© JPK

CTL Model Checking
Lecture #19 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

June 13, 2007

#19: CTL model checking Model checking

Overview Lecture #19

= Existential normal form
e Basic CTL model-checking algorithm

e Algorithms for 3(® U ¥) and 30 @

e Time complexity

© JPK 1

#19: CTL model checking Model checking

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

O = true | a | Oy A B ‘ - ‘ 30 @ ‘ (3, U &,) ‘ S0

For each CTL formula, there exists an equivalent CTL formula in ENF

VO &
V(P U T)

—E|(—|\If U (—|CI) AN —|\II)) A —d0 =W

© JPK 2

#19: CTL model checking Model checking

Overview Lecture #19

e Existential normal form
= Basic CTL model-checking algorithm
e Algorithms for 3(® U ¥) and 30 ®

e Time complexity

© JPK 3

#19: CTL model checking Model checking

Model checking CTL
e How to check whether state TS satisfies CTL formula ®?

— convert the formula ® into the equivalent ® in ENF
— compute recursively the set Sat(®) = {s € S| s =P}
— TS |= @ if and only if each initial state of TS belongs to Sat(®)

e Recursive bottom-up computation of Sat(®):

— consider the parse-tree of ¢
— start to compute Sat(a;), for all leafs in the tree
— then go one level up in the tree and determine Sat(-) for these nodes

eg.: Sat(¥, A Wy) = Sat(¥y) N Sat(¥y,)

N
node at level 7 node at node at
level 141 level 141

— then go one level up and determine Sat(-) of these nodes
— and so on....... until the root is treated, i.e., Sat(®) is computed

© JPK 4

#19: CTL model checking Model checking

Basic algorithm

Input: finite transition system TS and CTL formula & (both over AP)
Output: TS &= &

(* compute the sets Sat(®) = {s € S |s =P}
forall: < |®|do
for all ¥ € Sub(®) with | | =7 do
compute Sat(¥) from Sat(¥"’) (* for maximal proper ¥’ € Sub(¥) *)
od
od
return I C Sat(®P)

© JPK 5

#19: CTL model checking Model checking

N~ N’
s y!/
v

© JPK 6

#19: CTL model checking Model checking

Characterization of Sat (1)

For all CTL formulas ®, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {seS|aeL(s)}, foranya e AP
Sat(® AV) = Sat(®) N Sat(V)
Sat(-®) = S\ Sat(®)
Sat(30O®) = {se€ S| Post(s)NSat(®) # <}

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK .

#19: CTL model checking Model checking

Characterization of Sat (2)

e Sat(d(P UW)) is the smallest subset T" of S, such that:

(1) Sat(w) C T and (2) (s € Sat(®P)andPost(s) NT # @) = s&T

e Sat(dO ®) is the largest subset T" of S, such that:

(3) T C Sat(®) and (4) s € T implies Post(s) N T # &

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK 8

#19: CTL model checking Model checking

Proof

© JPK 9

#19: CTL model checking

Model checking

switch(®):

a
30 W
(P, U &)

0 &

end switch

Computation of Sat

return {s € S | a € L(s) };

return { s € S | Post(s) N Sat(¥) # & };

T := Sat(®3); (* compute the smallest fixed point *)
while { s € Sat(®1) \ T | Post(s) N T # @ } # @ do
let s € {s € Sat(®1) \T | Post(s) NT # & };

T:=T U {s}

od;
return T
T := Sat(P); (* compute the greatest fixed point *)

while { s € T' | Post(s) N T = @ } # @ do
let s€ {se T |Post(s) NT =2 };
T:=T\{s}h

od;

return 77

© JPK

10

#19: CTL model checking

Model checking

Overview Lecture #19

e Existential normal form
e Basic CTL model-checking algorithm
= Algorithms for 3(® U ¥) and 30 ¢

e Time complexity

© JPK

11

#19: CTL model checking Model checking

Computing Sat(3(® U 7)) (1)

e Sat(3(P U W)) is the smallest set T' C S such that:

(1) Sat(V) C T and (2) (s € Sat(®)andPost(s) NT #2) = se&T

e This suggests to compute Sat(3(P U 1)) iteratively:
To = Sat(V) and T;.1 = T; U {s € Sat(P) | Post(s) NT; # @ }
e I; = states that can reach a W-state in at most 7 steps via a ¢-path

e By induction on j it follows:

© JPK 12

#19: CTL model checking Model checking

Computing Sat(3(2 U 7)) (2)
o TSisfinite, so forsome j > 0we have: T, = T = Tj42 = ...

e Therefore: T; = T, U {s e Sat(®) | Post(s) N T; # o}

e Hence: { s € Sat(®) | Post(s) N1, # 2} C T,

— hence, T} satisfies (2), i.e., (s € Sat(®) and Post(s) N T; # @) = s € Ty
— further, Sat(V) = Ty C Tj so, Tj satisfies (1), i.e. Sat(¥) C T

e As Sat(d(® U W)) is the smallest set satisfying (1) and (2):
— Sat(3(¢UWY)) C Tjandthus Sat(3(PUWV)) = T;

e Hence: TO;TlgTQ;;T]:TJH::Sa’[(EI(CI)U\IJ))

© JPK 13

#19: CTL model checking Model checking

Computing Sat(3(® U W)) (3)

Input: finite transition system TS with state-set .S and CTL-formula 3(® U V)
Output: Sat(3(PUV)) ={se S|sE=I(PUYD) }

E = Sat(V); (* E administers the states s with s |= 3(® U ¥) *)
T .= F; (* T contains the already visited states s with s |= 3(® U 1) *)
while £ # @ do

let s’ € E;

E:=E\{s'};
for all s € Pre(s’) do
if s € Sat(®)\Tthen E:=F U {s};T:=T U {s}; endif
od
od
return T

© JPK 14

#19: CTL model checking Model checking

Example
{r} 9
Q< A
{p.a.r) O
{q} /O{pﬂ“}
e {pr.q}

let's check the CTL-formula 3¢ ((p=7) A (p # q))

© JPK 15

#19: CTL model checking Model checking

The computation in snapshots

g P T
g

{p}
{Q} {p,?“}
ta,r} {p,a}
(a (b)
SEESP
(© (d)

© JPK 16

#19: CTL model checking

Model checking

Computing Sat(30)

© JPK

17

#19: CTL model checking Model checking

Computing Sat(30)

E := S\ Sat(®); (* E contains any not visited s” with s” [~ 30® *)
T := Sat(P); (* T contains any s for which s |= 30® has not yet been disproven *)
for all s € Sat(®) do ¢[s] := | Post(s) |; od (* initialize array c *)

while £ # @ do

(* loop invariant: c[s] = |Post(s) N (T'U E) | *)
let s’ € E; (s’ £ D ¥
E:=E\{s}; (* s’ has been considered *)
for all s € Pre(s’) do

if s € T'then
c[s] := c[s] — 1; (* update counter c[s] for predecessor s of s’ *)
if ¢[s] = 0then
T:=T\{sh E:=FEU{s} (* s does not have any successor in 71" *)
fi
fi
od
od
return 7'

© JPK 18

#19: CTL model checking

Model checking

Example

© JPK

19

#19: CTL model checking Model checking

Alternative algorithm for Sat(30 @)

1. Consider only state s if s = ®, otherwise eliminate s

e change TS into TS[®] = (S', Act, —', I', AP, L") with S’ = Sat(®),
o ' =— NS xActx S, I'=1n S’ and L'(s) = L(s)fors € S’
= all removed states will not satisfy 30 $, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[®]

e non-trivial SCC = maximal, connected subgraph with at least one transition
= any state in such SCC satisfies 40

3. s = d0® is equivalent to “some SCC is reachable from s”

e this search can be done in a backward manner

© JPK 20

#19: CTL model checking Model checking

Example
?{T} /<>®
{p7Q7r} Q{p}
{a} {p,r}
ta,r} T {p,q}
(a) (b) TS[q]
(©) scc (d)

© JPK 21

#19: CTL model checking

Model checking

Overview Lecture #19

e Existential normal form
e Basic CTL model-checking algorithm
e Algorithms for 3(® U ¥) and 30 ®

= Time complexity

© JPK

22

#19: CTL model checking

Model checking

Time complexity

For transition system TS with [NV states and K transitions,
and CTL formula &, the CTL model-checking problem TS = &
can be determined intime O(| ® |-(N + M))

this applies to both algorithms for 90 &

© JPK

23

#19: CTL model checking Model checking

Model-checking LTL versus CTL

e Let TS be a transition system with IV states and M transitions

e Model-checking LTL-formula ® has time-complexity O((N+M)-2/®1

— linear in the state space of the system model
— exponential in the length of the formula

e Model-checking CTL-formula ® has time-complexity O((N+M)-| ®|)

— linear in the state space of the system model and the formula

¢ Is model-checking CTL more efficient?

© JPK 24

#19: CTL model checking Model checking

Model-checking LTL versus CTL

e Let TS be a transition system with IV states and M transitions

e Model-checking LTL-formula ® has time-complexity O((N+M)-2/®1

— linear in the state space of the system model
— exponential in the length of the formula

e Model-checking CTL-formula ® has time-complexity O((N+M)-| ®|)

— linear in the state space of the system model and the formula

e Is model-checking CTL more efficient? No!

© JPK 25

#19: CTL model checking Model checking

Hamiltonian path problem (1)

= LTL-formulae can be exponentially shorter than their CTL-equivalent

e Existence of Hamiltonian path in LTL: A, (Opi A O(p; — O0O-p;))

e In CTL, all possible (= 4!) routes need to be encoded

© JPK 26

