
CTL Model Checking
Lecture #19 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 13, 2007

c© JPK

#19: CTL model checking Model checking

Overview Lecture #19

⇒ Existential normal form

• Basic CTL model-checking algorithm

• Algorithms for ∃(ΦUΨ) and ∃�Φ

• Time complexity

c© JPK 1

#19: CTL model checking Model checking

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2

∣∣∣ ¬Φ
∣∣∣ ∃©Φ

∣∣∣ ∃(Φ1 U Φ2)
∣∣∣ ∃�Φ

For each CTL formula, there exists an equivalent CTL formula in ENF

∀©Φ ≡ ¬∃©¬Φ

∀(Φ U Ψ) ≡ ¬∃(¬Ψ U (¬Φ∧¬Ψ)) ∧ ¬∃�¬Ψ

c© JPK 2

#19: CTL model checking Model checking

Overview Lecture #19

• Existential normal form

⇒ Basic CTL model-checking algorithm

• Algorithms for ∃(ΦUΨ) and ∃�Φ

• Time complexity

c© JPK 3

#19: CTL model checking Model checking

Model checking CTL
• How to check whether state TS satisfies CTL formula Φ̂?

– convert the formula bΦ into the equivalent Φ in ENF
– compute recursively the set Sat(Φ) = { s ∈ S | s |= Φ }
– TS |= Φ if and only if each initial state of TS belongs to Sat(Φ)

• Recursive bottom-up computation of Sat(Φ):

– consider the parse-tree of Φ

– start to compute Sat(ai), for all leafs in the tree
– then go one level up in the tree and determine Sat(·) for these nodes

e.g.,: Sat(Ψ1 ∧ Ψ2| {z }
node at level i

) = Sat(Ψ1|{z}
node at

level i+1

) ∩ Sat(Ψ2|{z}
node at

level i+1

)

– then go one level up and determine Sat(·) of these nodes
– and so on....... until the root is treated, i.e., Sat(Φ) is computed

c© JPK 4

#19: CTL model checking Model checking

Basic algorithm

Input: finite transition system TS and CTL formula Φ (both over AP)
Output: TS |= Φ

(* compute the sets Sat(Φ) = { s ∈ S | s |= Φ } *)
for all i � |Φ | do

for all Ψ ∈ Sub(Φ) with |Ψ | = i do
compute Sat(Ψ) from Sat(Ψ′) (* for maximal proper Ψ′ ∈ Sub(Ψ) *)

od
od
return I ⊆ Sat(Φ)

c© JPK 5

#19: CTL model checking Model checking

Example

∧ Sat(Φ)

∃©Sat(Ψ) ∃U Sat(Ψ′)

a

b ∃� Sat(Ψ′′)

¬

c

Φ = ∃© a︸ ︷︷ ︸
Ψ

∧ ∃(bU ∃�¬c)︸ ︷︷ ︸
Ψ′′︸ ︷︷ ︸

Ψ′

.

c© JPK 6

#19: CTL model checking Model checking

Characterization of Sat (1)

For all CTL formulas Φ,Ψ over AP it holds:

Sat(true) = S

Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)

Sat(∃©Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) �= ∅ }

where TS = (S, Act,→, I, AP, L) is a transition system without terminal states

c© JPK 7

#19: CTL model checking Model checking

Characterization of Sat (2)

• Sat(∃(Φ UΨ)) is the smallest subset T of S, such that:

(1) Sat(Ψ) ⊆ T and (2) (s ∈ Sat(Φ) and Post(s) ∩ T �= ∅) ⇒ s ∈ T

• Sat(∃�Φ) is the largest subset T of S, such that:

(3) T ⊆ Sat(Φ) and (4) s ∈ T implies Post(s) ∩ T �= ∅

where TS = (S, Act,→, I, AP, L) is a transition system without terminal states

c© JPK 8

#19: CTL model checking Model checking

Proof

c© JPK 9

#19: CTL model checking Model checking

Computation of Sat

switch(Φ):

a : return { s ∈ S | a ∈ L(s) };
. . . :
∃©Ψ : return { s ∈ S | Post(s) ∩ Sat(Ψ) �= ∅ };

∃(Φ1 U Φ2) : T := Sat(Φ2); (* compute the smallest fixed point *)
while { s ∈ Sat(Φ1) \ T | Post(s) ∩ T �= ∅ } �= ∅ do

let s ∈ { s ∈ Sat(Φ1) \ T | Post(s) ∩ T �= ∅ };
T := T ∪ { s };

od;
return T ;

∃� Φ : T := Sat(Φ); (* compute the greatest fixed point *)
while { s ∈ T | Post(s) ∩ T = ∅ } �= ∅ do

let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch

c© JPK 10

#19: CTL model checking Model checking

Overview Lecture #19

• Existential normal form

• Basic CTL model-checking algorithm

⇒ Algorithms for ∃(ΦUΨ) and ∃�Φ

• Time complexity

c© JPK 11

#19: CTL model checking Model checking

Computing Sat(∃(Φ U Ψ)) (1)

• Sat(∃(Φ UΨ)) is the smallest set T ⊆ S such that:

(1) Sat(Ψ) ⊆ T and (2) (s ∈ Sat(Φ) and Post(s) ∩ T �= ∅) ⇒ s ∈ T

• This suggests to compute Sat(∃(ΦUΨ)) iteratively:

T0 = Sat(Ψ) and Ti+1 = Ti ∪ { s ∈ Sat(Φ) | Post(s) ∩ Ti �= ∅ }

• Ti = states that can reach a Ψ-state in at most i steps via a Φ-path

• By induction on j it follows:

T0 ⊆ T1 ⊆ . . . ⊆ Tj ⊆ Tj+1 ⊆ . . . ⊆ Sat(∃(Φ U Ψ))

c© JPK 12

#19: CTL model checking Model checking

Computing Sat(∃(Φ U Ψ)) (2)

• TS is finite, so for some j � 0 we have: Tj = Tj+1 = Tj+2 = . . .

• Therefore: Tj = Tj ∪ { s ∈ Sat(Φ) | Post(s) ∩ Tj �= ∅ }

• Hence: { s ∈ Sat(Φ) | Post(s) ∩ Tj �= ∅ } ⊆ Tj

– hence, Tj satisfies (2), i.e.,
`
s ∈ Sat(Φ) and Post(s) ∩ Tj �= ∅

´ ⇒ s ∈ Tj

– further, Sat(Ψ) = T0 ⊆ Tj so, Tj satisfies (1), i.e. Sat(Ψ) ⊆ Tj

• As Sat(∃(ΦU Ψ)) is the smallest set satisfying (1) and (2):

– Sat(∃(Φ U Ψ)) ⊆ Tj and thus Sat(∃(Φ U Ψ)) = Tj

• Hence: T0 � T1 � T2 � . . . � Tj = Tj+1 = . . . = Sat(∃(Φ UΨ))

c© JPK 13

#19: CTL model checking Model checking

Computing Sat(∃(Φ U Ψ)) (3)

Input: finite transition system TS with state-set S and CTL-formula ∃(Φ U Ψ)

Output: Sat(∃(Φ U Ψ)) = { s ∈ S | s |= ∃(Φ U Ψ) }

E := Sat(Ψ); (* E administers the states s with s |= ∃(Φ U Ψ) *)

T := E; (* T contains the already visited states s with s |= ∃(Φ U Ψ) *)

while E �= ∅ do
let s′ ∈ E;
E := E \ { s′ };
for all s ∈ Pre(s′) do

if s ∈ Sat(Φ) \ T then E := E ∪ { s }; T := T ∪ { s }; endif
od

od
return T

c© JPK 14

#19: CTL model checking Model checking

Example

{ p, q, r }

{ q, r }

{ q }

{ r } ∅

{ p }

{ p, r }

{ p, q }

let’s check the CTL-formula ∃� ((p = r)∧ (p �= q))

c© JPK 15

#19: CTL model checking Model checking

The computation in snapshots

(c)

(a) (b)

(d)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }
{ p }

{ q }

{ r }
∅

c© JPK 16

#19: CTL model checking Model checking

Computing Sat(∃�Φ)

c© JPK 17

#19: CTL model checking Model checking

Computing Sat(∃�Φ)
E := S \ Sat(Φ); (* E contains any not visited s′ with s′ �|= ∃�Φ *)

T := Sat(Φ); (* T contains any s for which s |= ∃�Φ has not yet been disproven *)

for all s ∈ Sat(Φ) do c[s] := | Post(s) |; od (* initialize array c *)

while E �= ∅ do
(* loop invariant: c[s] = |Post(s) ∩ (T ∪ E) | *)

let s′ ∈ E; (* s′ �|= Φ *)
E := E \ { s′ }; (* s′ has been considered *)
for all s ∈ Pre(s′) do

if s ∈ T then
c[s] := c[s] − 1; (* update counter c[s] for predecessor s of s′ *)
if c[s] = 0 then

T := T \ { s }; E := E ∪ { s }; (* s does not have any successor in T *)
fi

fi
od

od
return T

c© JPK 18

#19: CTL model checking Model checking

Example

c© JPK 19

#19: CTL model checking Model checking

Alternative algorithm for Sat(∃�Φ)

1. Consider only state s if s |= Φ, otherwise eliminate s

• change TS into TS[Φ] = (S ′, Act,→′, I ′, AP, L′) with S′ = Sat(Φ),
• →′ = → ∩ (S′ × Act × S′), I ′ = I ∩ S′, and L′(s) = L(s) for s ∈ S′

⇒ all removed states will not satisfy ∃� Φ, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[Φ]

• non-trivial SCC = maximal, connected subgraph with at least one transition
⇒ any state in such SCC satisfies ∃� Φ

3. s |= ∃�Φ is equivalent to “some SCC is reachable from s”

• this search can be done in a backward manner

c© JPK 20

#19: CTL model checking Model checking

Example

(a)

(d)

(b)

(c)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }
{ p }

{ q }

{ r }
∅

TS[q]

SCC

c© JPK 21

#19: CTL model checking Model checking

Overview Lecture #19

• Existential normal form

• Basic CTL model-checking algorithm

• Algorithms for ∃(ΦUΨ) and ∃�Φ

⇒ Time complexity

c© JPK 22

#19: CTL model checking Model checking

Time complexity

For transition system TS with N states and K transitions,

and CTL formula Φ, the CTL model-checking problem TS |= Φ

can be determined in time O(|Φ |·(N + M))

this applies to both algorithms for ∃� Φ

c© JPK 23

#19: CTL model checking Model checking

Model-checking LTL versus CTL

• Let TS be a transition system with N states and M transitions

• Model-checking LTL-formula Φ has time-complexity O((N+M)·2|Φ |)

– linear in the state space of the system model
– exponential in the length of the formula

• Model-checking CTL-formula Φ has time-complexity O((N+M)·|Φ |)
– linear in the state space of the system model and the formula

• Is model-checking CTL more efficient?

c© JPK 24

#19: CTL model checking Model checking

Model-checking LTL versus CTL

• Let TS be a transition system with N states and M transitions

• Model-checking LTL-formula Φ has time-complexity O((N+M)·2|Φ |)

– linear in the state space of the system model
– exponential in the length of the formula

• Model-checking CTL-formula Φ has time-complexity O((N+M)·|Φ |)
– linear in the state space of the system model and the formula

• Is model-checking CTL more efficient? No!

c© JPK 25

#19: CTL model checking Model checking

Hamiltonian path problem (1)

⇒ LTL-formulae can be exponentially shorter than their CTL-equivalent

v1 v2 v3 v4

w

{ p3 }{ p0 }
{ p1 } { p2 }

{ q }

• Existence of Hamiltonian path in LTL:
V

i

“
�pi ∧ �(pi → ©�¬pi)

”

• In CTL, all possible (= 4!) routes need to be encoded

c© JPK 26

