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Counterexamples

• Model checking is an effective and efficient “bug hunting” technique

• Counterexamples are of utmost importance:

– diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .

• LTL: counterexamples are finite paths

– ©Φ: a path on which the next state refutes Φ

– �Φ: a path leading to a ¬Φ-state
– �Φ: a ¬Φ-path leading to a ¬Φ cycle

• Counterexample generation for LTL:

– use stack contents of nested DFS on encountering an accept cycle
– use a variant of BFS top find shortest counterexamples
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Counterexamples in CTL

• TS �|= ∀ϕ where ϕ only contains universal path quantifiers

– counterexample = a sufficiently long prefix of a path refuting ϕ (as in LTL)
– this fragment of the logic is known as universal fragment of CTL

• TS �|= ∃ϕ where ϕ is arbitrary CTL formula

– all paths satisfy ϕ! ⇒ no clear notion of counterexample
– witness = a sufficiently long prefix of a path satisfying ϕ

• So:

– for ∀ϕ, a prefix of π with π �|= ϕ acts as counterexample
– for ∃ϕ, a prefix of π with π |= ϕ acts as witness
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The wolf-goat-cabbage problem

• A goat (g), a cabbage (c) and a wolf (w) and two riverbanks (0 and 1)

– A boat with ferryman (f) that can carry at most two occupants
– Only the ferryman can steer the boat
– Goat and cabbage, goat and wolf should neither travel nor left together

• Is there a schedule such that brings c, g, and w to the other side?

• . . . Model this as a CTL model-checking problem

– transition system TS = (wolf ||| goat ||| cabbage) ‖ ferryman
– check whether TS |= ∃ϕ with

ϕ =

„ ^
i=0,1

(wi ∧ gi → fi) ∧ (ci ∧ gi → fi)

«
U (c1 ∧ f1 ∧ g1 ∧w1)
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The wolf-goat-cabbage problem
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TS = (wolf ||| goat ||| cabbage) ‖ ferryman
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〈c0, f0, g0, w0〉

〈c0, f1, g0, w0〉

〈c1, f1, g0, w0〉〈c0, f1, g0, w1〉

〈c0, f1, g1, w0〉

〈c0, f0, g1, w0〉〈c0, f1, g1, w1〉 〈c1, f1, g1, w0〉

〈c0, f0, g1, w1〉 〈c1, f0, g1, w0〉

〈c0, f0, g0, w1〉 〈c1, f0, g0, w0〉

〈c1, f1, g0, w1〉

〈c1, f0, g0, w1〉

〈c1, f1, g1, w1〉

〈c1, f0, g1, w1〉
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Wolf-goat-cabbage problem
A witness of ∃ϕ with:

ϕ =

„ ^
i=0,1

(wi ∧ gi → fi) ∧ (ci ∧ gi → fi)

«
U (c1 ∧ f1 ∧ g1 ∧w1)

is a path fragment from initial state 〈c0, f0, g0, w0〉 to target state 〈c1, f1, g1, w1〉 such
that g, c and g, w are not left on a single riverbank. Such as:

〈c0, f0, g0, w0〉 goat to riverbank 1
〈c0, f1, g1, w0〉 ferryman comes back to riverbank 0
〈c0, f0, g1, w0〉 cabbage to riverbank 1
〈c1, f1, g1, w0〉 goat back to riverbank 0
〈c1, f0, g0, w0〉 wolf to riverbank 1
〈c1, f1, g0, w1〉 ferryman comes back to riverbank 0
〈c1, f0, g0, w1〉 goat to riverbank 1
〈c1, f1, g1, w1〉
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Counterexamples for ©Φ

• A counterexample of ©Φ is a path fragment s s′ with

– s ∈ I and s′ ∈ Post(s) with s′ �|= Φ

• A witness of ©Φ is a is a path fragment s s′ with

– s ∈ I and s′ ∈ Post(s) with s′ |= Φ

• Algorithm: inspection of direct successors of initial states
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Counterexamples for ΦU Ψ

• A witness is an initial path fragment s0 s1 . . . sn with

– sn |= Ψ and si |= Φ for 0 � i < n

• Algorithm: backward search starting in the set of Ψ-states

• A counterexample is an initial path fragment that indicates a path π:

– for which either π |= �(Φ∧¬Ψ) or π |= (Φ∧¬Ψ) U (¬Φ∧¬Ψ)

• Counterexample is initial path fragment of either form:

– s0 . . . sn−1 sn s′
1 . . . s′

r| {z }
cycle| {z }

satisfy Φ∧¬Ψ

with sn=s′
r or s0 . . . sn−1| {z }

satisfy Φ∧¬Ψ

sn with sn |= ¬Φ∧¬Ψ
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Counterexample generation
Determine the SCCs by of the digraph G = (S, E) where

E = { (s, s′) ∈ S × S | s′ ∈ Post(s) ∧ s |= Φ∧¬Ψ }

Each path in G that starts in an initial state s0 ∈ S and leads to a non-
trivial SCC C in G provides a counterexample of the form:

s0 s1 . . . sn s′1 . . . s′r︸ ︷︷ ︸
∈C

with sn = s′r

Each path in G that leads from an initial state s0 to a trivial terminal SCC

C = { s′ } with s′ �|= Ψ

provides a counterexample of the form s0 s1 . . . sn with sn |= ¬Φ ∧ ¬Ψ
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Counterexamples for �Φ

• Counterexample is initial path fragment s0 s1 . . . sn such that:

– s0, . . . , sn−1 |= Φ and sn �|= Φ

• Algorithm: backward search starting in ¬Φ-states

• A witness of ϕ = �Φ consists of an initial path fragment of the form:

– s0 s1 . . . sn s
′
1 . . . s

′
r| {z }

satisfy Φ

with sn = s′
r

• Algorithm: cycle search in the digraph G = (S,E) where the set of
edges E:

– E = { (s, s′) | s′ ∈ Post(s) ∧ s |= Φ }
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Example

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

∀
“
((n1 ∧n2) ∨ w2)| {z }

Φ

U c2|{z}
Ψ

”
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SCC graph

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉
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Time complexity

Let TS be a transition system TS with N states and K transitions and ϕ
a CTL- path formula

If TS �|= ∀ϕ then a counterexample for ϕ in TS can be determined in
time O(N+K).

The same holds for a witness for ϕ, provided that TS |= ∃ϕ.
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Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

ϕ ::= Φ
∣
∣
∣ ϕ1∧ϕ2

∣
∣
∣ ¬ϕ

∣
∣
∣ © ϕ

∣
∣
∣ ϕ1 U ϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL!
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CTL∗ semantics

s |= a iff a ∈ L(s)

s |= ¬Φ iff not s |= Φ

s |= Φ∧Ψ iff (s |= Φ) and (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some π ∈ Paths(s)

π |= Φ iff π[0] |= Φ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ¬ϕ iff π � |= ϕ

π |= ©Φ iff π[1..] |= Φ

π |= Φ U Ψ iff ∃ j � 0. (π[j..] |= Ψ ∧ (∀ 0 � k < j. π[k..] |= Φ))
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Transition system semantics

• For CTL∗-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL∗-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

this is exactly as for CTL

c© JPK 16



#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Embedding of LTL in CTL∗

For LTL formula ϕ and TS without terminal states (both over AP) and for
each s ∈ S:

s |= ϕ
︸ ︷︷ ︸

LTL semantics

if and only if s |= ∀ϕ
︸ ︷︷ ︸

CTL∗ semantics

In particular:

TS |=LTL ϕ if and only if TS |=CTL∗ ∀ϕ
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Expressivity of CTL∗

�(a∧ © a)
��a

�(a∧ © a)

∀�∃�a

LTL CTL

CTL∗

∨
∀�∃�a
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CTL∗ model checking

[Emerson & Lei, 1985]

• Adopt the same bottom-up procedure as for CTL

• Replace maximal proper state sub-formula Ψ by new proposition aΨ

– adjust labeling such that aΨ ∈ L(s) if and only if s ∈ Sat(Ψ)

• Most interesting case: formulas of the form ∃ϕ

– by replacing all maximal state sub-formulas in ϕ, an LTL-formula results!

• s |= ∃ϕ iff s �|= ∀¬ϕ
︸ ︷︷ ︸

CTL∗ semantics

iff s �|= ¬ϕ
︸ ︷︷ ︸

LTL semantics

– SatCTL∗(∃ϕ) = S \ SatLTL(¬ϕ) = S \ { s ∈ S | s |=LTL ¬ϕ }
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Abstract example
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CTL∗ model-checking algorithm
for all i � |Φ | do

for all Ψ ∈ Sub(Φ) with |Ψ | = i do
switch(Ψ):

true : Sat(Ψ) := S;
a : Sat(Ψ) := { s ∈ S | a ∈ L(s) };
a1 ∧ a2 : Sat(Ψ) := Sat(a1) ∩ Sat(a2);
¬a : Sat(Ψ) := S \ Sat(a);
∃ϕ : determine SatLTL(¬ϕ);

: Sat(Ψ) := S \ SatLTL(¬ϕ)
end switch
AP := AP ∪ { aΨ }; (* introduce fresh atomic proposition *)
replace Ψ with aΨ;
forall s ∈ Sat(Ψ) do L(s) := L(s) ∪ { aΨ }; od

od
od
return I ⊆ Sat(Φ)
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Example

c© JPK 22



#20: CTL Counterexamples and CTL∗ Model Checking Model checking

Time complexity

For transition system TS with N states and M transitions,

CTL∗ formula Φ, the CTL∗ model-checking problem TS |= Φ

can be determined in time O((N+M)·2|Φ|).

The CTL∗ model-checking problem is PSPACE-complete
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Complexity overview

CTL LTL CTL∗

model checking PTIME PSPACE-complete PSPACE-complete

without fairness size(TS) · |Φ| size(TS) · exp(|Φ|) size(TS) · exp(|Φ|)

satisfiability check EXPTIME PSPACE-complete 2EXPTIME

best known technique exp(|Φ|) exp(|Φ|) exp(exp(|Φ|))
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