
CTL, LTL and CTL∗

Lecture #18 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 12, 2007

c© JPK

#18: CTL, LTL and CTL∗ Model checking

Overview Lecture #18

⇒ Repetition: CTL syntax and semantics

• CTL equivalence

• Expressiveness of LTL versus CTL

• CTL∗: extended CTL

c© JPK 1

#18: CTL, LTL and CTL∗ Model checking

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

• Statements over states

– a ∈ AP atomic proposition
– ¬Φ and Φ∧Ψ negation and conjunction
– ∃ϕ there exists a path fulfilling ϕ

– ∀ϕ all paths fulfill ϕ

• Statements over paths

– ©Φ the next state fulfills Φ

– Φ U Ψ Φ holds until a Ψ-state is reached

⇒ note that © and U alternate with ∀ and ∃

c© JPK 2

#18: CTL, LTL and CTL∗ Model checking

Derived operators

potentially Φ: ∃�Φ = ∃(true UΦ)

inevitably Φ: ∀�Φ = ∀(true UΦ)

potentially always Φ: ∃�Φ := ¬∀�¬Φ

invariantly Φ: ∀�Φ = ¬∃�¬Φ

weak until: ∃(Φ W Ψ) = ¬∀(
(Φ∧¬Ψ) U (¬Φ∧¬Ψ)

)

∀(Φ W Ψ) = ¬∃(
(Φ∧¬Ψ) U (¬Φ∧¬Ψ)

)

the boolean connectives are derived as usual

c© JPK 3

#18: CTL, LTL and CTL∗ Model checking

Semantics of CTL state-formulas

Defined by a relation |= such that

s |= Φ if and only if formula Φ holds in state s

s |= a iff a ∈ L(s)

s |= ¬Φ iff ¬ (s |= Φ)

s |= Φ∧Ψ iff (s |= Φ)∧ (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some path π that starts in s

s |= ∀ϕ iff π |= ϕ for all paths π that start in s

c© JPK 4

#18: CTL, LTL and CTL∗ Model checking

Semantics of CTL path-formulas

Define a relation |= such that

π |= ϕ if and only if path π satisfies ϕ

π |= ©Φ iff π[1] |= Φ

π |= Φ UΨ iff (∃ j � 0. π[j] |= Ψ ∧ (∀ 0 � k < j. π[k] |= Φ))

where π[i] denotes the state si in the path π

c© JPK 5

#18: CTL, LTL and CTL∗ Model checking

Transition system semantics

• For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

– this is equivalent to I ⊆ Sat(Φ)

• Point of attention: TS �|= Φ and TS �|= ¬Φ is possible!

– because of several initial states, e.g. s0 |= ∃� Φ and s′
0 	|= ∃� Φ

c© JPK 6

#18: CTL, LTL and CTL∗ Model checking

Overview Lecture #18

• Repetition: CTL syntax and semantics

⇒ CTL equivalence

• Expressiveness of LTL versus CTL

• CTL∗: extended CTL

c© JPK 7

#18: CTL, LTL and CTL∗ Model checking

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are equivalent , denoted Φ ≡ Ψ

if and only if Sat(Φ) = Sat(Ψ) for all transition systems TS over AP

Φ ≡ Ψ iff (TS |= Φ if and only if TS |= Ψ)

c© JPK 8

#18: CTL, LTL and CTL∗ Model checking

Duality laws

∀© Φ ≡ ¬∃© ¬Φ

∃© Φ ≡ ¬∀© ¬Φ

∀�Φ ≡ ¬∃�¬Φ

∃�Φ ≡ ¬∀�¬Φ

∀(Φ UΨ) ≡ ¬∃((Φ∧¬Ψ)W (¬Φ∧¬Ψ))

c© JPK 9

#18: CTL, LTL and CTL∗ Model checking

Expansion laws

Recall in LTL: ϕUψ ≡ ψ ∨ (ϕ∧ © (ϕUψ))

In CTL:
∀(Φ UΨ) ≡ Ψ ∨ (Φ ∧ ∀© ∀(Φ UΨ))

∀�Φ ≡ Φ ∨ ∀© ∀�Φ

∀�Φ ≡ Φ ∧ ∀© ∀�Φ

∃(Φ UΨ) ≡ Ψ ∨ (Φ ∧ ∃© ∃(Φ UΨ))

∃�Φ ≡ Φ ∨ ∃© ∃�Φ

∃�Φ ≡ Φ ∧ ∃© ∃�Φ

c© JPK 10

#18: CTL, LTL and CTL∗ Model checking

Distributive laws (1)

Recall in LTL: � (ϕ ∧ ψ) ≡ �ϕ ∧ �ψ and � (ϕ ∨ ψ) ≡ �ϕ ∨ �ψ

In CTL:
∀�(Φ∧Ψ) ≡ ∀�Φ ∧ ∀�Ψ

∃�(Φ ∨ Ψ) ≡ ∃�Φ ∨ ∃�Ψ

note that ∃� (Φ ∧ Ψ) 	≡ ∃� Φ ∧ ∃� Ψ and ∀� (Φ ∨ Ψ) 	≡ ∀� Φ ∨ ∀� Ψ

c© JPK 11

#18: CTL, LTL and CTL∗ Model checking

Distributive laws (2)

{ a } { b }
s′′ s′

s

s |= ∀� (a ∨ b) since for all π ∈ Paths(s). π |= � (a ∨ b)

But: s (s′′)ω |= � a but s (s′′)ω 	|= � b Thus: s 	|= ∀� b

A similar reasoning applied to path s (s′)ω yields s 	|= ∀� a

Thus, s 	|= ∀� a ∨ ∀� b

c© JPK 12

#18: CTL, LTL and CTL∗ Model checking

Overview Lecture #18

• Repetition: CTL syntax and semantics

• CTL equivalence

⇒ Expressiveness of LTL versus CTL

• CTL∗: extended CTL

c© JPK 13

#18: CTL, LTL and CTL∗ Model checking

Equivalence of LTL and CTL formulas

• CTL-formula Φ and LTL-formula ϕ (both over AP) are equivalent ,
denoted Φ ≡ ϕ, if for any transition system TS (over AP):

TS |= Φ if and only if TS |= ϕ

• Let Φ be a CTL-formula, and ϕ the LTL-formula obtained by
eliminating all path quantifiers in Φ. Then: [Clarke & Draghicescu]

Φ ≡ ϕ or there does not exist any LTL-formula that is equivalent to Φ

c© JPK 14

#18: CTL, LTL and CTL∗ Model checking

LTL and CTL are incomparable

• Some LTL-formulas cannot be expressed in CTL, e.g.,

– � � a

– � (a ∧ © a)

• Some CTL-formulas cannot be expressed in LTL, e.g.,

– ∀� ∀� a

– ∀� (a∧∀© a)

– ∀� ∃� a

⇒ Cannot be expressed = there does not exist an equivalent formula

c© JPK 15

#18: CTL, LTL and CTL∗ Model checking

Comparing LTL and CTL (1)

� (a ∧ © a) is not equivalent to ∀� (a ∧ ∀© a)

{ a }

∅

s0

s3

s4

s1s2

{ a } { a }
∅

c© JPK 16

#18: CTL, LTL and CTL∗ Model checking

Comparing LTL and CTL (1)

� (a ∧ © a) is not equivalent to ∀� (a ∧ ∀© a)

{ a }

∅

s0

s3

s4

s1s2

{ a } { a }
∅

s0 |= � (a ∧ © a) but s0 �|= ∀� (a ∧ ∀© a)︸ ︷︷ ︸
path s0 s1 (s2)ω violates it

c© JPK 17

#18: CTL, LTL and CTL∗ Model checking

Comparing LTL and CTL (2)

∀�∀� a is not equivalent to � � a

s0 s2s1

c© JPK 18

#18: CTL, LTL and CTL∗ Model checking

Comparing LTL and CTL (2)

∀�∀� a is not equivalent to � � a

s0 s2s1

s0 |= � � a but s0 �|= ∀�∀� a︸ ︷︷ ︸
path sω

0 violates it

c© JPK 19

#18: CTL, LTL and CTL∗ Model checking

Comparing LTL and CTL (3)

The CTL-formula ∀�∃� a cannot be expressed in LTL

• This is shown by contradiction: assume ϕ ≡ ∀�∃� a; let:

TS′
TS ∅{ a }

s s′

∅

s

• TS |= ∀�∃� a, and thus—by assumption—TS |= ϕ

• Paths(TS′) ⊆ Paths(TS), thus TS′ |= ϕ

• But TS′ �|= ∀�∃� a as path sω �|= �∃� a

c© JPK 20

#18: CTL, LTL and CTL∗ Model checking

Comparing LTL and CTL (4)

The LTL-formula �� a cannot be expressed in CTL

• Provide two series of transition systems TSn and T̂Sn

• Such that TSn �|= �� a and T̂Sn |= �� a (*), and

• for any ∀CTL-formula Φ with |Φ| � n : TSn |= Φ iff T̂Sn |= Φ (**)

– proof is by induction on n (omitted here)

• Assume there is a CTL-formula Φ ≡ �� a with |Φ| = n

– by (*), it follows TSn 	|= Φ and cTSn |= Φ

– but this contradicts (**): TSn |= Φ if and only if cTSn |= Φ

c© JPK 21

#18: CTL, LTL and CTL∗ Model checking

The transition systems TSn and T̂Sn (n = 1)

s1

∅

t1

{ a }
s′

0

∅

t′0

{ a }
TS1

s′
1

∅

t′1

{ a }
s′

0

∅

t′0

{ a }
cTS1

only difference: TSn includes tn → sn, while cTSn does not

c© JPK 22

#18: CTL, LTL and CTL∗ Model checking

Overview Lecture #18

• Repetition: CTL syntax and semantics

• CTL equivalence

• Expressiveness of LTL versus CTL

⇒ CTL∗: extended CTL

c© JPK 23

#18: CTL, LTL and CTL∗ Model checking

Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

ϕ ::= Φ
∣∣∣ ϕ1∧ϕ2

∣∣∣ ¬ϕ
∣∣∣ © ϕ

∣∣∣ ϕ1 Uϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL!

c© JPK 24

#18: CTL, LTL and CTL∗ Model checking

Example CTL∗ formulas

c© JPK 25

#18: CTL, LTL and CTL∗ Model checking

CTL∗ semantics

s |= a iff a ∈ L(s)

s |= ¬Φ iff not s |= Φ

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some π ∈ Paths(s)

π |= Φ iff π[0] |= Φ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ¬ϕ iff π 	 |= ϕ

π |= ©Φ iff π[1..] |= Φ

π |= Φ U Ψ iff ∃ j � 0. (π[j..] |= Ψ ∧ (∀ 0 � k < j. π[k..] |= Φ))

c© JPK 26

#18: CTL, LTL and CTL∗ Model checking

Transition system semantics

• For CTL∗-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL∗-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

this is exactly as for CTL

c© JPK 27

#18: CTL, LTL and CTL∗ Model checking

Embedding of LTL in CTL∗

For LTL formula ϕ and TS without terminal states (both over AP) and for
each s ∈ S:

s |= ϕ︸ ︷︷ ︸
LTL semantics

if and only if s |= ∀ϕ︸ ︷︷ ︸
CTL∗ semantics

In particular:

TS |=LTL ϕ if and only if TS |=CTL∗ ∀ϕ

c© JPK 28

#18: CTL, LTL and CTL∗ Model checking

CTL∗ is more expressive than LTL and CTL

For the CTL∗-formula over AP = { a, b }:

Φ = (∀� � a) ∨ (∀�∃� b)

there does not exist any equivalent LTL- or CTL formula

c© JPK 29

#18: CTL, LTL and CTL∗ Model checking

This logic is as expressive as CTL

CTL+ state-formulas are formed according to:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1∧Φ2

∣∣∣ ¬Φ
∣∣∣ ∃ϕ

∣∣∣ ∀ϕ

where a ∈ AP and ϕ is a path-formula

CTL+ path-formulas are formed according to the grammar:

ϕ ::= ϕ1∧ϕ2

∣∣∣ ¬ϕ
∣∣∣ © Φ

∣∣∣ Φ1 UΦ2

where Φ,Φ1, Φ2 are state-formulas, and ϕ, ϕ1 and ϕ2 are path-formulas

c© JPK 30

#18: CTL, LTL and CTL∗ Model checking

CTL+ is as expressive as CTL
For example: ∃(�a ∧ �b)| {z }

CTL+ formula

≡ ∃�(a ∧ ∃�b) ∧ ∃�(b ∧ ∃�a)| {z }
CTL formula

Some rules for transforming CTL+ formulae into equivalent CTL ones:

∃
“
¬(Φ1 U Φ2)

”
≡ ∃

“
(Φ1 ∧ ¬Φ2) U (¬Φ1 ∧ ¬Φ2)

”
∨ ∃�¬Φ2

∃
“
©Φ1 ∧ ©Φ2

”
≡ ∃ © (Φ1 ∧ Φ2)

∃
“
©Φ ∧ (Φ1 U Φ2)

”
≡

“
Φ2 ∧ ∃ © Φ

”
∨

“
Φ1 ∧ ∃ © (Φ ∧ ∃(Φ1 U Φ2))

”

∃
“
(Φ1 U Φ2) ∧ (Ψ1 U Ψ2)

”
≡ ∃

“
(Φ1 ∧ Ψ1) U (Φ2 ∧ ∃(Ψ1 U Ψ2)

””
∨

∃
“
(Φ1 ∧ Ψ1) U (Ψ2 ∧ ∃(Φ1 U Φ2)

””
...

adding boolean combinations of path formulae to CTL does not change its expressiveness

but CTL+ formulae can be much shorter than shortest equivalent CTL formulae

c© JPK 31

#18: CTL, LTL and CTL∗ Model checking

Relationship between LTL, CTL and CTL∗

� (a∧ © a)
�� a

� (a∧ © a)

∀�∃� a

LTL CTL

CTL∗

∨
∀�∃� a

c© JPK 32

