

CTL Model Checking

Lecture #19 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 13, 2007

Overview Lecture #19

⇒ Existential normal form

- Basic CTL model-checking algorithm
- Algorithms for $\exists(\Phi \cup \Psi)$ and $\exists\Box \Phi$
- Time complexity

Existential normal form (ENF)

The set of CTL formulas in *existential normal form* (ENF) is given by:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg\Phi \mid \exists\bigcirc\Phi \mid \exists(\Phi_1 \cup \Phi_2) \mid \exists\Box\Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

$$\forall\bigcirc\Phi \equiv \neg\exists\bigcirc\neg\Phi$$

$$\forall(\Phi \cup \Psi) \equiv \neg\exists(\neg\Psi \cup (\neg\Phi \wedge \neg\Psi)) \wedge \neg\exists\Box\neg\Psi$$

Overview Lecture #19

- Existential normal form

⇒ Basic CTL model-checking algorithm

- Algorithms for $\exists(\Phi \cup \Psi)$ and $\exists\Box \Phi$
- Time complexity

Model checking CTL

- How to check whether state TS satisfies CTL formula $\widehat{\Phi}$?
 - convert the formula $\widehat{\Phi}$ into the equivalent Φ in ENF
 - compute *recursively* the set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$
 - $TS \models \Phi$ if and only if each initial state of TS belongs to $Sat(\Phi)$
- Recursive **bottom-up** computation of $Sat(\Phi)$:
 - consider the *parse-tree* of Φ
 - start to compute $Sat(a_i)$, for all leafs in the tree
 - then go one level up in the tree and determine $Sat(\cdot)$ for these nodes

$$\text{e.g.,: } Sat(\underbrace{\Psi_1 \wedge \Psi_2}_{\text{node at level } i}) = Sat(\underbrace{\Psi_1}_{\text{node at level } i+1}) \cap Sat(\underbrace{\Psi_2}_{\text{node at level } i+1})$$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- and so on..... until the root is treated, i.e., $Sat(\Phi)$ is computed

Basic algorithm

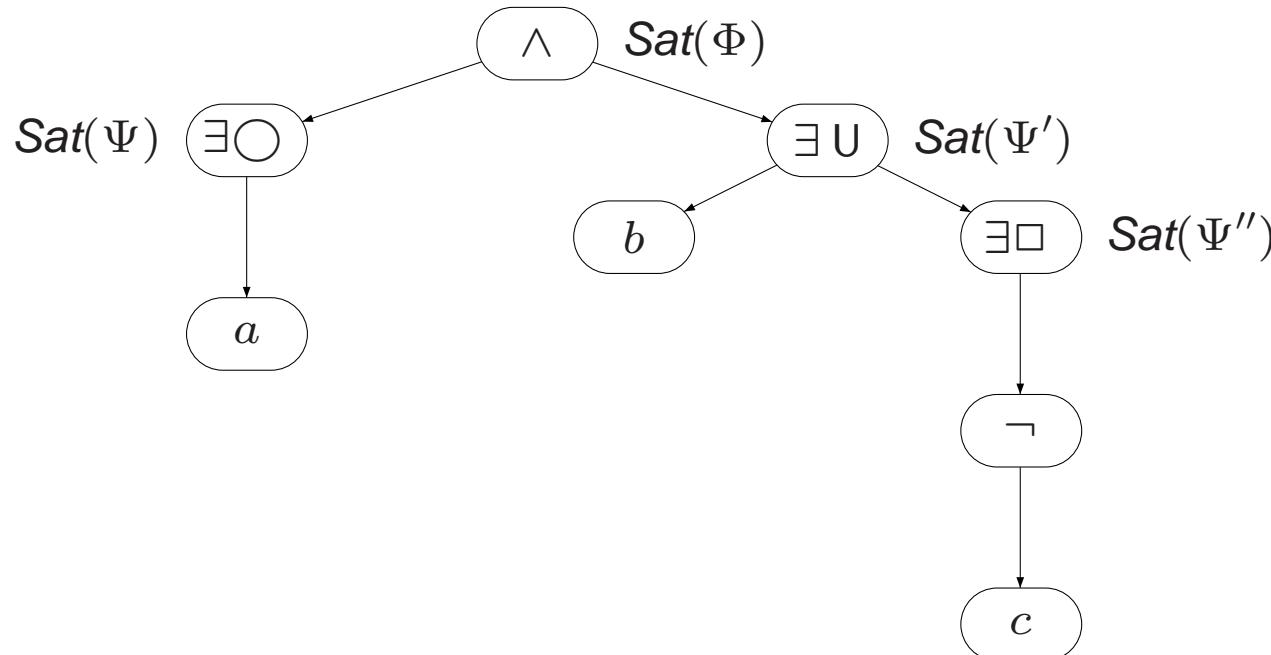
Input: finite transition system TS and CTL formula Φ (both over AP)

Output: $TS \models \Phi$

(* compute the sets $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$ *)

```
for all  $i \leq | \Phi |$  do
  for all  $\Psi \in Sub(\Phi)$  with  $| \Psi | = i$  do
    compute  $Sat(\Psi)$  from  $Sat(\Psi')$           (* for maximal proper  $\Psi' \in Sub(\Psi)$  *)
    od
  od
return  $I \subseteq Sat(\Phi)$ 
```

Example



$$\Phi = \underbrace{\exists \bigcirc a}_{\Psi} \wedge \underbrace{\exists (b \cup \underbrace{\exists \Box \neg c}_{\Psi''})}_{\Psi'}.$$

Characterization of $\text{Sat}(1)$

For all CTL formulas Φ, Ψ over AP it holds:

$$\text{Sat}(\text{true}) = S$$

$$\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}, \text{ for any } a \in AP$$

$$\text{Sat}(\Phi \wedge \Psi) = \text{Sat}(\Phi) \cap \text{Sat}(\Psi)$$

$$\text{Sat}(\neg \Phi) = S \setminus \text{Sat}(\Phi)$$

$$\text{Sat}(\exists \bigcirc \Phi) = \{ s \in S \mid \text{Post}(s) \cap \text{Sat}(\Phi) \neq \emptyset \}$$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

Characterization of $\text{Sat}(2)$

- $\text{Sat}(\exists(\Phi \cup \Psi))$ is the smallest subset T of S , such that:
 - (1) $\text{Sat}(\Psi) \subseteq T$ and
 - (2) $(s \in \text{Sat}(\Phi) \text{ and } \text{Post}(s) \cap T \neq \emptyset) \Rightarrow s \in T$
- $\text{Sat}(\exists \Box \Phi)$ is the largest subset T of S , such that:
 - (3) $T \subseteq \text{Sat}(\Phi)$ and
 - (4) $s \in T$ implies $\text{Post}(s) \cap T \neq \emptyset$

where $TS = (S, \text{Act}, \rightarrow, I, AP, L)$ is a transition system without terminal states

Proof

Computation of Sat

switch(Φ):

```

 $a$            : return { $s \in S \mid a \in L(s)$ };

 $\dots$         :

 $\exists \bigcirc \Psi$  : return { $s \in S \mid \text{Post}(s) \cap \text{Sat}(\Psi) \neq \emptyset$ };

 $\exists(\Phi_1 \cup \Phi_2)$  :  $T := \text{Sat}(\Phi_2)$ ; (* compute the smallest fixed point *)
  while { $s \in \text{Sat}(\Phi_1) \setminus T \mid \text{Post}(s) \cap T \neq \emptyset$ }  $\neq \emptyset$  do
    let  $s \in \{s \in \text{Sat}(\Phi_1) \setminus T \mid \text{Post}(s) \cap T \neq \emptyset\}$ ;
     $T := T \cup \{s\}$ ;
  od;
  return  $T$ ;

 $\exists \Box \Phi$  :  $T := \text{Sat}(\Phi)$ ; (* compute the greatest fixed point *)
  while { $s \in T \mid \text{Post}(s) \cap T = \emptyset$ }  $\neq \emptyset$  do
    let  $s \in \{s \in T \mid \text{Post}(s) \cap T = \emptyset\}$ ;
     $T := T \setminus \{s\}$ ;
  od;
  return  $T$ ;

```

end switch

Overview Lecture #19

- Existential normal form
- Basic CTL model-checking algorithm

⇒ Algorithms for $\exists(\Phi \cup \Psi)$ and $\exists\Box\Phi$

- Time complexity

Computing $\text{Sat}(\exists(\Phi \cup \Psi))$ (1)

- $\text{Sat}(\exists(\Phi \cup \Psi))$ is the smallest set $T \subseteq S$ such that:
 - (1) $\text{Sat}(\Psi) \subseteq T$ and (2) $(s \in \text{Sat}(\Phi) \text{ and } \text{Post}(s) \cap T \neq \emptyset) \Rightarrow s \in T$
- This suggests to compute $\text{Sat}(\exists(\Phi \cup \Psi))$ iteratively:

$$T_0 = \text{Sat}(\Psi) \text{ and } T_{i+1} = T_i \cup \{ s \in \text{Sat}(\Phi) \mid \text{Post}(s) \cap T_i \neq \emptyset \}$$

- T_i = states that can reach a Ψ -state in at most i steps via a Φ -path
- By induction on j it follows:

$$T_0 \subseteq T_1 \subseteq \dots \subseteq T_j \subseteq T_{j+1} \subseteq \dots \subseteq \text{Sat}(\exists(\Phi \cup \Psi))$$

Computing $\text{Sat}(\exists(\Phi \cup \Psi))$ (2)

- TS is finite, so for some $j \geq 0$ we have: $T_j = T_{j+1} = T_{j+2} = \dots$
- Therefore: $T_j = T_j \cup \{s \in \text{Sat}(\Phi) \mid \text{Post}(s) \cap T_j \neq \emptyset\}$
- Hence: $\{s \in \text{Sat}(\Phi) \mid \text{Post}(s) \cap T_j \neq \emptyset\} \subseteq T_j$
 - hence, T_j satisfies (2), i.e., $(s \in \text{Sat}(\Phi) \text{ and } \text{Post}(s) \cap T_j \neq \emptyset) \Rightarrow s \in T_j$
 - further, $\text{Sat}(\Psi) = T_0 \subseteq T_j$ so, T_j satisfies (1), i.e. $\text{Sat}(\Psi) \subseteq T_j$
- As $\text{Sat}(\exists(\Phi \cup \Psi))$ is the *smallest* set satisfying (1) and (2):
 - $\text{Sat}(\exists(\Phi \cup \Psi)) \subseteq T_j$ and thus $\text{Sat}(\exists(\Phi \cup \Psi)) = T_j$
- Hence: $T_0 \subsetneq T_1 \subsetneq T_2 \subsetneq \dots \subsetneq T_j = T_{j+1} = \dots = \text{Sat}(\exists(\Phi \cup \Psi))$

Computing $\text{Sat}(\exists(\Phi \cup \Psi))$ (3)

Input: finite transition system TS with state-set S and CTL-formula $\exists(\Phi \cup \Psi)$

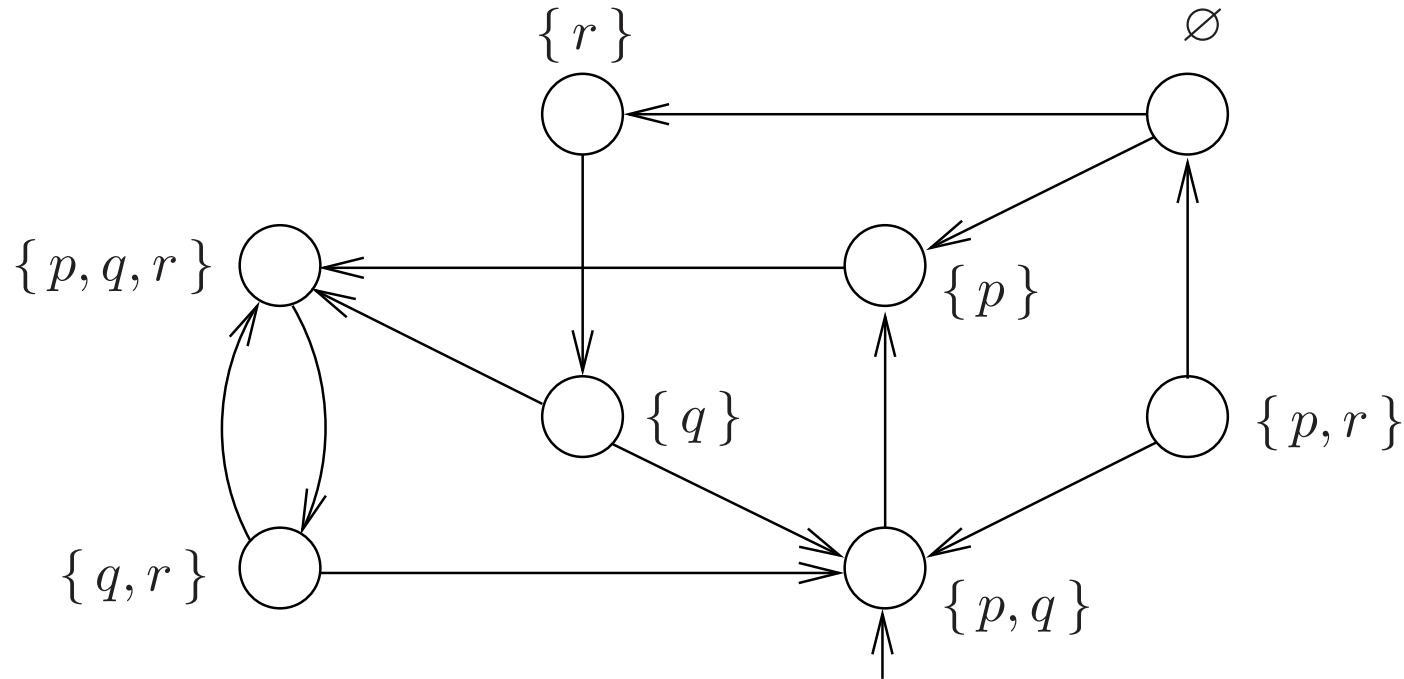
Output: $\text{Sat}(\exists(\Phi \cup \Psi)) = \{ s \in S \mid s \models \exists(\Phi \cup \Psi) \}$

```

 $E := \text{Sat}(\Psi);$                                 (*  $E$  administers the states  $s$  with  $s \models \exists(\Phi \cup \Psi)$  *)
 $T := E;$                                          (*  $T$  contains the already visited states  $s$  with  $s \models \exists(\Phi \cup \Psi)$  *)
while  $E \neq \emptyset$  do
  let  $s' \in E;$ 
   $E := E \setminus \{ s' \};$ 
  for all  $s \in \text{Pre}(s')$  do
    if  $s \in \text{Sat}(\Phi) \setminus T$  then  $E := E \cup \{ s \}; T := T \cup \{ s \}$ ; endif
  od
od
return  $T$ 

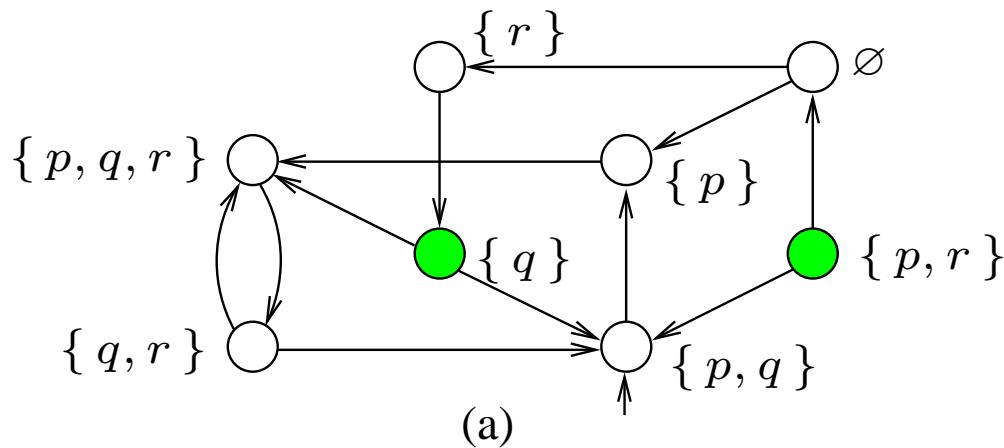
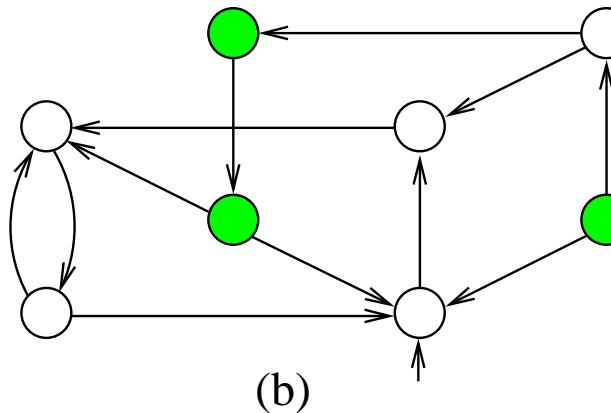
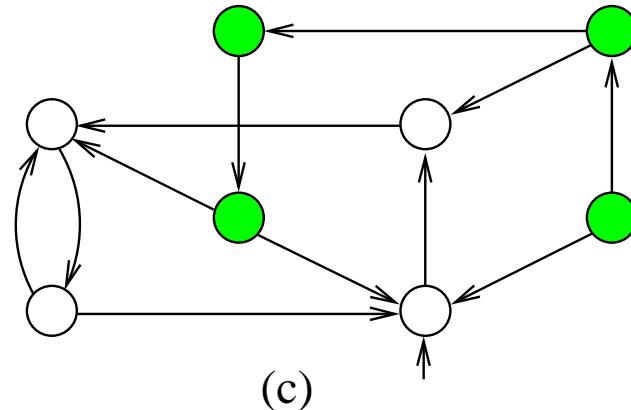
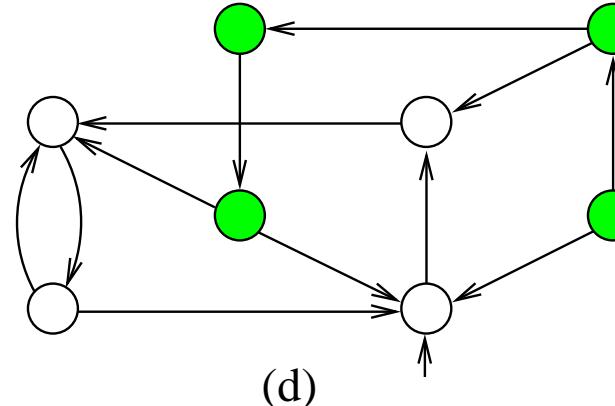
```

Example



let's check the CTL-formula $\exists \Diamond ((p = r) \wedge (p \neq q))$

The computation in snapshots



Computing $Sat(\exists \Box \Phi)$

Computing $\text{Sat}(\exists \Box \Phi)$

$E := S \setminus \text{Sat}(\Phi);$ (* E contains any not visited s' with $s' \not\models \exists \Box \Phi$ *)

$T := \text{Sat}(\Phi);$ (* T contains any s for which $s \models \exists \Box \Phi$ has not yet been disproven *)

for all $s \in \text{Sat}(\Phi)$ **do** $c[s] := |\text{Post}(s)|$; **od** (* initialize array c *)

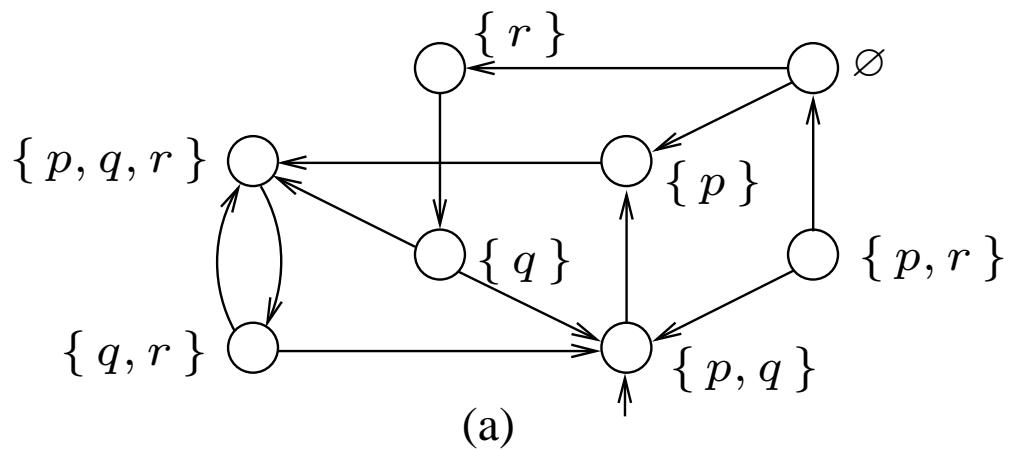
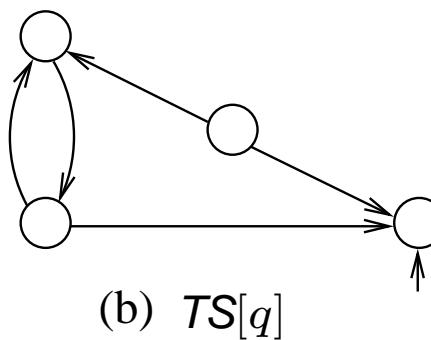
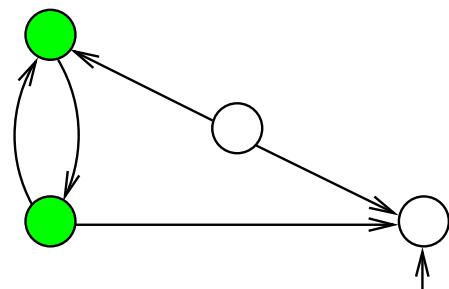
while $E \neq \emptyset$ **do** (* loop invariant: $c[s] = |\text{Post}(s) \cap (T \cup E)|$ *)
let $s' \in E$;
 $E := E \setminus \{s'\}$; (* $s' \not\models \Phi$ *)
for all $s \in \text{Pre}(s')$ **do** (* s' has been considered *)
 if $s \in T$ **then**
 $c[s] := c[s] - 1$; (* update counter $c[s]$ for predecessor s of s' *)
 if $c[s] = 0$ **then**
 $T := T \setminus \{s\}$; $E := E \cup \{s\}$; (* s does not have any successor in T *)
 fi
 fi
 od
od
return T

Example

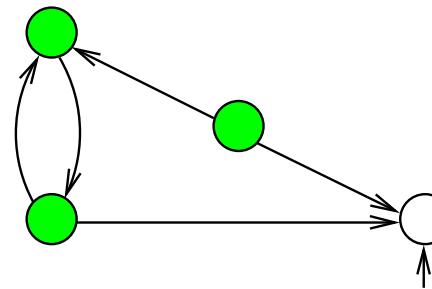
Alternative algorithm for $\text{Sat}(\exists \Box \Phi)$

1. Consider only state s if $s \models \Phi$, otherwise *eliminate* s
 - change TS into $TS[\Phi] = (S', \text{Act}, \rightarrow', I', AP, L')$ with $S' = \text{Sat}(\Phi)$,
 - $\rightarrow' = \rightarrow \cap (S' \times \text{Act} \times S')$, $I' = I \cap S'$, and $L'(s) = L(s)$ for $s \in S'$
 \Rightarrow all removed states will not satisfy $\exists \Box \Phi$, and thus can be safely removed
2. Determine all *non-trivial strongly connected components* in $TS[\Phi]$
 - non-trivial SCC = maximal, connected subgraph with at least one transition
 \Rightarrow any state in such SCC satisfies $\exists \Box \Phi$
3. $s \models \exists \Box \Phi$ is equivalent to “some *SCC is reachable* from s ”
 - this search can be done in a backward manner

Example



(c) SCC



(d)

Overview Lecture #19

- Existential normal form
- Basic CTL model-checking algorithm
- Algorithms for $\exists(\Phi \cup \Psi)$ and $\exists\Box \Phi$

⇒ Time complexity

Time complexity

For transition system TS with N states and K transitions, and CTL formula Φ , the CTL model-checking problem $TS \models \Phi$ can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M))$

this applies to both algorithms for $\exists \Box \Phi$

Model-checking LTL versus CTL

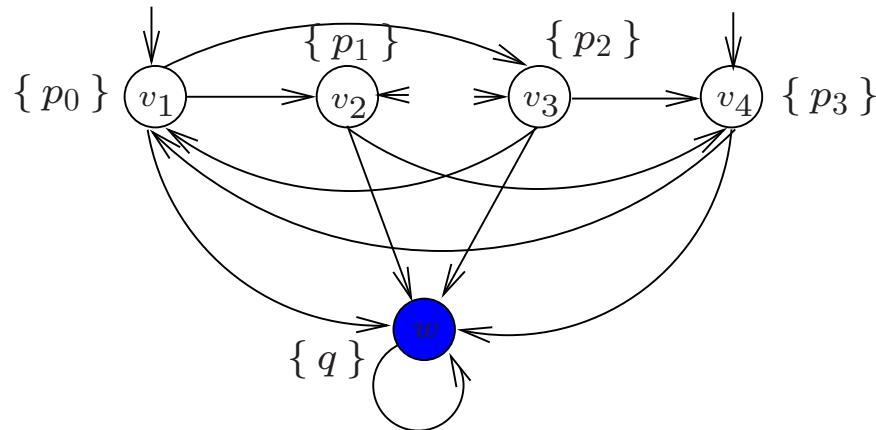
- Let TS be a transition system with N states and M transitions
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot 2^{|\Phi|})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot |\Phi|)$
 - linear in the state space of the system model and the formula
- Is model-checking CTL more efficient?

Model-checking LTL versus CTL

- Let TS be a transition system with N states and M transitions
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot 2^{|\Phi|})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity $\mathcal{O}((N+M) \cdot |\Phi|)$
 - linear in the state space of the system model and the formula
- Is model-checking CTL more efficient? **No!**

Hamiltonian path problem (1)

⇒ LTL-formulae can be *exponentially shorter* than their CTL-equivalent



- Existence of Hamiltonian path in LTL: $\bigwedge_i \left(\diamond p_i \wedge \square(p_i \rightarrow \bigcirc \square \neg p_i) \right)$
- In CTL, all possible (= 4!) routes need to be encoded