

CTL, LTL and CTL*

Lecture #18 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 12, 2007

Overview Lecture #18

⇒ Repetition: CTL syntax and semantics

- CTL equivalence
- Expressiveness of LTL versus CTL
- CTL*: extended CTL

Computation tree logic

modal logic over infinite **trees** [Clarke & Emerson 1981]

- **Statements over states**

- $a \in AP$ atomic proposition
- $\neg \Phi$ and $\Phi \wedge \Psi$ negation and conjunction
- $\exists \varphi$ there *exists* a path fulfilling φ
- $\forall \varphi$ *all* paths fulfill φ

- **Statements over paths**

- $\bigcirc \Phi$ the next state fulfills Φ
- $\Phi \mathbf{U} \Psi$ Φ holds until a Ψ -state is reached

⇒ note that \bigcirc and \mathbf{U} *alternate* with \forall and \exists

Derived operators

potentially Φ : $\exists \diamond \Phi = \exists(\text{true} \cup \Phi)$

inevitably Φ : $\forall \diamond \Phi = \forall(\text{true} \cup \Phi)$

potentially always Φ : $\exists \Box \Phi := \neg \forall \diamond \neg \Phi$

invariantly Φ : $\forall \Box \Phi = \neg \exists \diamond \neg \Phi$

weak until: $\exists(\Phi W \Psi) = \neg \forall ((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$

$$\forall(\Phi W \Psi) = \neg \exists ((\Phi \wedge \neg \Psi) \cup (\neg \Phi \wedge \neg \Psi))$$

the boolean connectives are derived as usual

Semantics of CTL **state**-formulas

Defined by a relation \models such that

$s \models \Phi$ if and only if formula Φ holds in state s

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \neg(s \models \Phi)$$

$$s \models \Phi \wedge \Psi \quad \text{iff} \quad (s \models \Phi) \wedge (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \text{some} \text{ path } \pi \text{ that starts in } s$$

$$s \models \forall \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for } \text{all} \text{ paths } \pi \text{ that start in } s$$

Semantics of CTL **path**-formulas

Define a relation \models such that

$\pi \models \varphi$ if and only if path π satisfies φ

$$\pi \models \bigcirc \Phi \quad \text{iff } \pi[1] \models \Phi$$

$$\pi \models \Phi \bigcup \Psi \quad \text{iff } (\exists j \geq 0. \pi[j] \models \Psi \wedge (\forall 0 \leq k < j. \pi[k] \models \Phi))$$

where $\pi[i]$ denotes the state s_i in the path π

Transition system semantics

- For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi \quad \text{if and only if} \quad \forall s_0 \in I. s_0 \models \Phi$$

- this is equivalent to $I \subseteq Sat(\Phi)$
- **Point of attention:** $TS \not\models \Phi$ and $TS \not\models \neg\Phi$ is possible!

- because of several initial states, e.g. $s_0 \models \exists \square \Phi$ and $s'_0 \not\models \exists \square \Phi$

Overview Lecture #18

- Repetition: CTL syntax and semantics
⇒ CTL equivalence
- Expressiveness of LTL versus CTL
- CTL*: extended CTL

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are *equivalent*, denoted $\Phi \equiv \Psi$
if and only if $Sat(\Phi) = Sat(\Psi)$ for all transition systems TS over AP

$$\Phi \equiv \Psi \quad \text{iff} \quad (TS \models \Phi \quad \text{if and only if} \quad TS \models \Psi)$$

Duality laws

$$\forall \bigcirc \Phi \equiv \neg \exists \bigcirc \neg \Phi$$

$$\exists \bigcirc \Phi \equiv \neg \forall \bigcirc \neg \Phi$$

$$\forall \lozenge \Phi \equiv \neg \exists \square \neg \Phi$$

$$\exists \lozenge \Phi \equiv \neg \forall \square \neg \Phi$$

$$\forall (\Phi \mathsf{U} \Psi) \equiv \neg \exists ((\Phi \wedge \neg \Psi) \mathsf{W} (\neg \Phi \wedge \neg \Psi))$$

Expansion laws

Recall in LTL: $\varphi \mathbf{U} \psi \equiv \psi \vee (\varphi \wedge \bigcirc (\varphi \mathbf{U} \psi))$

In CTL:

$$\forall(\Phi \mathbf{U} \Psi) \equiv \Psi \vee (\Phi \wedge \forall \bigcirc \forall(\Phi \mathbf{U} \Psi))$$

$$\forall \diamond \Phi \equiv \Phi \vee \forall \bigcirc \forall \diamond \Phi$$

$$\forall \Box \Phi \equiv \Phi \wedge \forall \bigcirc \forall \Box \Phi$$

$$\exists(\Phi \mathbf{U} \Psi) \equiv \Psi \vee (\Phi \wedge \exists \bigcirc \exists(\Phi \mathbf{U} \Psi))$$

$$\exists \diamond \Phi \equiv \Phi \vee \exists \bigcirc \exists \diamond \Phi$$

$$\exists \Box \Phi \equiv \Phi \wedge \exists \bigcirc \exists \Box \Phi$$

Distributive laws (1)

Recall in LTL: $\Box(\varphi \wedge \psi) \equiv \Box\varphi \wedge \Box\psi$ and $\Diamond(\varphi \vee \psi) \equiv \Diamond\varphi \vee \Diamond\psi$

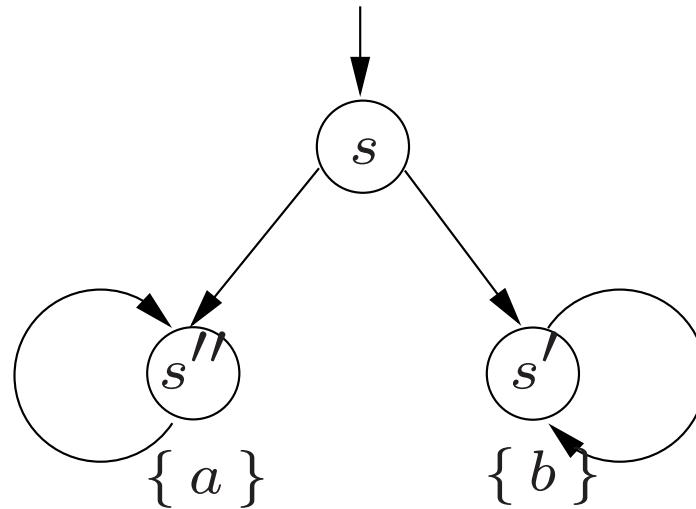
In CTL:

$$\forall\Box(\Phi \wedge \Psi) \equiv \forall\Box\Phi \wedge \forall\Box\Psi$$

$$\exists\Diamond(\Phi \vee \Psi) \equiv \exists\Diamond\Phi \vee \exists\Diamond\Psi$$

note that $\exists\Box(\Phi \wedge \Psi) \not\equiv \exists\Box\Phi \wedge \exists\Box\Psi$ and $\forall\Diamond(\Phi \vee \Psi) \not\equiv \forall\Diamond\Phi \vee \forall\Diamond\Psi$

Distributive laws (2)



$s \models \forall \diamond (a \vee b)$ since for all $\pi \in \text{Paths}(s)$. $\pi \models \diamond (a \vee b)$

But: $s (s'')^\omega \models \diamond a$ but $s (s'')^\omega \not\models \diamond b$ Thus: $s \not\models \forall \diamond b$

A similar reasoning applied to path $s (s')^\omega$ yields $s \not\models \forall \diamond a$

Thus, $s \not\models \forall \diamond a \vee \forall \diamond b$

Overview Lecture #18

- Repetition: CTL syntax and semantics
- CTL equivalence

⇒ Expressiveness of LTL versus CTL

- CTL*: extended CTL

Equivalence of LTL and CTL formulas

- CTL-formula Φ and LTL-formula φ (both over AP) are *equivalent*, denoted $\Phi \equiv \varphi$, if for any transition system TS (over AP):

$$TS \models \Phi \text{ if and only if } TS \models \varphi$$

- Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ . Then: [Clarke & Draghicescu]

$\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ

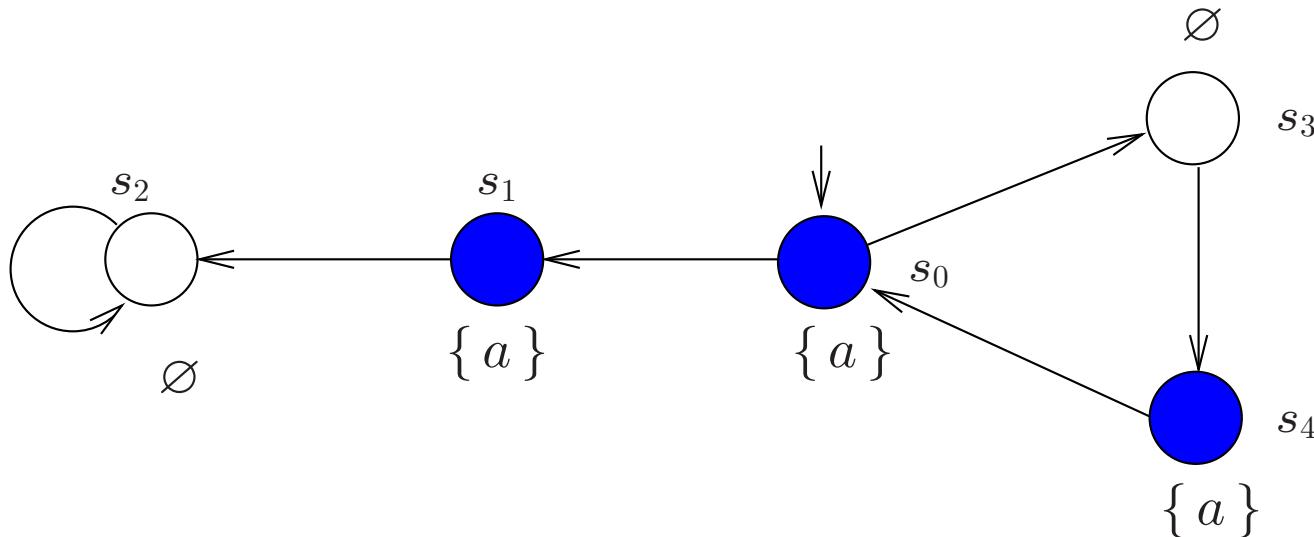
LTL and CTL are incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - $\diamond \square a$
 - $\diamond (a \wedge \bigcirc a)$
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - $\forall \diamond \forall \square a$
 - $\forall \diamond (a \wedge \forall \bigcirc a)$
 - $\forall \square \exists \diamond a$

⇒ Cannot be expressed = there does not exist an equivalent formula

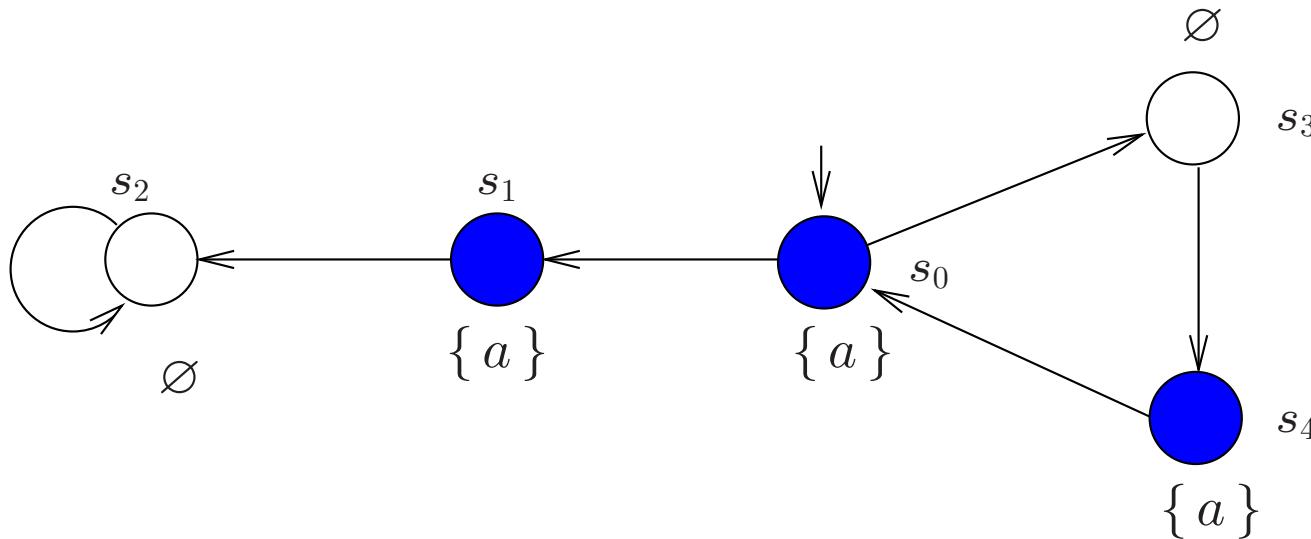
Comparing LTL and CTL (1)

$\diamond (a \wedge \bigcirc a)$ is not equivalent to $\forall \diamond (a \wedge \forall \bigcirc a)$



Comparing LTL and CTL (1)

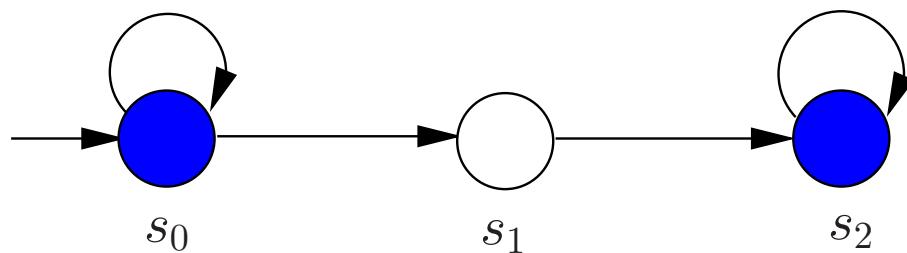
$\diamond (a \wedge \bigcirc a)$ is not equivalent to $\forall \diamond (a \wedge \forall \bigcirc a)$



$s_0 \models \diamond (a \wedge \bigcirc a)$ but $\underbrace{s_0 \not\models \forall \diamond (a \wedge \forall \bigcirc a)}_{\text{path } s_0 s_1 (s_2)^\omega \text{ violates it}}$

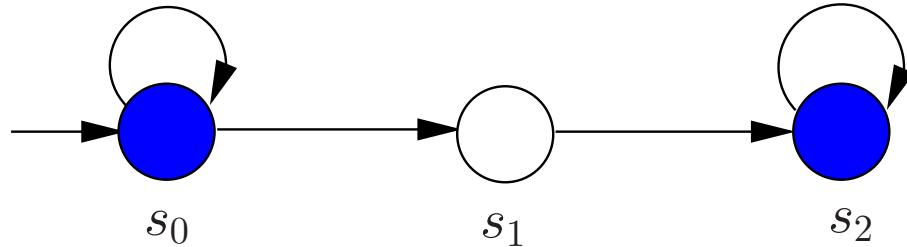
Comparing LTL and CTL (2)

$\forall \diamond \forall \square a$ is not equivalent to $\diamond \square a$



Comparing LTL and CTL (2)

$\forall \diamond \forall \square a$ is not equivalent to $\diamond \square a$

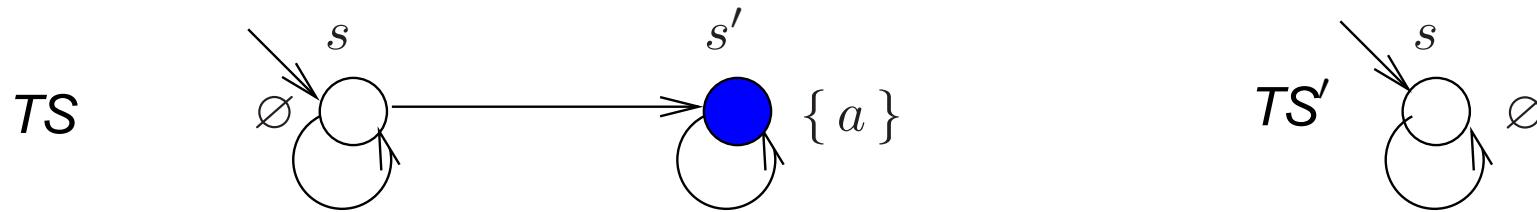


$s_0 \models \diamond \square a$ but $\underbrace{s_0 \not\models \forall \diamond \forall \square a}_{\text{path } s_0^\omega \text{ violates it}}$

Comparing LTL and CTL (3)

The CTL-formula $\forall \square \exists \diamond a$ cannot be expressed in LTL

- This is shown by contradiction: assume $\varphi \equiv \forall \square \exists \diamond a$; let:



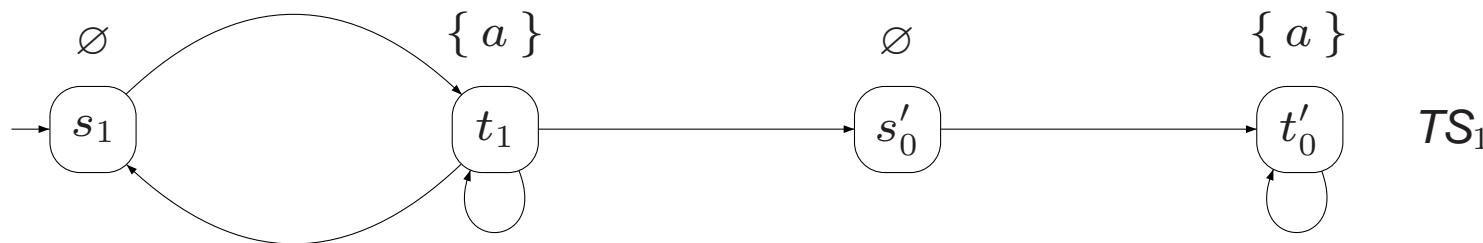
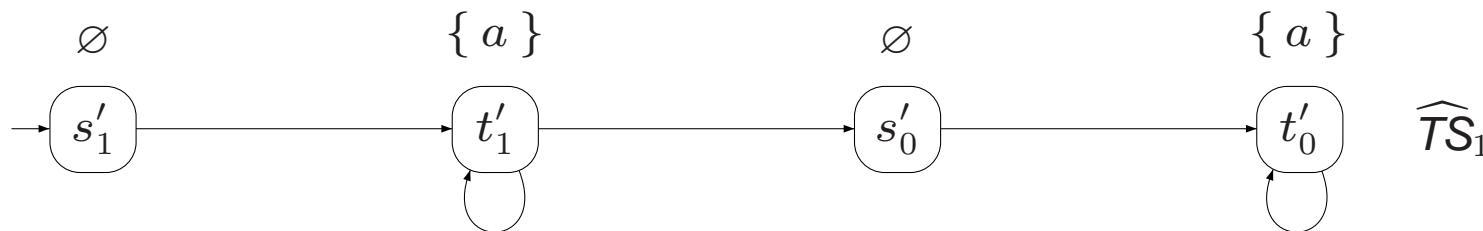
- $TS \models \forall \square \exists \diamond a$, and thus—by assumption— $TS \models \varphi$
- $Paths(TS') \subseteq Paths(TS)$, thus $TS' \models \varphi$
- **But** $TS' \not\models \forall \square \exists \diamond a$ as path $s^\omega \not\models \square \exists \diamond a$

Comparing LTL and CTL (4)

The LTL-formula $\diamond\Box a$ cannot be expressed in CTL

- Provide two series of transition systems TS_n and \widehat{TS}_n
- Such that $TS_n \not\models \diamond\Box a$ and $\widehat{TS}_n \models \diamond\Box a$ (*), and
- for any \forall CTL-formula Φ with $|\Phi| \leq n$: $TS_n \models \Phi$ iff $\widehat{TS}_n \models \Phi$ (**)
 - proof is by induction on n (omitted here)
- Assume there is a CTL-formula $\Phi \equiv \diamond\Box a$ with $|\Phi| = n$
 - by (*), it follows $TS_n \not\models \Phi$ and $\widehat{TS}_n \models \Phi$
 - but this contradicts (**): $TS_n \models \Phi$ if and only if $\widehat{TS}_n \models \Phi$

The transition systems TS_n and \widehat{TS}_n ($n = 1$)



only difference: TS_n includes $t_n \rightarrow s_n$, while \widehat{TS}_n does not

Overview Lecture #18

- Repetition: CTL syntax and semantics
- CTL equivalence
- Expressiveness of LTL versus CTL

⇒ CTL*: extended CTL

Syntax of CTL*

CTL* *state-formulas* are formed according to:

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* *path-formulas* are formed according to the grammar:

$$\varphi ::= \Phi \quad | \quad \varphi_1 \wedge \varphi_2 \quad | \quad \neg \varphi \quad | \quad \bigcirc \varphi \quad | \quad \varphi_1 \bigcup \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!

Example CTL* formulas

CTL* semantics

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \text{not } s \models \Phi$$

$$s \models \Phi \wedge \Psi \quad \text{iff} \quad (s \models \Phi) \text{ and } (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for some } \pi \in \text{Paths}(s)$$

$$\pi \models \Phi \quad \text{iff} \quad \pi[0] \models \Phi$$

$$\pi \models \varphi_1 \wedge \varphi_2 \quad \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2$$

$$\pi \models \neg \varphi \quad \text{iff} \quad \pi \not\models \varphi$$

$$\pi \models \bigcirc \Phi \quad \text{iff} \quad \pi[1..] \models \Phi$$

$$\pi \models \Phi \cup \Psi \quad \text{iff} \quad \exists j \geq 0. (\pi[j..] \models \Psi \wedge (\forall 0 \leq k < j. \pi[k..] \models \Phi))$$

Transition system semantics

- For CTL*-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

- TS satisfies CTL*-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi \text{ if and only if } \forall s_0 \in I. s_0 \models \Phi$$

this is exactly as for CTL

Embedding of LTL in CTL*

For LTL formula φ and TS without terminal states (both over AP) and for each $s \in S$:

$$\underbrace{s \models \varphi}_{\text{LTL semantics}} \quad \text{if and only if} \quad \underbrace{s \models \forall \varphi}_{\text{CTL* semantics}}$$

In particular:

$$TS \models_{LTL} \varphi \quad \text{if and only if} \quad TS \models_{CTL*} \forall \varphi$$

CTL* is more expressive than LTL and CTL

For the CTL*-formula over $AP = \{ a, b \}$:

$$\Phi = (\forall \diamond \Box a) \vee (\forall \Box \exists \diamond b)$$

there does *not* exist any equivalent LTL- or CTL formula

This logic is as expressive as CTL

CTL⁺ *state-formulas* are formed according to:

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \varphi \quad | \quad \forall \varphi$$

where $a \in AP$ and φ is a path-formula

CTL⁺ *path-formulas* are formed according to the grammar:

$$\varphi ::= \varphi_1 \wedge \varphi_2 \quad | \quad \neg \varphi \quad | \quad \bigcirc \Phi \quad | \quad \Phi_1 \cup \Phi_2$$

where Φ, Φ_1, Φ_2 are state-formulas, and φ, φ_1 and φ_2 are path-formulas

CTL⁺ is as expressive as CTL

For example:

$$\underbrace{\exists(\diamond a \wedge \diamond b)}_{\text{CTL}^+ \text{ formula}} \equiv \underbrace{\exists \diamond(a \wedge \exists \diamond b)}_{\text{CTL formula}} \wedge \underbrace{\exists \diamond(b \wedge \exists \diamond a)}_{\text{CTL formula}}$$

Some rules for transforming CTL⁺ formulae into equivalent CTL ones:

$$\begin{aligned}
 \exists(\neg(\Phi_1 \cup \Phi_2)) &\equiv \exists((\Phi_1 \wedge \neg\Phi_2) \cup (\neg\Phi_1 \wedge \neg\Phi_2)) \vee \exists \neg\Phi_2 \\
 \exists(\bigcirc \Phi_1 \wedge \bigcirc \Phi_2) &\equiv \exists \bigcirc (\Phi_1 \wedge \Phi_2) \\
 \exists(\bigcirc \Phi \wedge (\Phi_1 \cup \Phi_2)) &\equiv (\Phi_2 \wedge \exists \bigcirc \Phi) \vee (\Phi_1 \wedge \exists \bigcirc (\Phi \wedge \exists(\Phi_1 \cup \Phi_2))) \\
 \exists((\Phi_1 \cup \Phi_2) \wedge (\Psi_1 \cup \Psi_2)) &\equiv \exists((\Phi_1 \wedge \Psi_1) \cup (\Phi_2 \wedge \exists(\Psi_1 \cup \Psi_2))) \vee \\
 &\quad \exists((\Phi_1 \wedge \Psi_1) \cup (\Psi_2 \wedge \exists(\Phi_1 \cup \Phi_2))) \\
 &\vdots
 \end{aligned}$$

adding boolean combinations of path formulae to CTL does not change its expressiveness
 but CTL⁺ formulae can be much shorter than shortest equivalent CTL formulae

Relationship between LTL, CTL and CTL*

