
CTL Counterexamples
and CTL∗ Model Checking

Lecture #20 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 19, 2007

c© JPK

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples

• Model checking is an effective and efficient “bug hunting” technique

• Counterexamples are of utmost importance:

– diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .

• LTL: counterexamples are finite paths

– ©Φ: a path on which the next state refutes Φ

– �Φ: a path leading to a ¬Φ-state
– �Φ: a ¬Φ-path leading to a ¬Φ cycle

• Counterexample generation for LTL:

– use stack contents of nested DFS on encountering an accept cycle
– use a variant of BFS top find shortest counterexamples

c© JPK 1

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples in CTL

• TS �|= ∀ϕ where ϕ only contains universal path quantifiers

– counterexample = a sufficiently long prefix of a path refuting ϕ (as in LTL)
– this fragment of the logic is known as universal fragment of CTL

• TS �|= ∃ϕ where ϕ is arbitrary CTL formula

– all paths satisfy ϕ! ⇒ no clear notion of counterexample
– witness = a sufficiently long prefix of a path satisfying ϕ

• So:

– for ∀ϕ, a prefix of π with π �|= ϕ acts as counterexample
– for ∃ϕ, a prefix of π with π |= ϕ acts as witness

c© JPK 2

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

The wolf-goat-cabbage problem

• A goat (g), a cabbage (c) and a wolf (w) and two riverbanks (0 and 1)

– A boat with ferryman (f) that can carry at most two occupants
– Only the ferryman can steer the boat
– Goat and cabbage, goat and wolf should neither travel nor left together

• Is there a schedule such that brings c, g, and w to the other side?

• . . . Model this as a CTL model-checking problem

– transition system TS = (wolf ||| goat ||| cabbage) ‖ ferryman
– check whether TS |= ∃ϕ with

ϕ =

„ ^
i=0,1

(wi ∧ gi → fi) ∧ (ci ∧ gi → fi)

«
U (c1 ∧ f1 ∧ g1 ∧w1)

c© JPK 3

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

The wolf-goat-cabbage problem

w0

w1

g0

g1

c0

c1

f0

f1

βα β β τα α τ βα

TS = (wolf ||| goat ||| cabbage) ‖ ferryman

c© JPK 4

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

〈c0, f0, g0, w0〉

〈c0, f1, g0, w0〉

〈c1, f1, g0, w0〉〈c0, f1, g0, w1〉

〈c0, f1, g1, w0〉

〈c0, f0, g1, w0〉〈c0, f1, g1, w1〉 〈c1, f1, g1, w0〉

〈c0, f0, g1, w1〉 〈c1, f0, g1, w0〉

〈c0, f0, g0, w1〉 〈c1, f0, g0, w0〉

〈c1, f1, g0, w1〉

〈c1, f0, g0, w1〉

〈c1, f1, g1, w1〉

〈c1, f0, g1, w1〉

c© JPK 5

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Wolf-goat-cabbage problem
A witness of ∃ϕ with:

ϕ =

„ ^
i=0,1

(wi ∧ gi → fi) ∧ (ci ∧ gi → fi)

«
U (c1 ∧ f1 ∧ g1 ∧w1)

is a path fragment from initial state 〈c0, f0, g0, w0〉 to target state 〈c1, f1, g1, w1〉 such
that g, c and g, w are not left on a single riverbank. Such as:

〈c0, f0, g0, w0〉 goat to riverbank 1
〈c0, f1, g1, w0〉 ferryman comes back to riverbank 0
〈c0, f0, g1, w0〉 cabbage to riverbank 1
〈c1, f1, g1, w0〉 goat back to riverbank 0
〈c1, f0, g0, w0〉 wolf to riverbank 1
〈c1, f1, g0, w1〉 ferryman comes back to riverbank 0
〈c1, f0, g0, w1〉 goat to riverbank 1
〈c1, f1, g1, w1〉

c© JPK 6

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples for ©Φ

• A counterexample of ©Φ is a path fragment s s′ with

– s ∈ I and s′ ∈ Post(s) with s′ �|= Φ

• A witness of ©Φ is a is a path fragment s s′ with

– s ∈ I and s′ ∈ Post(s) with s′ |= Φ

• Algorithm: inspection of direct successors of initial states

c© JPK 7

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples for ΦU Ψ

• A witness is an initial path fragment s0 s1 . . . sn with

– sn |= Ψ and si |= Φ for 0 � i < n

• Algorithm: backward search starting in the set of Ψ-states

• A counterexample is an initial path fragment that indicates a path π:

– for which either π |= �(Φ∧¬Ψ) or π |= (Φ∧¬Ψ) U (¬Φ∧¬Ψ)

• Counterexample is initial path fragment of either form:

– s0 . . . sn−1 sn s′
1 . . . s′

r| {z }
cycle| {z }

satisfy Φ∧¬Ψ

with sn=s′
r or s0 . . . sn−1| {z }

satisfy Φ∧¬Ψ

sn with sn |= ¬Φ∧¬Ψ

c© JPK 8

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexample generation
Determine the SCCs by of the digraph G = (S, E) where

E = { (s, s′) ∈ S × S | s′ ∈ Post(s) ∧ s |= Φ∧¬Ψ }

Each path in G that starts in an initial state s0 ∈ S and leads to a non-
trivial SCC C in G provides a counterexample of the form:

s0 s1 . . . sn s′1 . . . s′r︸ ︷︷ ︸
∈C

with sn = s′r

Each path in G that leads from an initial state s0 to a trivial terminal SCC

C = { s′ } with s′ �|= Ψ

provides a counterexample of the form s0 s1 . . . sn with sn |= ¬Φ ∧ ¬Ψ

c© JPK 9

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Counterexamples for �Φ

• Counterexample is initial path fragment s0 s1 . . . sn such that:

– s0, . . . , sn−1 |= Φ and sn �|= Φ

• Algorithm: backward search starting in ¬Φ-states

• A witness of ϕ = �Φ consists of an initial path fragment of the form:

– s0 s1 . . . sn s
′
1 . . . s

′
r| {z }

satisfy Φ

with sn = s′
r

• Algorithm: cycle search in the digraph G = (S,E) where the set of
edges E:

– E = { (s, s′) | s′ ∈ Post(s) ∧ s |= Φ }

c© JPK 10

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Example

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

∀
“
((n1 ∧n2) ∨ w2)| {z }

Φ

U c2|{z}
Ψ

”

c© JPK 11

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

SCC graph

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

c© JPK 12

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Time complexity

Let TS be a transition system TS with N states and K transitions and ϕ
a CTL- path formula

If TS �|= ∀ϕ then a counterexample for ϕ in TS can be determined in
time O(N+K).

The same holds for a witness for ϕ, provided that TS |= ∃ϕ.

c© JPK 13

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

ϕ ::= Φ
∣
∣
∣ ϕ1∧ϕ2

∣
∣
∣ ¬ϕ

∣
∣
∣ © ϕ

∣
∣
∣ ϕ1 U ϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL!

c© JPK 14

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

CTL∗ semantics

s |= a iff a ∈ L(s)

s |= ¬Φ iff not s |= Φ

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some π ∈ Paths(s)

π |= Φ iff π[0] |= Φ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ¬ϕ iff π � |= ϕ

π |= ©Φ iff π[1..] |= Φ

π |= Φ U Ψ iff ∃ j � 0. (π[j..] |= Ψ ∧ (∀ 0 � k < j. π[k..] |= Φ))

c© JPK 15

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Transition system semantics

• For CTL∗-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL∗-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

this is exactly as for CTL

c© JPK 16

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Embedding of LTL in CTL∗

For LTL formula ϕ and TS without terminal states (both over AP) and for
each s ∈ S:

s |= ϕ
︸ ︷︷ ︸

LTL semantics

if and only if s |= ∀ϕ
︸ ︷︷ ︸

CTL∗ semantics

In particular:

TS |=LTL ϕ if and only if TS |=CTL∗ ∀ϕ

c© JPK 17

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Expressivity of CTL∗

�(a∧ © a)
��a

�(a∧ © a)

∀�∃�a

LTL CTL

CTL∗

∨
∀�∃�a

c© JPK 18

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

CTL∗ model checking

[Emerson & Lei, 1985]

• Adopt the same bottom-up procedure as for CTL

• Replace maximal proper state sub-formula Ψ by new proposition aΨ

– adjust labeling such that aΨ ∈ L(s) if and only if s ∈ Sat(Ψ)

• Most interesting case: formulas of the form ∃ϕ

– by replacing all maximal state sub-formulas in ϕ, an LTL-formula results!

• s |= ∃ϕ iff s �|= ∀¬ϕ
︸ ︷︷ ︸

CTL∗ semantics

iff s �|= ¬ϕ
︸ ︷︷ ︸

LTL semantics

– SatCTL∗(∃ϕ) = S \ SatLTL(¬ϕ) = S \ { s ∈ S | s |=LTL ¬ϕ }

c© JPK 19

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Abstract example

c© JPK 20

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

CTL∗ model-checking algorithm
for all i � |Φ | do

for all Ψ ∈ Sub(Φ) with |Ψ | = i do
switch(Ψ):

true : Sat(Ψ) := S;
a : Sat(Ψ) := { s ∈ S | a ∈ L(s) };
a1 ∧ a2 : Sat(Ψ) := Sat(a1) ∩ Sat(a2);
¬a : Sat(Ψ) := S \ Sat(a);
∃ϕ : determine SatLTL(¬ϕ);

: Sat(Ψ) := S \ SatLTL(¬ϕ)
end switch
AP := AP ∪ { aΨ }; (* introduce fresh atomic proposition *)
replace Ψ with aΨ;
forall s ∈ Sat(Ψ) do L(s) := L(s) ∪ { aΨ }; od

od
od
return I ⊆ Sat(Φ)

c© JPK 21

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Example

c© JPK 22

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Time complexity

For transition system TS with N states and M transitions,

CTL∗ formula Φ, the CTL∗ model-checking problem TS |= Φ

can be determined in time O((N+M)·2|Φ|).

The CTL∗ model-checking problem is PSPACE-complete

c© JPK 23

#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Complexity overview

CTL LTL CTL∗

model checking PTIME PSPACE-complete PSPACE-complete

without fairness size(TS) · |Φ| size(TS) · exp(|Φ|) size(TS) · exp(|Φ|)

satisfiability check EXPTIME PSPACE-complete 2EXPTIME

best known technique exp(|Φ|) exp(|Φ|) exp(exp(|Φ|))

c© JPK 24

