

Bisimulation

Lecture #22 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 26, 2007

Overview Lecture #22

⇒ Bisimulation equivalence

- Quotient transition system

Implementation relations

- A *binary relation* on transition systems
 - when does a transition systems correctly implements another?
- Important for system *synthesis*
 - stepwise *refinement* of a system specification TS into an “implementation” TS'
- Important for system *analysis*
 - use the implementation relation as a means for *abstraction*
 - replace $TS \models \varphi$ by $TS' \models \varphi$ where $|TS'| \ll |TS|$ such that:

$$TS \models \varphi \text{ iff } TS' \models \varphi \quad \text{or} \quad TS' \models \varphi \Rightarrow TS \models \varphi$$

⇒ Focus on state-based *bisimulation* and *simulation*

- definition: what is bisimulation?
- logical characterization: which logical formulas are preserved by bisimulation?

Bisimulation equivalence

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i=1, 2$, be transition systems

A *bisimulation* for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. $\forall s_1 \in I_1 \exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R}$
2. for all states $s_1 \in S_1, s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(s_1) = L_2(s_2)$
 - (b) if $s'_1 \in Post(s_1)$ then there exists $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
 - (c) if $s'_2 \in Post(s_2)$ then there exists $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2)

Bisimulation equivalence

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2$$

can be completed to

$$s_1 \rightarrow s'_1$$

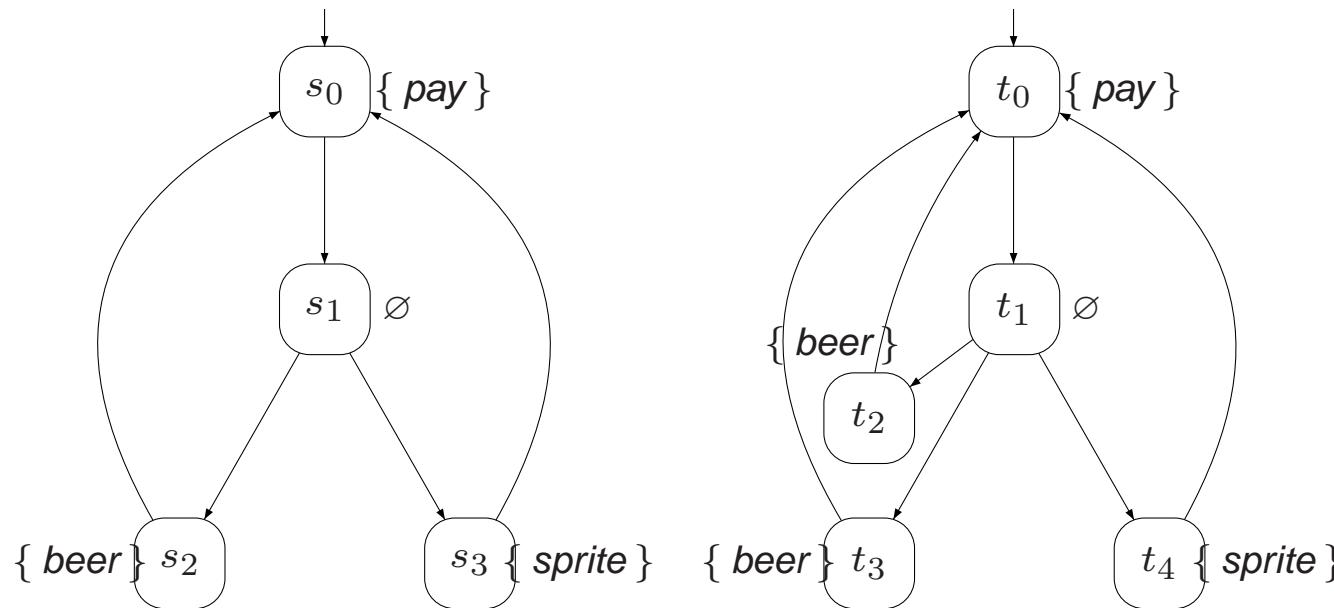
$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

and

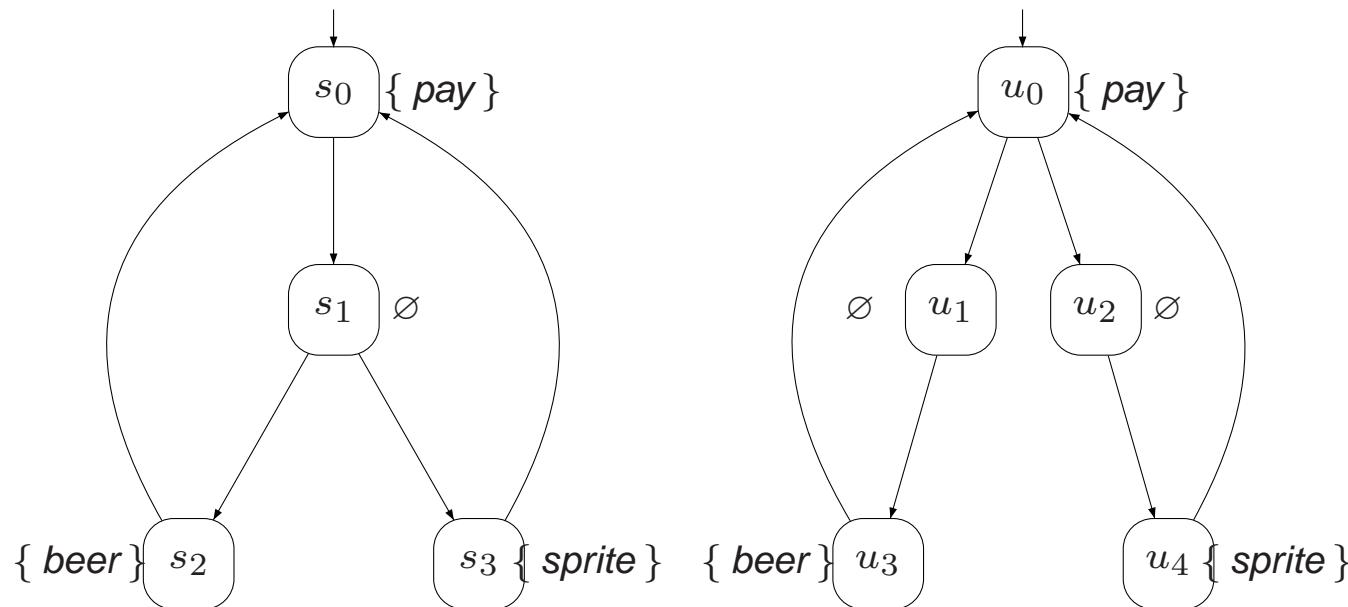
$$s_1$$

$$\mathcal{R}$$


$$s_2 \rightarrow s'_2$$

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$


$$s_2 \rightarrow s'_2$$

Example (1)

is a bisimulation for (TS_1, TS_2) where $AP = \{ pay, beer, sprite \}$

Example (2)

$TS_1 \not\sim TS_3$ for $AP = \{ pay, beer, sprite \}$

But: $\{ (s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4) \}$

is a bisimulation for (TS_1, TS_3) for $AP = \{ pay, drink \}$

\sim is an equivalence

For any transition systems TS , TS_1 , TS_2 and TS_3 over AP :

$TS \sim TS$ (reflexivity)

$TS_1 \sim TS_2$ implies $TS_2 \sim TS_1$ (symmetry)

$TS_1 \sim TS_2$ and $TS_2 \sim TS_3$ implies $TS_1 \sim TS_3$ (transitivity)

Bisimulation on paths

Whenever we have:

$$\begin{array}{ccccccc} s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \rightarrow s_4 \dots \dots \\ & & \mathcal{R} & & & & \\ t_0 & & & & & & \end{array}$$

this can be completed to

$$\begin{array}{ccccccc} s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \rightarrow s_4 \dots \dots \\ \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} \\ t_0 & \rightarrow & t_1 & \rightarrow & t_2 & \rightarrow & t_3 \rightarrow t_4 \dots \dots \end{array}$$

proof: by induction on index i of state s_i

Bisimulation vs. trace equivalence

$TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$

bisimilar transition systems thus satisfy the same LT properties!

Overview Lecture #22

- Bisimulation equivalence

⇒ Quotient transition system

Bisimulation on states

$\mathcal{R} \subseteq S \times S$ is a *bisimulation* on TS if for any $(s_1, s_2) \in \mathcal{R}$:

- $L(s_1) = L(s_2)$
- if $s'_1 \in Post(s_1)$ then there exists an $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
- if $s'_2 \in Post(s_2)$ then there exists an $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

s_1 and s_2 are *bisimilar*, $s_1 \sim_{TS} s_2$, if $(s_1, s_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

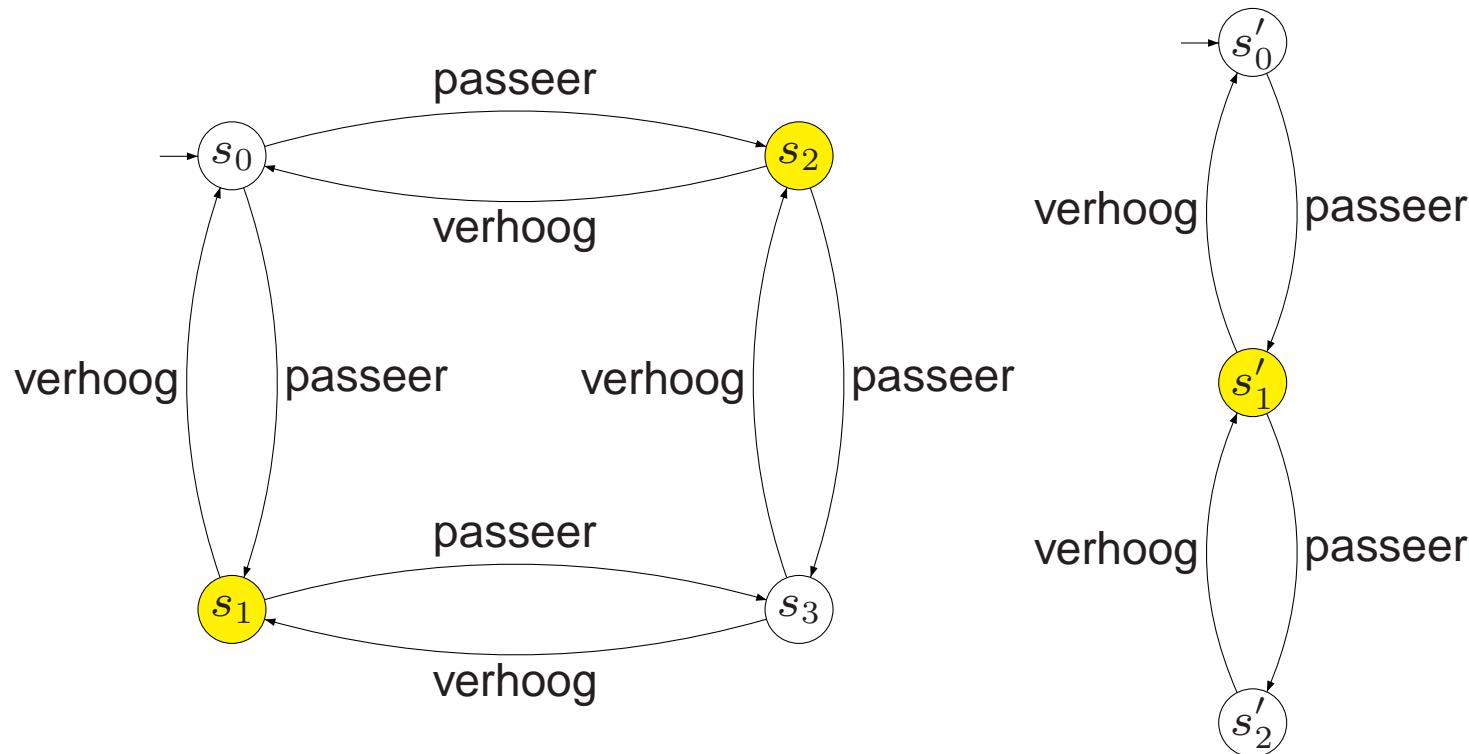
$s_1 \sim_{TS} s_2 \quad \text{if and only if} \quad TS_{s_1} \sim TS_{s_2}$

Coarsest bisimulation

\sim_{TS} is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS let


$TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \sim_{TS}

where

- $S' = S/\sim_{TS} = \{[s]_{\sim} \mid s \in S\}$ with $[s]_{\sim} = \{s' \in S \mid s \sim_{TS} s'\}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau'} [s']_{\sim}}$$
- $I' = \{[s]_{\sim} \mid s \in I\}$
- $L'([s]_{\sim}) = L(s)$

note that $TS \sim TS/\sim_{TS}$ Why?

A ternary semaphore and its quotient

The Bakery algorithm

Process 1:

```
.....
while true {  
    .....
    n1 :  $x_1 := x_2 + 1;$   

    w1 : wait until( $x_2 = 0 \mid\mid x_1 < x_2$ ) {  

    c1 : ... critical section ...}  

     $x_1 := 0;$   

    .....
}  

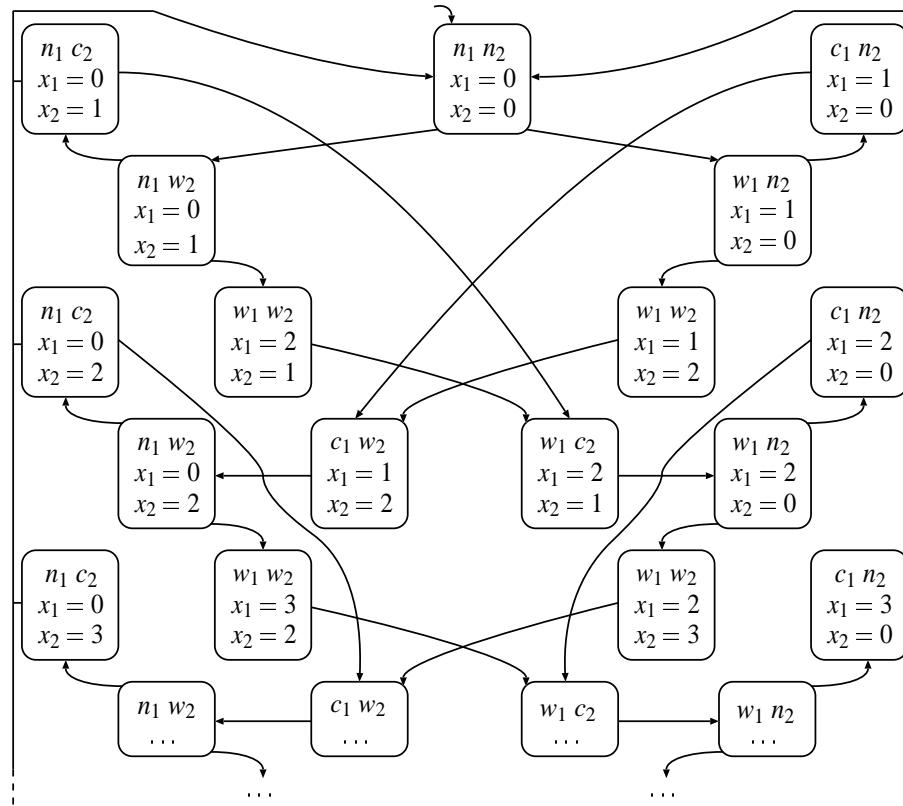
while true {  
    .....
    n2 :  $x_2 := x_1 + 1;$   

    w2 : wait until( $x_1 = 0 \mid\mid x_2 < x_1$ ) {  

    c2 : ... critical section ...}  

     $x_2 := 0;$   

    .....
}
```


Process 2:

this algorithm can be applied to arbitrary many processes

Example path fragment

process P_1	process P_2	x_1	x_2	effect
n_1	n_2	0	0	P_1 requests access to critical section
w_1	n_2	1	0	P_2 requests access to critical section
w_1	w_2	1	2	P_1 enters the critical section
c_1	w_2	1	2	P_1 leaves the critical section
n_1	w_2	0	2	P_1 requests access to critical section
w_1	w_2	3	2	P_2 enters the critical section
w_1	c_2	3	2	P_2 leaves the critical section
w_1	n_2	3	0	P_2 requests access to critical section
w_1	w_2	3	4	P_2 enters the critical section
...

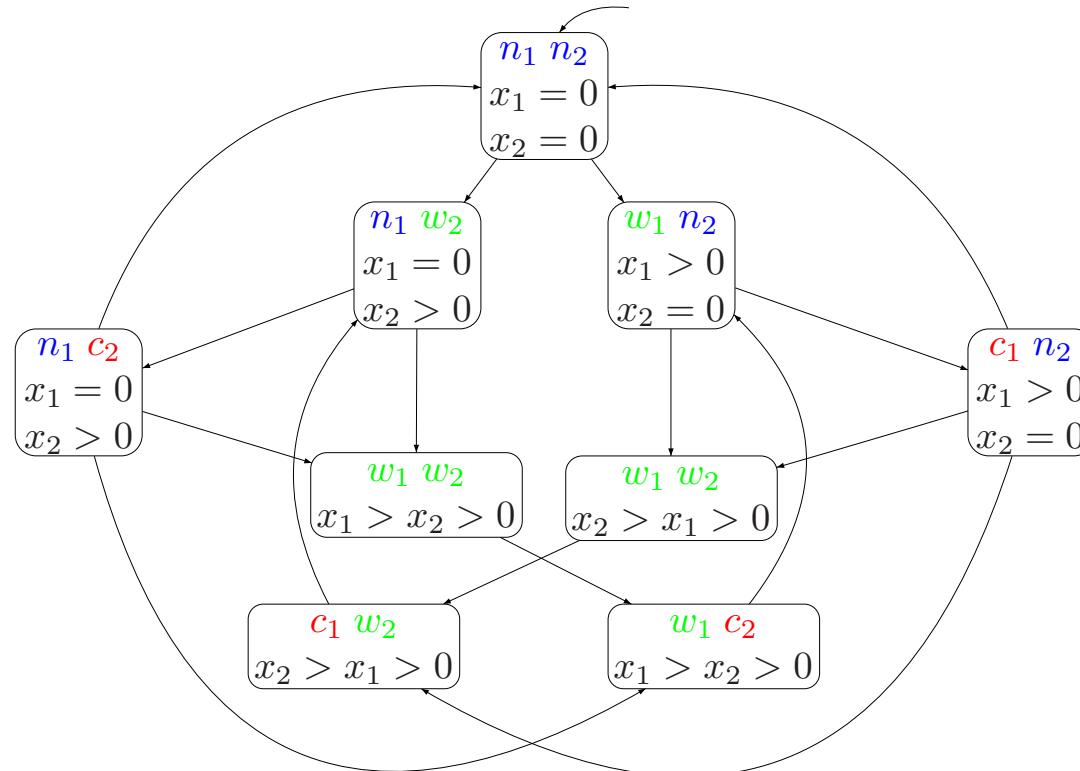
Bakery algorithm transition system

infinite state space due to possible unbounded increase of counters

Data abstraction

Function f maps a reachable state of TS_{Bak} onto an abstract one in TS_{Bak}^{abs}

Let $s = \langle \ell_1, \ell_2, x_1 = b_1, x_2 = b_2 \rangle$ be a state of TS_{Bak} with $\ell_i \in \{ n_i, w_i, c_i \}$ and $b_i \in \mathbb{N}$


Then:

$$f(s) = \begin{cases} \langle \ell_1, \ell_2, x_1 = 0, x_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 = 0, x_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, x_1 > 0, x_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 > x_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, x_2 > x_1 > 0 \rangle & \text{if } b_2 > b_1 > 0 \end{cases}$$

It follows: $\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$

for any subset of $AP = \{ \text{noncrit}_i, \text{wait}_i, \text{crit}_i \mid i = 1, 2 \}$

Bisimulation quotient

$$TS_{Bak}^{abs} = TS_{Bak} / \sim \quad \text{for} \quad AP = \{ crit_1, crit_2 \}$$

Remarks

- Data abstraction yields a bisimulation relation
 - in this example; typically a simulation relation is obtained
- $TS_{Bak}^{abs} \models \varphi$ with, e.g.,:
 - $\square(\neg crit_1 \vee \neg crit_2)$ and $(\square\lozenge wait_1 \Rightarrow \square\lozenge crit_1) \wedge (\square\lozenge wait_2 \Rightarrow \square\lozenge crit_2)$
- Since $TS_{Bak}^{abs} \sim TS_{Bak}$, it follows $TS_{Bak} \models \varphi$
- Note: $Traces(TS_{Bak}^{abs}) = Traces(TS_{Bak})$
 - but checking trace equivalence is **PSPACE-complete**
 - while checking bisimulation equivalence is in poly-time