϕ iff existential path quantification ∃ϕ

∀π ∈ Paths(s). π |= ϕ universal path quantification: ∀ϕ

complexity of the PSPACE–complete PTIME
model checking

problems O
“

|TS| · 2|ϕ|
”

O (|TS| · |Φ|)

implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)

fairness no special techniques special techniques needed
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Branching temporal logics
There are various branching temporal logics:

• Hennessy-Milner logic

• Computation Tree Logic (CTL)

• Extended Computation Tree Logic (CTL∗)

– combines LTL and CTL into a single framework

• Alternation-free modal µ-calculus

• Modal µ-calculus

• Propositional dynamic logic
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Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

• Statements over states

– a ∈ AP atomic proposition
– ¬Φ and Φ∧Ψ negation and conjunction
– ∃ϕ there exists a path fulfilling ϕ

– ∀ϕ all paths fulfill ϕ

• Statements over paths

– ©Φ the next state fulfills Φ

– Φ U Ψ Φ holds until a Ψ-state is reached

⇒ note that © and U alternate with ∀ and ∃

– ∀©©Φ and ∀∃©Φ 6∈ CTL, but ∀©∀©Φ and ∀©∃©Φ ∈ CTL
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Derived operators

potentially Φ: ∃3Φ = ∃(true UΦ)

inevitably Φ: ∀3Φ = ∀(true UΦ)

potentially always Φ: ∃2Φ := ¬∀3¬Φ

invariantly Φ: ∀2Φ = ¬∃3¬Φ

weak until: ∃(ΦW Ψ) = ¬∀
(

(Φ∧¬Ψ) U (¬Φ∧¬Ψ)
)

∀(ΦW Ψ) = ¬∃
(

(Φ∧¬Ψ) U (¬Φ∧¬Ψ)
)

the boolean connectives are derived as usual
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Visualization of semantics

∀3red ∀(yellow U red)

∃(yellow U red)∃2red

∀2red

∃3red
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Example properties in CTL
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Semantics of CTL state -formulas

Defined by a relation |= such that

s |= Φ if and only if formula Φ holds in state s

s |= a iff a ∈ L(s)

s |= ¬Φ iff ¬ (s |= Φ)

s |= Φ∧Ψ iff (s |= Φ)∧ (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some path π that starts in s

s |= ∀ϕ iff π |= ϕ for all paths π that start in s
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Semantics of CTL path -formulas

Define a relation |= such that

π |= ϕ if and only if path π satisfies ϕ

π |= ©Φ iff π[1] |= Φ

π |= ΦUΨ iff (∃ j > 0. π[j] |= Ψ ∧ (∀ 0 6 k < j. π[k] |= Φ))

where π[i] denotes the state si in the path π
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Transition system semantics

• For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

– this is equivalent to I ⊆ Sat(Φ)

• Point of attention: TS 6|= Φ and TS 6|= ¬Φ is possible!

– because of several initial states, e.g. s0 |= ∃2Φ and s′
0 6|= ∃2Φ
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A triple modular redundant system
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Infinitely often

s |= ∀2∀3a if and only if ∀π ∈ Paths(s) an a-state is visited infinitely often
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