

Computation Tree Logic

Lecture #17 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 06, 2007

Overview Lecture #17

⇒ Summary of LTL model checking

- Branching temporal logic
- Syntax and semantics of CTL

Summary of LTL model checking (1)

- LTL is a logic for formalizing **path**-based properties
- **Expansion law** allows for rewriting until into local conditions and next
- LTL-formula φ can be transformed algorithmically into NBA \mathcal{A}_φ
 - this may cause an exponential blow up
 - algorithm: first construct a GNBA for φ ; then transform it into an equivalent NBA
- LTL-formulae describe ω -regular LT-properties
 - but **do not have the same expressivity** as ω -regular languages

Summary of LTL model checking (2)

- $TS \models \varphi$ can be solved by a nested depth-first search in $TS \otimes \mathcal{A}_{\neg\varphi}$
 - time complexity of the LTL model-checking algorithm is linear in TS and exponential in $|\varphi|$
- Fairness assumptions can be described by LTL-formulae
 - the model-checking problem for LTL with fairness is reducible to the standard LTL model-checking problem
- The LTL-model checking problem is PSPACE-complete
- Satisfiability and validity of LTL amounts to NBA emptiness-check
- The satisfiability and valditiy problem for LTL are PSPACE-complete

Overview Lecture #17

- Summary of LTL model checking

⇒ Branching temporal logic

- Syntax and semantics of CTL

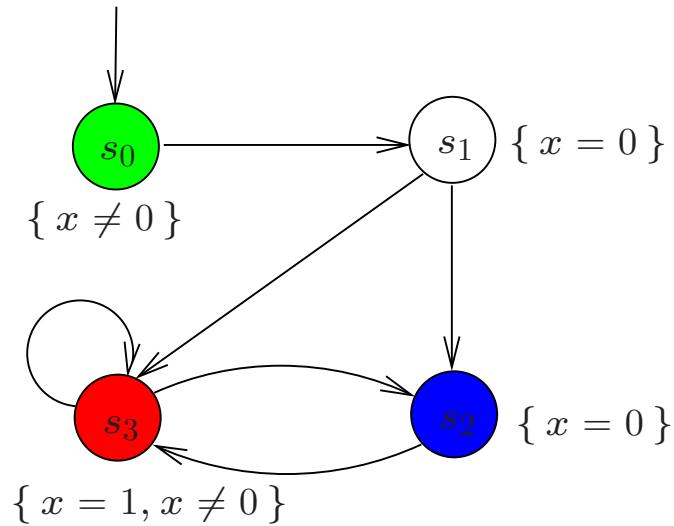
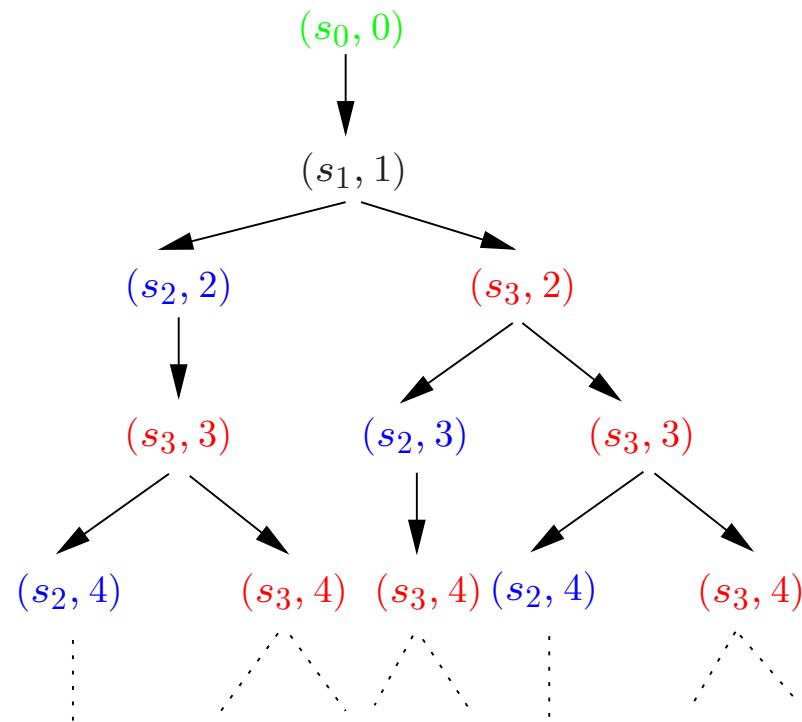
Linear and branching temporal logic

- *Linear* temporal logic:
 - “statements about **(all) paths** starting in a state”
 - $s \models \square(x \leq 20)$ iff for all possible paths starting in s always $x \leq 20$
- *Branching* temporal logic:
 - “statements about **all or some paths** starting in a state”
 - $s \models \forall \square(x \leq 20)$ iff for **all** paths starting in s always $x \leq 20$
 - $s \models \exists \square(x \leq 20)$ iff for **some** path starting in s always $x \leq 20$
 - nesting of path quantifiers is allowed
- Checking $\exists \varphi$ in LTL can be done using $\forall \neg \varphi$
 - . . . but this does not work for nested formulas such as $\forall \square \exists \diamond a$

Linear versus branching temporal logic

- **Semantics** is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one “time instant” may have several possible successor “time instants”
- **Incomparable expressiveness**
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in most branching, but not in LTL
- **Distinct model-checking algorithms**, and their time complexities
- **Distinct treatment of fairness assumptions**
- **Distinct equivalences** (pre-orders) on transition systems
 - that correspond to logical equivalence in LTL and branching temporal logics

Transition systems and trees



“behavior” in a state s	path-based: $trace(s)$	state-based: computation tree of s
temporal logic	LTL: path formulas φ $s \models \varphi$ iff $\forall \pi \in Paths(s). \pi \models \varphi$	CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACE-complete $\mathcal{O}(TS \cdot 2^{ \varphi })$	PTIME $\mathcal{O}(TS \cdot \Phi)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques	special techniques needed

Branching temporal logics

There are **various** branching temporal logics:

- Hennessy-Milner logic
- Computation Tree Logic (CTL)
- Extended Computation Tree Logic (CTL*)
 - combines LTL and CTL into a single framework
- Alternation-free modal μ -calculus
- Modal μ -calculus
- Propositional dynamic logic

Overview Lecture #17

- Summary of LTL model checking
- Branching temporal logic

⇒ Syntax and semantics of CTL

Computation tree logic

modal logic over infinite **trees** [Clarke & Emerson 1981]

- **Statements over states**

- $a \in AP$ atomic proposition
- $\neg \Phi$ and $\Phi \wedge \Psi$ negation and conjunction
- $\exists \varphi$ there *exists* a path fulfilling φ
- $\forall \varphi$ *all* paths fulfill φ

- **Statements over paths**

- $\bigcirc \Phi$ the next state fulfills Φ
- $\Phi \mathbf{U} \Psi$ Φ holds until a Ψ -state is reached

⇒ note that \bigcirc and \mathbf{U} *alternate* with \forall and \exists

- $\forall \bigcirc \bigcirc \Phi$ and $\forall \exists \bigcirc \Phi \notin \text{CTL}$, but $\forall \bigcirc \forall \bigcirc \Phi$ and $\forall \bigcirc \exists \bigcirc \Phi \in \text{CTL}$

Derived operators

potentially Φ : $\exists \diamond \Phi = \exists(\text{true} \cup \Phi)$

inevitably Φ : $\forall \diamond \Phi = \forall(\text{true} \cup \Phi)$

potentially always Φ : $\exists \Box \Phi := \neg \forall \diamond \neg \Phi$

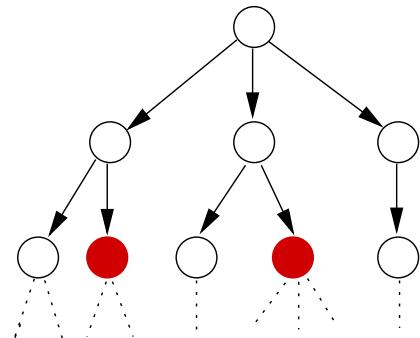
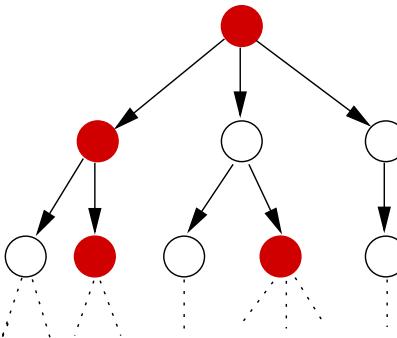
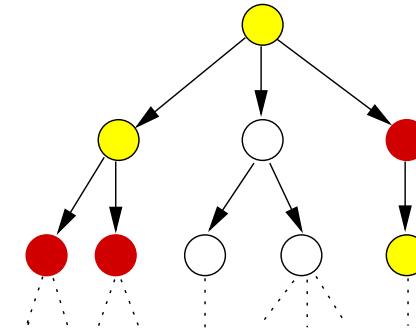
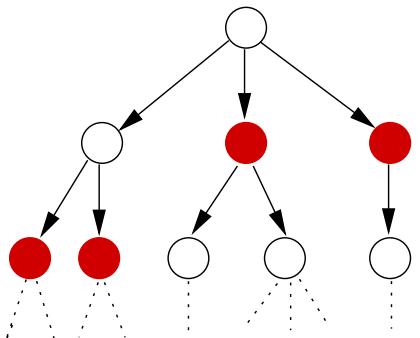
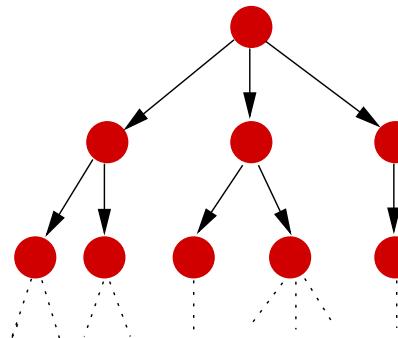
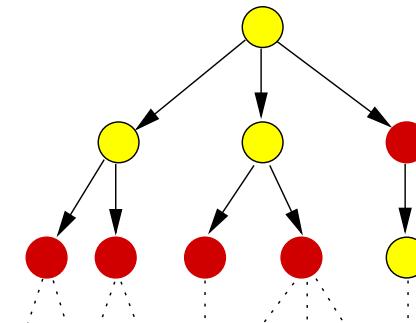
invariantly Φ : $\forall \Box \Phi = \neg \exists \diamond \neg \Phi$

weak until: $\exists(\Phi W \Psi) = \neg \forall ((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$

$$\forall(\Phi W \Psi) = \neg \exists ((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$$

the boolean connectives are derived as usual

Visualization of semantics


 $\exists \diamond red$

 $\exists \square red$

 $\exists (yellow \cup red)$

 $\forall \diamond red$

 $\forall \square red$

 $\forall (yellow \cup red)$

Example properties in CTL

Semantics of CTL **state**-formulas

Defined by a relation \models such that

$s \models \Phi$ if and only if formula Φ holds in state s

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \neg(s \models \Phi)$$

$$s \models \Phi \wedge \Psi \quad \text{iff} \quad (s \models \Phi) \wedge (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \textcolor{red}{\text{some}} \text{ path } \pi \text{ that starts in } s$$

$$s \models \forall \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \textcolor{red}{\text{all}} \text{ paths } \pi \text{ that start in } s$$

Semantics of CTL **path**-formulas

Define a relation \models such that

$\pi \models \varphi$ if and only if path π satisfies φ

$$\pi \models \bigcirc \Phi \quad \text{iff } \pi[1] \models \Phi$$

$$\pi \models \Phi \bigcup \Psi \quad \text{iff } (\exists j \geq 0. \pi[j] \models \Psi \wedge (\forall 0 \leq k < j. \pi[k] \models \Phi))$$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

- For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi \text{ if and only if } \forall s_0 \in I. s_0 \models \Phi$$

- this is equivalent to $I \subseteq Sat(\Phi)$
- **Point of attention:** $TS \not\models \Phi$ and $TS \not\models \neg\Phi$ is possible!
 - because of several initial states, e.g. $s_0 \models \exists \Box \Phi$ and $s'_0 \not\models \exists \Box \Phi$

A triple modular redundant system

Infinitely often

$s \models \forall \Box \forall \Diamond a$ if and only if $\forall \pi \in \text{Paths}(s)$ an a -state is visited infinitely often